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Pricing and Matching in Ride-Sharing

Dynamic Pricing
Matching

Hypergrowth

400,000

300,000

Rapid growth of ride-sharing platforms
due to data-driven marketplace tech

@ Efficient matching

200,000

Number of Active U.S. Driver-Partners

100,000

@ Calibrating demand with supply
through pricing

Jan 2013 Jan 2014 Jan 2015 Jan 2016
Date

Source: Hall and Kreuger (2016)
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g and Matching in Ride-Sharing

Dynamic Pricing
Matching

Hypergrowth

Southern California Growth
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g and Matching in Ride-Sharing

Dynamic Pricing
Matching

Higher Driver Efficiency and Lower Rider Wait
Times

150,

70 642 Taxis M Uber X
60 55.2

a
8
Average Waiting Time

Los Angeles Seattle .
Congestion level

Lower waiting time than street-hailing

Percent of miles driven with a
via intelligent dispatch

passenger

Source: Cramer and Krueger (2016); Feng, Kong, and Wang (2017)
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Pricing and Matching in Ride-Sharing

Dynamic Pricing
Matching

Fundamentals of Ride-Sharing Market

@ Two-sided market:

@ Riders must be provided with both service and prices that are comparable
or better than their alternatives.

@ Drivers must be able to plan on consistent earnings that are comparable or
better than their alternatives.

@ Geographically interconnected: drivers moving to one part of the city
means they are not available elsewhere
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Pricing and Matching in Ride-Sharing

Dynamic Pricing
Matching

Outline
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Pricing and Matching in Ride-Sharing

Dynamic Pricing
Matching

Dynamic Pricing

e ~
Sa
Uber HQ
How should a ride be priced, to calibrate .
an Francisco
Supply and demand? International Airport (SFO)
5 \o
Price is optimized using a simplified Economy
ride-sharing model, using predicted
demand and supply -
v B
$15.99 $28.46
12:11pm 12:05pm
m Personal

ég
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Pricing and Matching in Ride-Sharing

Demand Forecast

Pricing requires prediction of
demand and supply over time and
geolocation

Dawn Woodard

Dynamic Pricing
Matching

NYC taxi pickup data

Pickup density - 0:00

Hour of Pick.0 [ ShowHstery

S

Source: Daulton, Raman, Kindt

Predicting Travel Time on Road Networks

11/51



Pricing and Matching in Ride-Sharing

Dynamic Pricing

Matching

Outline
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Pricing and Matching in Ride-Sharing

Dynamic Pricing
Matching

Matching

de Westfield Mall

h Street

How should riders be matched with

open drivers? | 5
0.
How should carpool riders be : ‘e
matched with each other and with
drivers? b
»
W

(§‘. Connecting 9 nearby drivers...
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Pricing and Matching in Ride-Sharing

Dynamic Pricing
Matching

Matching

de Westfield Mall

h Street

How should riders be matched with % @
open drivers? /N
5
@ Can be done efficiently by o.”
immediately dispatching the driver g <
ith the sh ickup ti
with the shortest pickup time P
&
W

(§‘. Connecting 9 nearby drivers...
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g and Matching in Ride-Sharing

Dynamic Pricing
Matching

Matching

ide Westfield Mall

th Street

How should riders be matched with * @
open drivers? /S

@ Can be done efficiently by o.
immediately dispatching the driver g <
with the shortest pickup time

&

@ Improved further by mechanisms
like "Trip Swap" &
W

(§‘. Connecting 9 nearby drivers...
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Pricing and Matching in Ride-Sharing

Dynamic Pricing

Matching

Trip Swap

Trip swap
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ng and Matching in Ride-Sharing

Dynamic Pricing
Matching

Predicting Travel Time Reliability

Matching and pricing require prediction of travel time between two points

> bing | microsoft building 99, redmond, wa el Sininv gy
» * My pla Road || oF &e ¢
N S § Kirkland ) s Redmond =
12.5 mi, 18 min driving - 2 SR ED
View route based on trafic 2
g
haesice

A Microsoft Building 99, WA
Depart toward NE 36th St

Yarrow Point

Yoo

Clyde Hill

Echast

291
f' Turn right onto NE 36th St

o Nemh st
4281 el Medina
Tum left onto 148th Ave NE R £
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Pricing and Matching in Ride-Sharing

Dynamic Pricing

Matching

Predicting Travel Time Reliability

Deterministic predictions are never perfectly accurate, due to:

@ Uncertainty in traffic light schedules
@ Unexpected traffic and weather conditions
@ Differences in driver behavior

Probabilistic prediction takes into account travel time
uncertainty
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Pricing and Matching in Ride-Sharing

