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•  Small scale perturbations upstream and 
downstream of the separation point have 
a big impact on the global flow features 
o  Directly related to effective flow 

control methods 
•  High-fidelity numerical methods are 

required that combine the following 
characteristics: 
o  Accurately captures small scale features and unstable modes 
o  Long time accuracy to trace vortex structures 
o  High-fidelity  boundary representation 

•  High-fidelity (quantitative) analysis of the flow topology is also required 

Vortex Dominated Flows 

[Dandois et al., JFM,’07] 

Application of synthetic jet 
to separated flow. 



Direct Numerical Simulation 
•  Navier-Stokes Model 

o  First principle model with  potential assumptions of constant density and 
temperature independent viscosity for low Mach number 

•  Requirement: Resolve the smallest scales 
•  Turbulence up to the Kolmogorov scales 
•  General unsteady flow: not perse known a priori 

•  Numerical Methods:  FD, FV, FEM, SEM, etc… 
o  Convergence/Accuracy: converge until grid independence; dispersion; 

numerical diffusion, geometric complexity, boundary accuracy 
o  Efficiency/Feasiblity; 

•  Degrees of freedom scale with Re3 ; relatively low Reynolds 
numbers must be considered  

o  Numerical methods that require few number of grid points  per smallest 
scale improve accuracy and feasibility. 
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Low-Order vs. High-Order DNS 

		 Low	Order	 Higher	Order	
Polynomial	order	 p<=2	 p>3	
Implementa;on	 Easy	 Doable	
Resolu;on	per	wave	number	20-30	points	 3-7	points	
Smooth	turbulence	 Dissipa;on	 No	or	Low	Dissipa;on	
Wave	Propaga;on	 Dispersion	 No	or	Low	Dispersion	
Shocks/Discon;nuity	 Upwind	stable,	but	dissipa;ve	 Gibb's	phenomena	
Fidelity	 Limited	or	excessive	resolu;on	 Very	good	
Robustness	 Typically	very	stable	 Robust	if	done	the	right	way	
Flexibli;y	
	

Any	complexity,	overlap	at	
boundary	reduces	accuracy																								

Any	complexity	with	curved	
boundary	elements	

We can try and fix issues in low-order codes…. or …. 
 prevent them from the start by developing high-order solvers 



Discontinuous Galerkin 

•  Divide computational domain into elements 
•  Map each physical element onto a master element 
•  Approximate solution with higher-order (Jacobi) polynomial 

•  Based on Method of  Weighted Residuals 
•  Elements are connected  through Riemann solvers 

ξ 

η 
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•  The solution is mapped from physical space to the reference element: 

•  Mapping incorporates contributions 
from the faces, edges and corners: 

  
 

            
•  Metric terms and derivatives are computed from the mapping 

    where 

7 Deformed Elements 

Faces: 

Edges: 

pi, qi and ri are shape functions: 
e.g. 



Finite-Time Lyapunov Exponent (FTLE) 
•  Dynamical systems of the form: 

•  Integrate particle trajectories to 
determine the flow map: 

•  Exponentially growing perturbations in the flow map quantify a stretching rate: 

•  Maximal material stretching measured by the FTLE (σ): 

!𝒙
(𝑡0; 𝑡0, 𝒙0)
�̇�(𝑡; 𝑡0, 𝒙0)

= 𝒙0
= 𝒗(𝒙(𝑡; 𝑡0, 𝒙0), 𝑡)

	

𝒙0 → 𝜙𝑡0
𝑡 = 𝒙(𝑡; 𝑡0, 𝒙0) = 𝒙0 + , 𝒗(𝒙(𝜏; 𝑡0, 𝒙0), 𝜏)

𝑡

𝑡0
𝑑𝜏	

𝒙0 → 𝜙𝑡0
𝑡 = 𝒙(𝑡; 𝑡0, 𝒙0) = 𝒙0 + , 𝒗(𝒙(𝜏; 𝑡0, 𝒙0), 𝜏)

