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What is high-intensity focused ultrasound (HIFU)?

• Promising non-invasive treatment modality for tumor
ablation in the abdomen

• At the beam focus, temperature rises to about 80◦C,
sufficient for instantaneous cell death.

• Unlike radiotherapy, HIFU is not tumour-specific and so
a wide variety of tumour types may be targeted.

• The treatment can be repeated as there is no upper limit
of tissue tolerance to ultrasound exposure.



What is high-intensity focused ultrasound (HIFU)?

J. E. Kennedy, High-intensity focused ultrasound in the treatment of solid tumours, Nature Reviews (2005)



Why are HIFU simulations required?

• In the abdomen, there are ribs and
organs of different densities.

• Scattering can lead to heating at
non-target regions.

• Wish to optimize transducer array in the presence of ribs to
minimize treatment time.

• Physical experiments are expensive/unethical.

T. Betcke et al., Computationally efficient boundary element methods for high-frequency Helmholtz problems
in unbounded domains, Modern Solvers for Helmholtz Problems (2017)



Problem details

• Time-harmonic source with wavelength 1.5mm (1MHz)
• Tumor < 10cm
• Total simulation domain up to 20cm

Focal point
(non-linear wave behavior)

Tumor (potentially heterogeneous)

Target organSkin



Computational challenges for HIFU

• High frequency: computation domain is potentially
hundred of wavelengths in each dimension.

• Memory
• Preconditioning
• Dispersion and pollution

• Near focal point non-linearities play an important role.

• Medical practitioners desire simulation times < 1 minute!

• (Generating appropriate computational meshes from CT or
MR scans)



Popular mathematical models

Linear wave equation
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where δ is diffusivity of sound and β is nonlinearity parameter.

Solve in conjunction with bioheat equation→ tissue temperatures.

KZK equation also popular although relies on strong assumption.



Linear vs. non-linear

• Solving the Westervelt equation provides stronger focusing
• Far from focal point, linear wave equation is accurate
• Motivates using FEM near target region and BEM outside

S. Haddadi and M. T. Ahmadian, Analysis of nonlinear acoustic wave propagation in HIFU treatment using
the Westervelt equation, Scientifica Iranica B (2018)



FEM/BEM

Finite elements
− Discretize the entire domain
+ Sparse matrices
− Truncate domain artificially

(PML)
+ Easily generalized
− Dispersion errors

Boundary elements
+ Discretize only boundaries
− Dense matrices
+ Truncate domain

analytically
− Require Green’s rep.
+ Dispersion free

Boundary elements are potentially much more efficient
for wave problems in piecewise homogeneous domains.

Finite elements are appropriate for non-linear
inhomogeneous media.

Desire best of both worlds...



FEM-BEM coupling

FEM
BEM

BEM



FEM-BEM coupling

Field in FEM region: u ≈ ∑i Uiφi

Normal derivative of field on boundary: ∂u
∂n
≈ ∑j Vjψj

FEM
BEM

FEM equation: Au + Bv = bFEM

BEM equation: Cu + Dv = bBEM

Coupled system: [
A B
C D

] [
u
v

]
=
[
bFEM
bBEM

]

See Matthew Scroggs on YouTube for more detail.



Frequency domain vs. time domain

Frequency domain

Ultrasound transducers are typically time-harmonic (e−iωt).

Then Westervelt becomes a sequence of Helmholtz equations for
harmonics:

(∇2 + k2)p1 = 0,

(∇2 + 4k2)p2 = 2βk2

ρc2
0
p2

1,

(∇2 + 9k2)p3 = 9βk2

ρc2
0
p1p2,

...
• Relatively straightforward to implement.
• But how many harmonics to consider is not known a priori.
• High harmonic problems can be extremely expensive.



Frequency domain vs. time domain

Time domain

Employ convolution-quadrature techniques for FEM-BEM,
such as those developed by F.-J. Sayas, M. Hassell, L. Banjai,
J. M. Melenk, and others.

Laplace transform and solve set of modified Helmholtz problems

Potentially much more accurate and efficient, though yet
to be tested for challenging high-frequency 3D problems.
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Project goals

Build on preceding BEM-only work by UCL team.

Explore algorithms of mathematical interest and practical utility
• Time-domain or frequency domain
• FEM or FEM-BEM
• Implicit or explicit
• Control dispersion with high p

Make everything open-source!



FEniCS and BEMpp

FEniCS
• open-source platform for solving PDEs
• quickly translate mathematical models into efficient FE code
• high-level Python and C++ interfaces
• development version, FEniCS-X, includes complex number

support - particularly useful for time-harmonic wave problems
• 1D to 3D support

BEMpp
• open-source platform for solving BIE formulations of Laplace,

Helmholtz, Maxwell
• high-level Python interface
• 3D only



FEniCS-X example

(∇2 + k2)u = 0 in Ω,
u = 0 on Γ,

∂us

∂n
− ikus = 0 on ∂Ω,

us = u− ui.

