Photoacoustic tomography and thermodynamic attenuation

Sebastian Acosta
Baylor College of Medicine
Texas Children's Hospital

Collaboration with C. Montalto, U of Washington.

$$
\begin{aligned}
& \text { Baylor } \\
& \text { College of } \\
& \text { Medicine }
\end{aligned}
$$

Texas Children's
Hospital ${ }^{\text { }}$

Outline

INTRO

ANALYSIS

Numerics

Photoacoustic Effect ${ }^{1}$

1. Short pulse of radiation (at appropriate wavelength).
2. Energy deposited in tissue $a(x) I(x, t)$.
3. Thermal expansion proportional to $a(x) I(x, t)$.
4. Propagation of acoustic (pressure) waves

${ }^{1}$ A.G.Bell 1880, Bowen 1981

Photoacoustic Tomography (PAT)

Since the incoming radiation is a very short pulse, $I(x, t) \approx I_{\mathrm{o}}(x) \delta(t)$,

$$
\begin{aligned}
\partial_{t}^{2} p-c^{2} \Delta p & =0 \\
\left.p\right|_{t=0} & \sim a(x) I_{0}(x) \\
\left.\partial_{t} p\right|_{t=0} & =0
\end{aligned}
$$

Inverse Problem: Recover the absorption coefficient $a(x)$ or the product $\left(a(x) I_{\mathrm{o}}(x)\right)$ from knowledge the acoustic pressure p at the boundary $\partial \Omega$.

Attenuation

Recent efforts to account for attenuation:

- In the frequency domain (dissipation and dispersion relations)
- In the time domain (fractional time derivatives, visco-elastic terms, etc.)

Recent developments:

- Kowar 2010 , Treeby et al 2010 , Cook et al 2011 , Huang et al 2012, Ammari et al 2012,
- Kowar-Scherzer 2012 , Kalimeris-Scherzer 2013 , Homan 2013 , Kowar 2014, Palacios 2016 ...
- ... others

Thermodynamic Attenuation

PAT is based on the photoacoustic effect, which consists of two transformations of energy:

- EM/optical radiation is absorbed and transformed into heat.
- Conversion from heat into mechanical energy (due to thermal expansion).

However, due to thermodynamic interaction between temperature (entropy) and pressure, the reverse transformation occurs:

- Conversion from mechanical energy to heat.
and heat dissipates, thus the pressure wave is attenuated.

Thermoelastic Coupling

Mathematically described by the system:

$$
\begin{aligned}
& \rho \partial_{t}^{2} \mathbf{u}-\nabla(\lambda \operatorname{div} \mathbf{u})-\operatorname{div} \mu\left(\nabla \mathbf{u}+\nabla \mathbf{u}^{\mathrm{T}}\right)+\beta K \nabla \theta=0, \\
& \rho c_{\mathrm{p}} \partial_{t} \theta-\kappa \Delta \theta+\theta_{\mathrm{ref}} \beta K \operatorname{div} \partial_{t} \mathbf{u}=0,
\end{aligned}
$$

Elastic variables:
u displacement.
K bulk modulus ; λ, μ Lame coeff; ρ density
Thermal variables
θ temperature deviation from reference $\theta_{\text {ref }}$.
ρ density ; c_{p} specific heat; κ heat conductivity.
Coupling
β thermal expansion coeff. (Gruneisen $G=\beta K / \rho c_{\mathrm{p}}$.)