Dynamic Pricing

Matching

Predicting Travel Time Reliability

Deterministic predictions are never perfectly accurate, due to:
@ Uncertainty in traffic light schedules
@ Unexpected traffic and weather conditions
@ Differences in driver behavior

Probabilistic prediction takes into account travel time
uncertainty
@ Robust Matching

@ Penalize the chance of a long pickup time or bad carpool match
@ Ex: Dispatch the driver with the lowest value of the 90th percentile of pickup
time
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Pricing and Matching in Ride-Sharing

Dynamic Pricing

Matching

Predicting Travel Time Reliability

Deterministic predictions are never perfectly accurate, due to:

@ Uncertainty in traffic light schedules
@ Unexpected traffic and weather conditions
@ Differences in driver behavior

Probabilistic prediction takes into account travel time
uncertainty
@ Robust Matching

@ Penalize the chance of a long pickup time or bad carpool match
@ Ex: Dispatch the driver with the lowest value of the 90th percentile of pickup
time
@ Report travel time reliability to a rider or driver

@ Range for travel time (example: 10-15 mins)
@ Percentile of travel time (example: 80th percentile)
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Travel Time Reliability Prediction

Outline

e Travel Time Reliability Prediction
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Travel Time Reliability Prediction

Travel Time Prediction

4
Companies that require travel time predictions: GO Ug[e Q }
e &

amazon

£ waze

Conw.
v GA R MIN.

blngmaps

: de||v
g

Side-car P#uf
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Travel Time Reliability Prediction

Travel Time Prediction

Travel time prediction uses mobile phone GPS data
@ Many companies now have access to user location data
@ The only source of information about traffic & travel time that can achieve
near-comprehensive coverage of the road network
@ Increasing evidence that traffic conditions can be estimated accurately using only
such data (Work et al. 2010)

<0.1mis
0.1-1mis
1-5mis
5-10mis
10-20 mis
>20mis

Anonymized Windows phone GPS locations for the
Seattle metropolitan region, colored by speed:
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Travel Time Reliability Prediction

Mapping Services

Isolate vehicle trips as sequences of GPS points with high measured speed. Examples:
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Travel Time Reliability Prediction

Predicting Travel Time Reliability

Goal

Using GPS data from vehicles traveling on the road network, predict the
probability distribution of travel time on an arbitrary route in the network, at a
given time.

Challenges:
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Travel Time Reliability Prediction

Predicting Travel Time Reliability

Goal

Using GPS data from vehicles traveling on the road network, predict the
probability distribution of travel time on an arbitrary route in the network, at a
given time.

Challenges:
@ Large number of possible routes

@ Small number of trips in the data that follow any particular route
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Travel Time Reliability Prediction

Predicting Travel Time Reliability

Goal

Using GPS data from vehicles traveling on the road network, predict the
probability distribution of travel time on an arbitrary route in the network, at a
given time.

Challenges:
@ Large number of possible routes
@ Small number of trips in the data that follow any particular route

@ Dependence of the travel time on time of day, traffic, and other effects
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© Methods
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Data Processing

Snap the GPS trace to the road network.
For each trip i this yields:

@ Route R; = (Ri,1,...,,Rin) Where R; i is
the kth link traversed

@ Distance d; ; traversed on each link
@ Time T; , spent traversing link R, x

Dawn Woodard

y coordinate (m)
1000 1500 2000

500
.

500 1000 1500
X coordinate (m)

o
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Predicting Travel Time Reliability

To accurately predict travel time reliability for commercial use,
an approach must:
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To accurately predict travel time reliability for commercial use,
an approach must:
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To accurately predict travel time reliability for commercial use,
an approach must:

@ Give informed predictions for parts of the road network with little data

@ Capture weekly cycles in congestion levels
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Predicting Travel Time Reliability

To accurately predict travel time reliability for commercial use,
an approach must:

@ Give informed predictions for parts of the road network with little data
@ Capture weekly cycles in congestion levels

@ Be computationally efficient even for large road networks & datasets
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Predicting Travel Time Reliability

To accurately predict travel time reliability for commercial use,
an approach must:

@ Give informed predictions for parts of the road network with little data
@ Capture weekly cycles in congestion levels

@ Be computationally efficient even for large road networks & datasets
@ Accurately capture dependence between the travel time on the road

links in the route

@ Ex: If the speed is high on the first half of the trip, it is likely to be high on the second
half
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Statistical Modeling

“TRIP”: Travel time Reliability Inference & Prediction

Model the travel time T; of trip i on link R; x as

dix
T = —k
Bk EiSix

Speed variability decomposed into trip-level variability and link-level variability:
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Statistical Modeling

