Sandia
Exceptional service in the national interest @ National
Laboratories

Erik Boman, Sandia National Labs
Kevin Deweese and John R. Gilbert, UCSB

L

Outline L

= Graph Laplacians

= Linear systems and preconditioners
= Normalization

= Empirical study with Trilinos

= Nearly-optimal combinatorial solvers
= Kelner et al.’s simple iterative method

= Conclusions

2
-—————————€—€—€-—--—€-—-—~-—~_—_—_—_—__—_———————————=————"——————"

Complex Networks: Numerical ey
Computing

Complex networks often
analyzed by

= Degree distribution

* (Clustering coefficient

= (Centrality metrics

Less attention on numerical
linear algebra:

= Linear system: Ax=b

= Eigenproblem: Ax = Ax

Well studied for PDEs, but not for
complex networks.

BGP graph (credit: Richardson, Chung)
http://math.ucsd.edu/~fan/graphs/gallery

Matrices from Graphs T

Symbol

D

L, = D"2(D-A)D-2

T vy SN
"./*...q i L R R o S
| - Felalath -

Diagonal vertex degree matrix

L

Matrix

Normalized Laplacian

8 4 ~4 B
¥ B A =1
o =1 B =
B 1 —4 B2

"

Solving Linear Systems T

Different research communities, different approaches!
= Numerical linear algebra

* Empirical focus
* Analysis for model problems sufficient

= Main application: discretizations of PDEs
* Good and robust software for solving large systems

= CSTheory

= Focus on theory and complexity
* Worst-case analysis
= Main target: graph Laplacians, SDD systems
= Software not important (some Matlab codes)
= Network Science

= Just a tool —don’t care how it’s done

Solvers and Preconditioners WE=N

= Sparse direct factorization only viable for small problems

= Stationary iterations (Jacobi, Gauss-Seidel) converge but quite
slowly

= Conjugate gradients or Chebyshev acceleration reduces
#Hiterations.

= Key is to find good preconditioner M=A
= (Classic “black-box” algebraic preconditioners:

= Jacobi (diagonal)
= Symmetric Gauss-Seidel (SGS)
* |ncomplete Cholesky (IC)
= Algebraic multigrid (AMG)
* Developed for PDEs on meshes, not complex networks

= Recent progress tuning for complex networks (LAMG) ;

BTER Graph Generator

How to generate realistic graphs/networks?
We use BTER: Block Two-level Erdos-Renyi
= Kolda, Pinar, Seshadri (2014)

= (Captures skewed degree distributions

= Not necessarily power-law

= Has community structure

= Able to “fit” real data
= Degree distribution
= (Clustering coefficient

L

Experiments

= Study two groups of graphs
= Real networks from UF and SNAP collections

= Social networks, web graphs, collaboration networks, etc.
* 25 graphs, up to 735K vertices (3.5M edges)

= Synthetic graphs (BTER)
* Log normal degree distribution, but vary sizes and avg. degree
= Solve singular Lx=b where the solution is a random vector,
using projected PCG
= Null-space is just the constant vector
= Use Trilinos software (next slide)

= Solvers have two phases

= Setup (preconditioner setup or symbolic+numeric factorization)

= Solve (CG iteration or triangular solves)

"

11

Trilinos Computational
Science Toolkit

S, =
= Collection of ~60 packages

, Packages we used:
* Heroux et al., Sandia

= Tpetra: Matrices & vectors

* Trilinos Capabilities: = Belos: Iterative solvers
= Scalable Linear & Eigen Solvers o
= Discretizations, Meshes & Load * lIfpack2: Preconditioners
Balancing = Jacobi, Gauss-Seidel

= Nonlinear & Optimization Solvers

= Software Engineering
Technologies & Integration

* |ncomplete factorizations
= Subgraph preconditioners

= Muelu: Multigrid
= Parallel:

= MPI for distributed memory

= Growing support for shared-
memory (OpenMP, pthreads, CUDA)

12

Performance Profile

Total time = Setup time + solve (iteration) time

= UF real networks = BTER
l““ 1.0} - - e
P OU PSP SEP S S S o i Y
e —t G ———
i] f 3
Warrr 0.8t | S -
15 —— Cholmod l' /
| [T —— Jacobi u ;"
= H_h&(| SGS - 0.6 J J.
T,] N - woe | £ | /
04 | = MST (0.4] g
LE O Muelu | | d
n>2 r——'——‘-‘ (2 [' B
{ 2.
”_““- ('“' & .: e i
) N 10 | 2 f S 1)

Why do BTER differ from real graphs? -

= BTER designed to match
* Degree distribution
* Clustering coefficient
= Not eigenvalues!

= We tested BTER replica of Amazon-2008 network

* Check #iterations for Laplacian solve

mmmm

Original 1.5e5 3233 1290 1211
BTER 2.0e4 726 349 336 150

18

Combinatorial Preconditioners:
Great in Theory

it

)

ores

Core ldea: Construct a sparser graph that is a good spectral
approximation (spectral sparsifier), use this as preconditioner.

= Typically, use a carefully chosen subgraph
* For example, spanning tree + “a bit more”
* First proposed by Vaidya ('90, unpublished)
= Described and analyzed in [Bern et al. '06], implemented by [Chen and
Toledo, ‘03]
= Support theory extensions [B., Hendrickson, ‘03]

* A decade of improving complexity for Laplacian/SDD solvers

= Significant work on “near optimal solvers”
* Spielman & Teng ('04,’05), Koutis-Miller-Peng ('10,’11), others...

= Kelner et al. ("13): dual randomized Kaczmarz

* Lee & Sidford (‘13): coordinate descent
19

Are They Competitive?) ==

* Most combinatorial near-optimal solver/preconditioners are
very complicated and have never been implemented

* The recent KOSZ/DRK method is simpler:

= Solves a dual problem on the edges of the graph

Corresponds to flows in an electrical network

= Randomly sample a cycle, update flow along edges, repeat
= This is randomized Kaczmarz (on a dual problem)

* No CG required as convergence is provably good without

* Two recent papers evaluate this method:
* Hoske, Lukarski, Meyerhenke, Wegner (2015)
= B, Deweese, Gilbert (2015)
= Both conclude KOSZ/DRK is not competitive on unweighted graphs

20