Thermodynamic Attenuation

How strong is the thermoelastic attenuation?
We write equations in unitless form and introduce pressure $p=-(\lambda+2 \mu)$ div \mathbf{u}, to arrive at a scalar system:

$$
\begin{align*}
\partial_{t}^{2} p-c^{2} \Delta p-\epsilon c^{2} \Delta \theta & =0, \tag{1.1}\\
\partial_{t} \theta-\alpha \Delta \theta-\epsilon \sigma \partial_{t} p & =0 . \tag{1.2}
\end{align*}
$$

where, for soft biological tissues:
$c \approx 1$ unitless wave speed
$\alpha \ll 1$ unitless thermal diffusivity
$\sigma \approx 1$
$\epsilon=\beta \theta_{\text {ref }}$ unitless coupling $\in(0.05,0.1)$

Rapid Deposition of Heat

If heat deposition is much faster than pressure relaxation:

$$
\begin{aligned}
& \left.p\right|_{t=0}=p_{0} \\
& \left.\partial_{t} p\right|_{t=0}=0
\end{aligned}
$$

and if heat deposition is much faster than thermal diffusion:

$$
\left.\theta\right|_{t=0}=\epsilon p_{0}
$$

Main Mathematical Questions

$$
\begin{aligned}
\partial_{t}^{2} p-c^{2} \Delta p-\epsilon c^{2} \Delta \theta & =0 \\
\partial_{t} \theta-\alpha \Delta \theta-\epsilon \partial_{t} p & =0 \\
\left.p\right|_{t=0}=p_{0},\left.\quad \partial_{t} p\right|_{t=0} & =0 \\
\left.\theta\right|_{t=0} & =\epsilon p_{0}
\end{aligned}
$$

- Uniqueness \& Stability
- Reconstruction algorithm

Answers may depend on

- Full or partial data on boundary $\partial \Omega$
- Shape of domain Ω
- Constant or variable wavespeed $c(x)$

Pure acoustics

$$
\begin{aligned}
\partial_{t}^{2} p-c(x)^{2} \Delta p & =0 \\
\left.p\right|_{t=0} & =p_{\mathrm{o}} \\
\left.\partial_{t} p\right|_{t=0} & =0
\end{aligned}
$$

Conditions for time-reversal approaches 234 :

- Non trapping condition for variable medium.
- Energy decay for either forward or backward problem.
- Well-posedness for backward problem.

[^0]... WHAT ABOUT THE THERMOACOUSTIC SYSTEM ?
\[

$$
\begin{aligned}
\partial_{t}^{2} p-c^{2} \Delta p-\epsilon c^{2} \Delta \theta & =0 \\
\partial_{t} \theta-\alpha \Delta \theta-\epsilon \partial_{t} p & =0 \\
\left.p\right|_{t=0}=p_{0},\left.\quad \partial_{t} p\right|_{t=0} & =0 \\
\left.\theta\right|_{t=0} & =\epsilon p_{0}
\end{aligned}
$$
\]

Unfortunately, the backward problem is ill-posed due to heat equation.

Alternatives:

- Other approximate inverse (Neumann series)
- Fredholm alternative (compactness)
- Coercivity (normal equation)

NON-TRAPPING CONDITION

From math viewpoint, a geometric setting is natural to study waves in variable media.

$$
\partial_{t}^{2} p-\Delta_{g} p=0
$$

Δ_{g} : Laplace-Beltrami operator for manifold (Ω, g) with Riemannian metric g. In local coordinates,

$$
\Delta_{g} u=\frac{1}{|g|^{1 / 2}} \frac{\partial}{\partial x_{i}}\left(|g|^{1 / 2} g^{i j} \frac{\partial}{\partial x_{j}} u\right)
$$

where $g^{i j}=g_{i j}^{-1}$ and $|g|=\operatorname{det} g$.

NON-TRAPPING CONDITION

From math viewpoint, a geometric setting is natural to study waves in variable media.

The manifold (Ω, g) is non-trapping if all bi-characteristic geodesics $\gamma(t)$ reach the boundary $\partial \Omega$ in finite time.

Time reversal for pure acoustics

$$
\begin{aligned}
\partial_{t}^{2} p-\Delta_{g} p & =0 \\
\left.p\right|_{t=0} & =p_{0} \\
\left.\partial_{t} p\right|_{t=0} & =0
\end{aligned}
$$

Theorem

If the manifold (Ω, g) is non-trapping, then p_{o} can be uniquely and stably reconstructed from measurements on $\partial \Omega$ on a finite window of time.