𝑡

𝑡0
𝑑𝜏	

max|𝛿𝒙| = (𝜆max (𝑪)-𝛿𝒙0/////-	

𝑒𝜎|𝑇| = &𝜆max (𝑪)       ⇒       𝜎 =
1

|𝑇| ln &𝜆max (𝑪) =
1

|𝑇| ln 3
𝜕𝜙𝑡0

𝑡

𝜕𝒙0
3	

max|𝛿𝒙| = 𝑒𝜎|𝑇|+𝛿𝒙0-----+	𝑪 =
𝜕𝜙𝑡0

𝑡

𝜕𝒙0

∗ 𝜕𝜙𝑡0
𝑡

𝜕𝒙0
	where 

Lagrangian Coherent Structures 



FD and FTLE 
•  Use Finite Difference to determine Cauchy-Green  strain tensor 

o  Seed five particles on an orthogonal grid 
o  Trace fluid particles in velocity field, which is usually stored in separate files 

and post-processed  
•  requires lots of memory/storage 
•  large Δ𝑡 

o  Use central FD stencil to determine Cauchy-Green strains: 𝜕𝜉/𝜕𝑥 ,  𝜕𝜉/
𝜕𝑦 , 𝜕𝜂/𝜕𝑥 ,  𝜕𝜂/𝜕𝑦  

o  Eigenvalue of the CG tensor determines FTLE 
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Can we determine FTLE compatible with  higher-order  solvers? 



DG-FTLE 
•  Fluid particles are initialized at the Lobatto quadrature nodes.  
•  Particles are integrated in time with a 3rd-order Adams-Bashforth scheme. 

 
The flow map is approximated by 
a high-order polynomial 
interpolant,       . 

•  After the time interval, T, DG operators are used to determine the deformation 
gradient: 

•  Under mapped coordinates (2D): 

            

(t) 
(t0) 

[Nelson and Jacobs, ASME, ’13]  



Fluid Particle Tracking Algorithm 

Fluid particles are initialized at 
the Lobatto quadrature 
nodes=> 
 no connectivity issues  

 
Duplicate particles are present at 

the subdomian boundaries, are 
removed to trace fewer 
particles Fluid tracers are integrated in a 3-step 

algorithm: 
1.  The host cell of the particle is located 
2.  The fluid velocity is interpolated from the 

DG grid to the particle’s location: 
expensive! 

3.  The particle velocity is integrated in time 
with a 3rd-order Adams-Bashforth scheme 𝒙0 → 𝜙𝑡0

𝑡 = 𝒙(𝑡; 𝑡0, 𝒙0) = 𝒙0 + , 𝒗(𝒙(𝜏; 𝑡0, 𝒙0), 𝜏)
𝑡

𝑡0
𝑑𝜏	

𝒙0 → 𝜙𝑡0
𝑡 = 𝒙(𝑡; 𝑡0, 𝒙0) = 𝒙0 + , 𝒗(𝒙(𝜏; 𝑡0, 𝒙0), 𝜏)
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Sequence of FTLEs 

•  To analyze the temporal evolution of a flow with the FTLE field, 
multiple FTLE fields must be computed, normally requiring redundant 
particle integrations. 



Multiple Flow Maps  13 

•  Multiple  FTLEs can be computed from a single particle trace with 
interpolation: 
1.  Orthogonal polynomial basis is constructed at time t1. 
2.  The particles at t1 are mapped to the unit square. 
3.  Construct the interpolation operator:  
4.  Interpolate to later time (t2 > t1) or 

earlier time (t0 < t1)  and compute FTLE. 

[Nelson and Jacobs, JCP, ’15]  

(t2) (t1) (t0) 
t 



•  Deformed subdomains are constructed from the particle locations at a given 
time. 

