Photoacoustic tomography and thermodynamic attenuation

Sebastian Acosta Baylor College of Medicine Texas Children's Hospital

Collaboration with C. Montalto, U of Washington.

OUTLINE

Intro

ANALYSIS

NUMERICS

PHOTOACOUSTIC EFFECT¹

- 1. Short pulse of radiation (at appropriate wavelength).
- 2. Energy deposited in tissue a(x)I(x,t).
- 3. Thermal expansion proportional to a(x)I(x, t).
- 4. Propagation of acoustic (pressure) waves

¹A.G.Bell 1880, Bowen 1981

PHOTOACOUSTIC TOMOGRAPHY (PAT)

Since the incoming radiation is a very short pulse, $I(x,t) \approx I_{\rm o}(x)\delta(t)$,

Inverse Problem: Recover the absorption coefficient a(x) or the product $(a(x)I_o(x))$ from knowledge the acoustic pressure p at the boundary $\partial\Omega$.

ATTENUATION

Recent efforts to account for attenuation:

- In the frequency domain (dissipation and dispersion relations)
- In the time domain (fractional time derivatives, visco-elastic terms, etc.)

Recent developments:

- Kowar 2010, Treeby et al 2010, Cook et al 2011, Huang et al 2012, Ammari et al 2012,
- Kowar-Scherzer 2012, Kalimeris-Scherzer 2013, Homan 2013, Kowar 2014, Palacios 2016...

... others

THERMODYNAMIC ATTENUATION

PAT is based on the photoacoustic effect, which consists of two transformations of energy:

- EM/optical radiation is absorbed and transformed into heat.
- Conversion from heat into mechanical energy (due to thermal expansion).

However, due to thermodynamic interaction between temperature (entropy) and pressure, the reverse transformation occurs:

Conversion from mechanical energy to heat.

and heat dissipates, thus the pressure wave is attenuated.

THERMOELASTIC COUPLING

Mathematically described by the system:

$$\begin{split} \rho \partial_t^2 \mathbf{u} - \nabla \left(\lambda \operatorname{div} \mathbf{u} \right) - \operatorname{div} \mu \left(\nabla \mathbf{u} + \nabla \mathbf{u}^{\mathrm{T}} \right) + \beta K \nabla \theta &= 0, \\ \rho c_{\mathrm{p}} \partial_t \theta - \kappa \Delta \theta + \theta_{\mathrm{ref}} \beta K \operatorname{div} \partial_t \mathbf{u} &= 0, \end{split}$$

Elastic variables:

u displacement.

K bulk modulus ; λ, μ Lame coeff; ρ density

Thermal variables

 θ temperature deviation from reference $\theta_{\rm ref}$.

 ρ density ; $c_{\rm p}$ specific heat; κ heat conductivity.

Coupling

 β thermal expansion coeff. (Gruneisen $G = \beta K / \rho c_p$.)

THERMODYNAMIC ATTENUATION

How strong is the thermoelastic attenuation ?

We write equations in unitless form and introduce pressure $p = -(\lambda + 2\mu) \text{div } \mathbf{u}$, to arrive at a scalar system:

$$\partial_t^2 p - c^2 \Delta p - \epsilon \, c^2 \Delta \theta = 0,$$
 (1.1)

$$\partial_t \theta - \alpha \Delta \theta - \epsilon \,\sigma \,\partial_t p = 0. \tag{1.2}$$

where, for soft biological tissues:

1

 $c \approx 1$ unitless wave speed

 $\alpha \ll 1$ unitless thermal diffusivity

 $\sigma\approx 1$

$$\epsilon = eta heta_{
m ref}$$
 unitless coupling $\in (0.05, 0.1)$

RAPID DEPOSITION OF HEAT

If heat deposition is much faster than pressure relaxation:

$$p|_{t=0} = p_0$$

 $\partial_t p|_{t=0} = 0$

and if heat deposition is much faster than thermal diffusion:

$$\theta|_{t=0} = \epsilon p_0$$

MAIN MATHEMATICAL QUESTIONS

$$\partial_t^2 p - c^2 \Delta p - \epsilon c^2 \Delta \theta = 0$$

$$\partial_t \theta - \alpha \Delta \theta - \epsilon \partial_t p = 0$$

$$p|_{t=0} = p_0, \quad \partial_t p|_{t=0} = 0$$

$$\theta|_{t=0} = \epsilon p_0$$

- Uniqueness & Stability
- Reconstruction algorithm

Answers may depend on

- Full or partial data on boundary $\partial \Omega$
- Shape of domain Ω
- Constant or variable wavespeed c(x)

PURE ACOUSTICS

$$\partial_t^2 p - c(x)^2 \Delta p = 0$$

 $p|_{t=0} = p_o$
 $\partial_t p|_{t=0} = 0$

Conditions for time-reversal approaches ^{2 3 4}:

- Non trapping condition for variable medium.
- Energy decay for either forward or backward problem.
- Well-posedness for backward problem.