“TRIP”: Travel time Reliability Inference & Prediction

Model the travel time T; of trip i on link R; x as

dix
T = —k
Bk EiSix

Speed variability decomposed into trip-level variability and link-level variability:

@ Trip effect E;: due e.g. to traffic conditions affecting whole trip.

log(E;) ~ N(0,7%)
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Statistical Modeling

“TRIP”: Travel time Reliability Inference & Prediction

Model the travel time T; of trip i on link R; x as

dix
T = —k
Bk EiSix

Speed variability decomposed into trip-level variability and link-level variability:

@ Trip effect E;: due e.g. to traffic conditions affecting whole trip.

log(E;) ~ N(0,7%)

@ Link effect S; x: due e.g. to local traffic conditions. Model it conditional on an
unobserved congestion state Q; x € {1,..., Q}:

log(Si,)|Qik ~ N (p1; 4,01 4 U;%,-,k,g,,k)
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Statistical Modeling

A Markov model for the congestion states Q; ;:

Pr(Q;1 =q) = Pif),?,b,-,l (9)
Pr(Qi,k = Q|Qi,k—l = l~]) = Priy.bix (éa 6])

Captures weekly cycles in congestion levels, and dependence of
congestion across links of trip
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Statistical Modeling

Yields a normal mixture model for log travel time on a link, capturing
the heavy right skew and multimodality in the data:

- .

T T ]
5 10 15 20 50 100 150
travel time (s) travel time (s)

Density
00 03

Density
0.00 0.03 0.06

Density

0.00 0.04 0.08
Density

travel time (s) travel time (s)

4 links with the most data: histogram = training data, curve = predicted density
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Computation

@ Maximum a posteriori (MAP) parameter estimation; i.e., maximize
the density of

0
0= ({Hjg,074:0\9 pis}, 7, {log Ei})

conditional on the data {log T« }
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Computation

@ Maximum a posteriori (MAP) parameter estimation; i.e., maximize
the density of
0 = ({tia» 1oLy P} 7 {log Ei})

conditional on the data {log T« }

@ Computation by Expectation Conditional Maximization:
@ Closed-form updates

@ Estimation time: 15-36 mins on a single processor (Seattle data)

@ Prediction time: 17 ms for single trip (fast enough for commercial mapping
services)
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Case Study
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Case Study

Seattle Case Study

Distribution of estimated speed parameter over roads (network links):

. IR
_| —— evening rush hour, congested AN \
> - — evening rush hour, uncongested TR h
= X . PUBEAYY "
o S _| — nighttime, congested Jow
aC) - - - nighttime, uncongested ) \ r'l
o &
o -
o T T T T T
0 1 2 3 4
M
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Case Study

Seattle Case Study
Three routes in the road network. Histogram = travel times from test
data (PM rush hour); Curve = predictive density
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Case Study

Comparisons

1. Versions of our method lacking one or both of the
dependencies

2. Microsoft’s prediction method (“Clearflow™):
e Used in Bing Maps

@ Models distribution of travel time on each link based on:

@ Traffic measurements from roadway sensors

@ Speed limit, road class

@ Proximity to schools, shopping areas, stadiums
° ...

3. Regression-based methods:

@ Regression of trip travel time on route distance, time of week,
speed limit, etc.
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Case Study

Seattle Case Study

Coverage of predictive intervals on test data (35,190 trips on network of
221,980 links):

S |
= |—— Ideal
—— TRIP
. —v— TRIP, no trip effect
S TRIP, no Markov model

TRIP, no dependence
—o— Linear regression
—— Clearflow

0.6

0.4

Empirical Coverage on Test Data
0.2

0.0
I

. . . .
0.0 0.2 0.4 0.6 0.8 1.0
Theoretical Coverage of Predictive Interval

= Methods that assume independence across links underpredict variability
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Case Study

Seattle Case Study

Avg. width of predictive intervals on test data, for methods with
accurate coverage:

—— TRIP
—— Linear regression

600

500
I

400

300

Average Interval Width (s)
200

100
|

0
|

T T T T
0.0 0.2 0.4 0.6 0.8 1.0
Theoretical Coverage of Predictive Interval

= Interval predictions from TRIP are 19-21% narrower
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Case Study

Seattle Case Study

Performance of deterministic predictions:

TRIP TRIP, no TRIP, no TRIP, no Clearflow Linear
trip effect Markov dependence regression
model
On all test data:
% error 10.1 9.6 10.0 9.8 10.4 12.8
% error w/ bias correction 9.5 9.3 9.4 9.3 9.7 12.8

= Deterministic predictions from TRIP are slightly better than Clearflow.