•  The isoparametric mapping is built 
from the particles initialized in the 
original subdomain. 
o  The faces are parametrized with 

particles initialized at the edges  
of the original subdomain. 

•  Once the faces are constructed, the interior particle locations are mapped to 
the reference element through the inverse of the isoparametric map. 

14 Inverse Mapping 

(t1) 



Interpolation 15 

•  Given the locations of the particles in the reference element, the flow 
map is interpolated from the quadrature points as follow 

•  Hence, 

 
 
 

•  The conditioning of the I operator is related to the deformation of the 
flow map 

15 



Gyre Flow 
2D Gyre Flow 
Velocity given by: 

FTLE Field Velocity Field 

•  Gyre is a spatially periodic flow consisting of 
recirculating cells. 

•  Note FTLE ridges forming around the edges 
of the vortices. 



Spectral Convergence 
•  Accuracy and convergence rate increases with grid refinement. 

 Regular Grid 

Cosine Grid 



Inviscid Vortex 
Vortex Advected by Uniform Flow 
Velocity given by: 

FTLE Field Velocity Field 

•  The vortex flow is computed using 
the DG Euler solver. 

•  The spectral FTLE algorithm is 
implemented within the code and 
computed on-the-fly. 

Convergence 

•  Errors include numerical errors in particle tracking, computation of the 
deformation gradient, and numerical errors in DG.  



•  Spectral convergence 
•  High deformation leads to high condition 

number 
•  Condition number increases with larger 

subdomains and higher-order polynomial 
•  Condition number decreases with grid 

refinement 

Error Analysis 

Subdomain deformation 
at T = 2.5 

 Conditioning 



Square Cylinder 
Viscous flow over square cylinder 

•  Re = 150, based on 
cylinder width 

•  M = 0.3 
•  6th-order 



Backward FTLE 

•  High-order method from 
forward-time flow map. 

•  Agrees well with standard 
method. 

•  Some difference in near 
wake due to poor 
conditioning. 

With Interpolation 

Direct Method 

t = 0 

t = T 



Multiple Forward FTLE Fields 

t = 0 

t = 1 

t = 2 



Interpolation Conditioning 

Forward FTLE (T = 10) 

Condition Number 
 

Parameter Δα 
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2D Airfoil DNS 

•  Problem Parameters 
o  Re    = 20,000 
o  Pr     = 0.72 
o  CFL = 0.8 
o  AOA = 4° 

•  NACA 65(1)-412 Airfoil 
•  Polynomial orders 

o  Curved-sided mesh, 
P = 4, 6, 8, 10, 12 

o  Straight-sided mesh, 
P = 4, 6, 8, 10, 12 

[Nelson, Jacobs & Kopriva, TCFD, ’15]  



FTLE Field 

•  Forward 

•  Backward 
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Entropy: P = 12, 
FTLE: P = 24, 
T = 0.37 



Backward FTLE 
Mesh Refinement 
•  Conditioning can be improved by 

refining the mesh.  
•  Coarse: N = 24, Fine: N = 6 

26 26 26 



Multiple Forward FTLE Fields 
 
 
t = 0 
 
 
 
 
t = 0.02 
 
 
 
 
t = 0.04 
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ABC Flow 

•  1,000 elements 
•  P = 24 (13,997,521 particles) 
•  T = 2 
•  Exact velocity (no interpolation) 

             Unfiltered    Filtered 



3D Airfoil 
•  Fluid Solution: P = 8 
•  FTLE: P = 36 

Vorticity Magnitude 

FTLE (T = 0.15) 



Conclusions   

A FTLE algorithm is developed that commutes with a higher-order DG-based 
DNS solver 

o  Exponentially convergent 

o  Uses same grid as fluid solver 

•   Geometric complexity 

•  Prevents expensive interpolation to determine flow map 

o  Multiple FTLEs can determined in parallel with DNS preventing 

expensive post-processing 

o  Overhead is 10-50% depending on polynomial order 
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