- In free-space: Stefanov-Uhlmann 2009
- In an enclosure: Acosta-Montalto 2015, Stefanov-Yang 2015, Kunyansky-Nguyen 2015.

Our goal: Prove similar theorem for thermoacoustic system.

PAT with thermoelastic attenuation

$$
\begin{aligned}
\partial_{t}^{2} p-c^{2} \Delta p-\epsilon c^{2} \Delta \theta & =0 \\
\partial_{t} \theta-\alpha \Delta \theta-\epsilon \partial_{t} p & =0 \\
\left.p\right|_{t=0}=p_{0},\left.\quad \partial_{t} p\right|_{t=0} & =0 \\
\left.\theta\right|_{t=0} & =\epsilon p_{0}
\end{aligned}
$$

Measurement map $\mathcal{M}:\left.p_{0} \mapsto p\right|_{(0, \tau) \times \partial \Omega}$
Our goal: Prove that normal operator $\left(\mathcal{M}^{*} \mathcal{M}\right)$ is coercive, so that $p_{0}=\left.\left(\mathcal{M}^{*} \mathcal{M}\right)^{-1} \mathcal{M}^{*} p\right|_{(0, \tau) \times \partial \Omega}$.

PAT WITH THERMODYNAMIC ATTENUATION

Theorem (Main Result)

If the manifold $\left(\Omega, c^{-2} \delta\right)$ is non-trapping and ϵ is sufficiently small, then \mathcal{M} is injective and

$$
\left\|p_{0}\right\|_{H^{1}(\Omega)} \leq C\left\|\mathcal{M} p_{0}\right\|_{H^{1}((0, \tau) \times \partial \Omega)}
$$

Corollary

If the manifold $\left(\Omega, c^{-2} \delta\right)$ is non-trapping and ϵ is sufficiently small, then $\left(\mathcal{M}^{*} \mathcal{M}\right)$ is coercive and

$$
p_{0}=\left.\left(\mathcal{M}^{*} \mathcal{M}\right)^{-1} \mathcal{M}^{*} p\right|_{(0, \tau) \times \partial \Omega}
$$

PAT WITH THERMODYNAMIC ATTENUATION

Proof.

We combine three inequalities:

$$
\begin{aligned}
\|\Delta \theta\|_{H^{0}\left((0, \tau) ; H^{0}(\Omega)\right)}^{2} & \leq \epsilon^{2} C\left(\left\|\partial_{t}\right\|_{H^{0}\left((0, \tau) ; H^{0}(\Omega)\right)}^{2}+\left\|\nabla p_{0}\right\|_{H^{0}(\Omega)}^{2}\right), \\
\left\|\partial_{t}\right\|_{H^{0}\left((0, \tau) ; H^{0}(\Omega)\right)}^{2} & \leq\left(1+\epsilon^{2}\right)\left\|\nabla p_{0}\right\|_{H^{0}(\Omega)}^{2}, \\
& \left\|p_{0}\right\|_{H^{1}(\Omega)}^{2}
\end{aligned} \leq C\left(\epsilon^{2}\|\Delta \theta\|_{H^{0}\left((0, \tau) ; H^{0}(\Omega)\right)}^{2}+\|p\|_{H^{1}((0, \tau) \times \partial \Omega)}^{2}\right) . .
$$

$$
\left\|p_{0}\right\|_{H^{1}(\Omega)} \leq C\left\|\mathcal{M} p_{0}\right\|_{H^{1}((0, \tau) \times \partial \Omega)}
$$

Reconstruction Method

$$
\begin{aligned}
\partial_{t}^{2} p-c^{2} \Delta p-\epsilon c^{2} \Delta \theta & =0 \\
\partial_{t} \theta-\alpha \Delta \theta-\epsilon \partial_{t} p & =0 \\
\left.p\right|_{t=0}=p_{0},\left.\quad \partial_{t} p\right|_{t=0} & =0 \\
\left.\theta\right|_{t=0} & =\epsilon p_{0}
\end{aligned}
$$

Theorem (Reconstruction Method)

Under the nontrapping condition and small ϵ, the solution to PAT is given by

$$
p_{\mathrm{o}}=\left.\left(\mathcal{M}^{*} \mathcal{M}\right)^{-1} \mathcal{M}^{*} p\right|_{(0, \tau) \times \Gamma}
$$

where $\left(\mathcal{M}^{*} \mathcal{M}\right)$ is coercive on $H^{s}(\Omega)$, so can be approximated with conjugate gradient method.