²Stefanov-Uhlmann 2009, 2011; Qian et al 2011

³Grun et al 2007; Hristova et al 2008, 2009; Wang 2009; Homan '13

⁴Acosta-Montalto '15, Stefanov-Yang '15; Nguyen-Kunyansky '15

... WHAT ABOUT THE THERMOACOUSTIC SYSTEM ?

$$\partial_t^2 p - c^2 \Delta p - \epsilon c^2 \Delta \theta = 0$$

$$\partial_t \theta - \alpha \Delta \theta - \epsilon \partial_t p = 0$$

$$p|_{t=0} = p_0, \quad \partial_t p|_{t=0} = 0$$

$$\theta|_{t=0} = \epsilon p_0$$

Unfortunately, the backward problem is ill-posed due to heat equation.

Alternatives:

- Other approximate inverse (Neumann series)
- Fredholm alternative (compactness)
- Coercivity (normal equation)

NON-TRAPPING CONDITION

From math viewpoint, a geometric setting is natural to study waves in variable media.

$$\partial_t^2 p - \Delta_g p = 0$$

 Δ_g : Laplace-Beltrami operator for manifold (Ω, g) with Riemannian metric g. In local coordinates,

$$\Delta_g u = \frac{1}{|g|^{1/2}} \frac{\partial}{\partial x_i} \left(|g|^{1/2} g^{ij} \frac{\partial}{\partial x_j} u \right)$$

where $g^{ij} = g_{ij}^{-1}$ and $|g| = \det g$.

NON-TRAPPING CONDITION

From math viewpoint, a geometric setting is natural to study waves in variable media.

The manifold (Ω, g) is non-trapping if all bi-characteristic geodesics $\gamma(t)$ reach the boundary $\partial\Omega$ in finite time.

TIME REVERSAL FOR PURE ACOUSTICS

$$\partial_t^2 p - \Delta_g p = 0$$
$$p|_{t=0} = p_0$$
$$\partial_t p|_{t=0} = 0$$

Theorem

If the manifold (Ω, g) is non-trapping, then p_o can be uniquely and stably reconstructed from measurements on $\partial\Omega$ on a finite window of time.

- In free-space: Stefanov-Uhlmann 2009
- In an enclosure: Acosta-Montalto 2015, Stefanov-Yang 2015, Kunyansky-Nguyen 2015.

Our goal: Prove similar theorem for thermoacoustic system.

PAT WITH THERMOELASTIC ATTENUATION

$$\begin{aligned} \partial_t^2 p - c^2 \Delta p - \epsilon c^2 \Delta \theta &= 0\\ \partial_t \theta - \alpha \Delta \theta - \epsilon \partial_t p &= 0\\ p|_{t=0} &= p_0, \quad \partial_t p|_{t=0} &= 0\\ \theta|_{t=0} &= \epsilon p_0 \end{aligned}$$

Measurement map \mathcal{M} : $p_0 \mapsto p|_{(0,\tau) \times \partial \Omega}$

Our goal: Prove that normal operator $(\mathcal{M}^*\mathcal{M})$ is coercive, so that $p_0 = (\mathcal{M}^*\mathcal{M})^{-1}\mathcal{M}^*p|_{(0,\tau)\times\partial\Omega}$.

PAT WITH THERMODYNAMIC ATTENUATION

Theorem (Main Result)

If the manifold $(\Omega, c^{-2}\delta)$ is non-trapping and ϵ is sufficiently small, then \mathcal{M} is injective and

 $\|p_0\|_{H^1(\Omega)} \leq C \|\mathcal{M}p_0\|_{H^1((0,\tau) \times \partial \Omega)}$

Corollary

If the manifold $(\Omega, c^{-2}\delta)$ is non-trapping and ϵ is sufficiently small, then $(\mathcal{M}^*\mathcal{M})$ is coercive and

$$p_0 = (\mathcal{M}^* \mathcal{M})^{-1} \mathcal{M}^* p|_{(0,\tau) \times \partial \Omega}$$

PAT WITH THERMODYNAMIC ATTENUATION

Proof.