Variational problem: Find u ∈ V such that
a(u, v) = L(v) ∀v ∈ Ṽ ,

where
a(u, v) =

∫
Ω
∇u∇vdx− k2

∫
Ω
uvdx− ik

∫
∂Ω
uvds,

L(v) =
∫

∂Ω

(
∂ui

∂n
− ikui

)
vds.



FEniCS-X example

a(u, v) = L(v) ∀v ∈ Ṽ ,
where

a(u, v) =
∫

Ω
∇u∇vdx− k2

∫
Ω
uvdx− ik

∫
∂Ω
uvds,

L(v) =
∫

∂Ω

(
∂ui

∂n
− ikui

)
vds.

# Define function space
V = FunctionSpace(mesh, ("Lagrange", 2))

# Define variational problem
u = TrialFunction(V)
v = TestFunction(V)
a = inner(grad(u), grad(v)) * dx - k**2 * inner(u, v) * dx - \
1j * k * inner(u, v) * ds
L = inner(dot(grad(ui), n) - 1j * k * ui), v) * ds

# Compute solution
u = Function(V)
solve(a == L, u, bc)



BEMpp example

(∇2 + k2)u = 0 in Ω,
u = 0 on Γ,

∂us

∂r
− ikus = o(r−1) as r →∞,

us = u− ui.

Green’s representation formula gives

u(x) = ui(x)−
∫

Γ
G(x, y)∂u

∂n
(y)dy, x ∈ Ω.

Taking x→ Γ yields the single-layer boundary integral equation:∫
Γ
G(x, y)∂u

∂n
(y)dy = ui(x), x ∈ Γ.



BEMpp example

∫
Γ
G(x, y)∂u

∂n
(y)dy = ui(x), x ∈ Γ.

# Define function space
V = bempp.api.function_space(grid, "DP", 0)

# Initialize boundary integral operator
slp = bempp.api.operators.boundary.helmholtz.single_layer(V, V, V, k)

# Define right-hand side
def plane_wave(x):

return np.exp(1j * k * x[0])
rhs = bempp.api.GridFunction(V, fun=plane_wave)

# Compute solution using GMRES
from bempp.api.linalg import gmres
neumann_fun, info = gmres(slp, rhs, tol=1E-5)

Solve a 3D scattering problem in a few lines of easy code!



FEM-BEM

(∇2 + (nk)2)u = 0 in Ω,
(∇2 + k2)u = 0 in R3\Ω,
∂us

∂r
− ikus = o(r−1) as r →∞,

Weak form for FEM:∫
Ω
∇u∇vdx− k2

∫
Ω
n2uvdx−

∫
∂Ω

∂u

∂n
vds = 0

BIE for BEM: (1
2I −D

)
u+ S

∂u

∂n
= uinc.[

A B
C D

] [
u
v

]
=
[
0
uinc

]



# Define variational problem
u = dolfin.TrialFunction(fenics_space), v = dolfin.TestFunction(fenics_space)
A = FenicsOperator(inner(grad(u), grad(v)) * dx - k**2 * n**2 inner(u, v) * dx)

# Import boundary integral operators
id_op = bempp.api.operators.boundary.sparse.identity(

trace_space, bempp_space, bempp_space)
mass = bempp.api.operators.boundary.sparse.identity(

bempp_space, bempp_space, trace_space)
dlp = bempp.api.operators.boundary.helmholtz.double_layer(

trace_space, bempp_space, bempp_space, k)
slp = bempp.api.operators.boundary.helmholtz.single_layer(

bempp_space, bempp_space, bempp_space, k)

blocks[0][1] = A.weak_form()
blocks[0][1] = -trace_matrix.T * mass.weak_form().sparse_operator
blocks[1][0] = (.5 * id - dlp).weak_form() * trace_op
blocks[1][1] = slp.weak_form()

# Define right-hand side
rhs_bem = u_inc.projections(bempp_space)
rhs = np.concatenate([np.zeros(mesh.num_vertices()), rhs_bem])

# Compute solution using GMRES
from bempp.api.linalg import gmres
soln, info = gmres(blocks, rhs, tol=1E-5)



Summary

• Practical HIFU simulations are extremely challenging

• BEM has shown promise for linear wave simulations

• Non-linearities are important to consider near focal region

• Coupling to FEM generalizes BEM-only simulations

• Numerous techniques to explore, the most effective is still
unclear

• Powerful FEniCS and BEMpp software tools are ideal for
developing new frequency- and time-domain wave simulation
algorithms
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