Conjugate Gradient Algorithm

Governing equation $\left(\mathcal{M}^{*} \mathcal{M}\right) \phi=\zeta$

$$
\begin{array}{lll}
\phi_{k+1}=\phi_{k}+\alpha_{k} s_{k} \quad \text { where } & \alpha_{k}=\left\|r_{k}\right\|^{2} /\left\|\mathcal{M} s_{k}\right\|^{2} \\
r_{r+1}=\zeta-\left(\mathcal{M}^{*} \mathcal{M}\right) \phi_{k+1} & \\
s_{k+1}=r_{k+1}+\beta_{k} s_{k} \quad \text { where } & \beta_{k}=\left\|r_{k+1}\right\|^{2} /\left\|r_{k}\right\|^{2}
\end{array}
$$

starting with initial guess ϕ_{0}, and $r_{0}=\zeta-\left(\mathcal{M}^{*} \mathcal{M}\right) \phi_{0}$, and $s_{0}=r_{0}$. The algorithm is convergent in a Hilbert setting:

$$
\left\|\phi_{*}-\phi_{k}\right\| \leq e^{-\sigma k}\left\|\phi_{*}-\phi_{0}\right\|, \quad k \geq 0, \quad \text { some } \sigma>0
$$

Numerical Simulation

$$
\begin{aligned}
\partial_{t}^{2} p-c^{2} \Delta p-\epsilon c^{2} \Delta \theta & =0 \\
\partial_{t} \theta-\alpha \Delta \theta-\epsilon \partial_{t} p & =0 \\
\left.p\right|_{t=0}=p_{0},\left.\quad \partial_{t} p\right|_{t=0} & =0 \\
\left.\theta\right|_{t=0} & =\epsilon p_{0}
\end{aligned}
$$

The operator $\mathcal{M}:\left.p_{0} \mapsto p\right|_{(0, \tau) \times \partial \Omega}$ can be approximated using numerical methods for PDEs.

Similarly, the \mathcal{M}^{*} is associated with an adjoint PDE system.

Numerical Simulation

Finite difference method. Refinement (space and time) is consistent and CFL stable.

Numerically evaluate the operators \mathcal{M} and \mathcal{M}^{*}, to apply the conjugate gradient method.

Numerical Simulation

Exact solution:

Numerical Simulation

Iteration $n=0$:

Numerical Simulation

 Iteration $n=1$:

Numerical Simulation

Wave speed $c=1$
Diffusivity $\alpha=0.01$
Coupling $\epsilon=0.1$

Iter	$H^{1}(\Omega)$-norm	$H^{0}(\Omega)$-norm
0	52.6%	31.1%
1	19.8%	12.8%
2	10.6%	5.7%
3	6.3%	4.4%
4	4.5%	3.8%
5	3.8%	3.1%

Summary

We have analyzed the PAT problem taking into account attenuation due to thermodynamic dissipation.

Under the non-trapping condition and weak thermoacoustic coupling, we showed

- Uniqueness
- Stability
- A reconstruction methods

THANK YOU

[^0]: ${ }^{2}$ Stefanov-Uhlmann 2009, 2011; Qian et al 2011
 ${ }^{3}$ Grun et al 2007; Hristova et al 2008, 2009; Wang 2009; Homan '13
 ${ }^{4}$ Acosta-Montalto '15, Stefanov-Yang '15; Nguyen-Kunyansky '15