We combine three inequalities:

$$\begin{split} \|\Delta\theta\|_{H^{0}((0,\tau);H^{0}(\Omega))}^{2} &\leq \epsilon^{2}C\left(\|\partial_{t}p\|_{H^{0}((0,\tau);H^{0}(\Omega))}^{2} + \|\nabla p_{0}\|_{H^{0}(\Omega)}^{2}\right),\\ \|\partial_{t}p\|_{H^{0}((0,\tau);H^{0}(\Omega))}^{2} &\leq (1+\epsilon^{2})\|\nabla p_{0}\|_{H^{0}(\Omega)}^{2},\\ \|p_{0}\|_{H^{1}(\Omega)}^{2} &\leq C\left(\epsilon^{2}\|\Delta\theta\|_{H^{0}((0,\tau);H^{0}(\Omega))}^{2} + \|p\|_{H^{1}((0,\tau)\times\partial\Omega)}^{2}\right). \end{split}$$

$$\|p_0\|_{H^1(\Omega)} \le C \|\mathcal{M}p_0\|_{H^1((0,\tau)\times\partial\Omega)}$$

RECONSTRUCTION METHOD

$$\begin{aligned} \partial_t^2 p - c^2 \Delta p - \epsilon c^2 \Delta \theta &= 0\\ \partial_t \theta - \alpha \Delta \theta - \epsilon \partial_t p &= 0\\ p|_{t=0} &= p_0, \quad \partial_t p|_{t=0} &= 0\\ \theta|_{t=0} &= \epsilon p_0 \end{aligned}$$

Theorem (Reconstruction Method)

Under the nontrapping condition and small ϵ , the solution to PAT is given by

$$p_{o} = (\mathcal{M}^{*}\mathcal{M})^{-1}\mathcal{M}^{*}p|_{(0,\tau)\times\Gamma}$$

where $(\mathcal{M}^*\mathcal{M})$ is coercive on $H^s(\Omega)$, so can be approximated with conjugate gradient method.

CONJUGATE GRADIENT ALGORITHM

Governing equation $(\mathcal{M}^*\mathcal{M})\phi = \zeta$

$$\begin{split} \phi_{k+1} &= \phi_k + \alpha_k s_k \quad \text{where} \\ r_{r+1} &= \zeta - (\mathcal{M}^* \mathcal{M}) \phi_{k+1} \\ s_{k+1} &= r_{k+1} + \beta_k s_k \quad \text{where} \quad \beta_k = \|r_{k+1}\|^2 / \|r_k\|^2 \end{split}$$

starting with initial guess ϕ_0 , and $r_0 = \zeta - (\mathcal{M}^* \mathcal{M})\phi_0$, and $s_0 = r_0$. The algorithm is convergent in a Hilbert setting:

$$\|\phi_* - \phi_k\| \le e^{-\sigma k} \|\phi_* - \phi_0\|, \qquad k \ge 0, \qquad ext{some } \sigma > 0.$$

NUMERICAL SIMULATION

$$\partial_t^2 p - c^2 \Delta p - \epsilon c^2 \Delta \theta = 0$$

$$\partial_t \theta - \alpha \Delta \theta - \epsilon \partial_t p = 0$$

$$p|_{t=0} = p_0, \quad \partial_t p|_{t=0} = 0$$

$$\theta|_{t=0} = \epsilon p_0$$

The operator $\mathcal{M}: p_0 \mapsto p|_{(0,\tau) \times \partial \Omega}$ can be approximated using numerical methods for PDEs.

Similarly, the \mathcal{M}^* is associated with an adjoint PDE system.

NUMERICAL SIMULATION

Finite difference method. Refinement (space and time) is consistent and CFL stable.

Numerically evaluate the operators \mathcal{M} and \mathcal{M}^* , to apply the conjugate gradient method.

NUMERICAL SIMULATION Exact solution:

NUMERICAL SIMULATION Iteration n = 0:

NUMERICAL SIMULATION Iteration n = 1:

NUMERICAL SIMULATION

Wave speed c = 1Diffusivity $\alpha = 0.01$ Coupling $\epsilon = 0.1$

Iter	$H^1(\Omega)$ -norm	$H^0(\Omega)$ -norm
0	52.6 %	31.1 %
1	19.8 %	12.8 %
2	10.6 %	5.7 %
3	6.3 %	4.4 %
4	4.5 %	3.8 %
5	3.8 %	3.1 %

SUMMARY

We have analyzed the PAT problem taking into account attenuation due to thermodynamic dissipation.

Under the non-trapping condition and weak thermoacoustic coupling, we showed

- Uniqueness
- Stability
- A reconstruction methods

THANK YOU