= Linear regression does poorly
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Summary

Outline

e Summary
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Summary

Summary

@ Methods for probabilistic prediction of travel times in a road
network, using mobile phone GPS data

@ Yields far better interval predictions than Clearflow, and slightly better
deterministic predictions

@ Application: matching and pricing for ride-sharing
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Marketplace @ Uber
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Marketplace @ Uber

@ statisticians, economists, operations researchers, ML scientists...

@ developing Uber’'s marketplace decision systems...

@ dynamic pricing
@ dispatch & carpool matching

@ and the inputs that feed into those systems:

@ predicted demand and supply
@ predicted travel times

Contact:

dawn@uber.com
people.orie.cornell.edu/
woodard
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Summary

Motivation for Model

@ Autocorrelation of travel times within a trip is high, decreasing
with distance

= Markov model for Q; «

@ Correlation of travel times for co-located vehicles is not
consistently high

@ Due to: lining up to take an exit or turn, HOV lanes, ...

@ “Congestion level is a property of the trip, not just the roads
driven”

= Qi depends on the trip
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Motivation for Model

Example: sequence of 10 links on highway 520 West:

@
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Summary

Motivation for Model
“Congestion level is a property of the trip, not just the roads driven”

Correlation of log(travel time) of first
link with other links, within same _
trip: 23

52

° ] 1 2 3 4 Lag‘S 6 7 8 9

Correlation of log(travel time) of first _ :
link with other links, different trips: £:

3:
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Summary

Motivation for Model

Reasons: HOV lanes, lining up to take an exit, ...

HWSPOT SR S20
1EoTH avE e

'. 4 & (L}
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Summary

Statistical Modeling

So the median travel time in time bin 0 is as follows, where s.; is the
unknown speed parameter for links having road class c(j):

b + E d,-j/s[,(j)
JER; M .
baseline travel time on link j

Intercept b captures, e.g., time to get up to speed at the beginning of the trip
(Kolesar et al. 1975).
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Summary

Toronto Case Study

We also investigated taking into account uncertainty in the routes driven by vehicles in
the training data when fitting the travel time model
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Statistical Methods

One-stage estimation:
@ estimate all unknowns {R;}, 8, ¢ using the posterior distribution

7({R},0,6 | {G} AT}) o< 7(0)m(0) [T [F(Rilg(0) (GilRs, 6)f (Ti|R:, 0)
Two-stage estimation:
@ Obtain rough estimates g(#) of relevant summaries of travel time
@ Obtain route estimates {R;} by maximizing the route posterior
T({Ri}{Gi}, &(0)) o [ (o) I, [F(Ril&(0))f (GilRi, #)] dg
@ Conditional on the travel times 7; and estimated routes R,»i obtain
the posterior distribution of 6: 7(6|{T;,R;}) o< 7(6) [,/ (Ti|R:, 0)
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Summary

Route Modeling

@ Multinomial logit choice model for the route:
f(Ri|6) o exp{—C x E(Ti|R;, 0)}
for fixed C > 0

@ In two-stage estimation we need an estimate of E(T;|R;, 6) for the first
stage
@ take the speed on each link to be the geometric mean of measured speeds
from GPS readings closest to that link

@ Model f(Gi|R;, ¢) for the GPS data: assume that the distance of each
measured location to the path is exponentially distributed.
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Summary

Toronto Data, Route Estimation Results

Probability that each link was traversed, for two ambulance trips:

y coordinate (m)

500 1000 1500 2000

0

)
01 02 03 04 05 06 07 08 09 1

500 1000 1500
x coordinate (m)

Trip w/ low GPS error

Dawn Woodard

)
1500 2000

y coordinate (m
1000

0 500 1000 1500
x coordinate (m)
Trip w/ large GPS gap
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Summary

Application to Toronto EMS

Driving time predictive performance (out-of-sample) on a Toronto subregion:

Method RMSE (s) | RMSE log | Cov. % | Width (s)
One-stage estimation 37.8 .332 85.8 75.0
(link-based model)
Two-stage estimation 38.1 .331 91.3 90.3
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Seattle Case Study

Distribution of estimated congestion probability over roads (network

links):
g - —— evening rush ho
> | —— nighttime
a =
o |
o T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Initial probability pj(o)(Z) of congestion
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Summary

Seattle Case Study

Bias of deterministic predictions:

TRIP | TRIP, no TRIP, no | TRIP, no Clearflow Linear
trip effect | Markov dependence regression
model
On all test data: .030 .014 .028 .024 .033 -.005
On parts of network
with little data: 108 102 105 101 .066 .077

= Bias is low overall (< 3.4%) for all the methods, but higher on parts of

network with little data.

Dawn Woodard
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