

Lagrangian Coherent Structures and DNS with Discontinuous Galerkin methods

Gustaaf Jacobs, San Diego State University

Acknowledgment: Daniel Nelson (PhD Fall 2015), Bjoern Klose (PhD)

2017 SIAM Conference on Dynamical Systems, May 25, 2017

Outline

San Diego Stati University

- Background and Motivation
 - Unsteady chaotic flow and higher-order DNS
 - LCS; FTLE with Finite Difference
- DG-FTLE (Finite-Time Lyapunov Exponent)
 - High-order FTLE with DG
 - Multiple FTLE fields from a single particle trace
 - Benchmark tests
- Examples
 - Rectangular cylinder
 - Airfoil
- Conclusions

CPL Vortex Dominated Flows

- Small scale perturbations upstream and downstream of the separation point have a big impact on the global flow features
 - Directly related to effective flow control methods
- High-fidelity numerical methods are required that combine the following characteristics:

- Accurately captures small scale features and unstable modes
- Long time accuracy to trace vortex structures
- High-fidelity boundary representation
- High-fidelity (quantitative) analysis of the flow topology is also required

Application of synthetic jet to separated flow.

[Dandois et al., JFM,'07]

CPL Direct Numerical Simulation

• Navier-Stokes Model

 $\mathbf{Q} + \mathbf{F}_x^a + \mathbf{G}_y^a + \mathbf{H}_z^a = \frac{1}{\mathbf{R}\mathbf{e}_f} (\mathbf{F}_x^v + \mathbf{G}_y^v + \mathbf{H}_z^v)$

- First principle model with potential assumptions of constant density and temperature independent viscosity for low Mach number
- <u>Requirement:</u> Resolve the smallest scales
 - Turbulence up to the Kolmogorov scales
 - General unsteady flow: not perse known a priori
- Numerical Methods: FD, FV, FEM, SEM, etc...
 - Convergence/Accuracy: converge until grid independence; dispersion; numerical diffusion, geometric complexity, boundary accuracy
 - Efficiency/Feasiblity;
 - Degrees of freedom scale with Re³; relatively low Reynolds numbers must be considered
 - Numerical methods that require few number of grid points per smallest scale improve accuracy and feasibility.

SAN DIEGO STATE

4

CPL Low-Order vs. High-Order DNS

	Low Order	Higher Order
Polynomial order	p<=2	p>3
Implementation	Easy	Doable
Resolution per wave number	20-30 points	3-7 points
Smooth turbulence	Dissipation	No or Low Dissipation
Wave Propagation	Dispersion	No or Low Dispersion
Shocks/Discontinuity	Upwind stable, but dissipative	Gibb's phenomena
Fidelity	Limited or excessive resolution	Very good
Robustness	Typically very stable	Robust if done the right way
	Any complexity, overlap at	Any complexity with curved
	boundary reduces accuracy	boundary elements

Deformed Elements

• Mapping incorporates contributions from the faces, edges and corners:

CEL

Faces: $\Xi(\xi, \eta) = \sum_{i=0}^{N} \sum_{j=0}^{N} \mathbf{x}_{ij} \ell_i(\xi) \ell_j(\eta)$ Edges: $\Gamma(\xi) = \sum_{i=0}^{N} \mathbf{x}_i \ell_i(\xi)$ $\mathbf{x}(\xi, \eta, \zeta) = \sum_{i=1}^{6} p_i \Xi_i + \sum_{i=1}^{12} q_i \Gamma_i + \sum_{i=1}^{8} r_i \mathbf{x}_i$ $p_i, q_i \text{ and } r_i \text{ are shape functions:}$

p_i, *q_i* and *r_i* are shape functions. *e.g.* $r_1 = (1 - \xi)(1 - \eta)(1 - \zeta)$

• Metric terms and derivatives are computed from the mapping

$$\nabla_{\mathbf{x}} F(\mathbf{x}) = \frac{1}{J} \sum_{i=1}^{3} \frac{\partial}{\partial \xi^{i}} [(\mathbf{a}_{j} \times \mathbf{a}_{k})F] \text{ where } \mathbf{a}_{i} = \frac{\partial \mathbf{x}}{\partial \xi_{i}}$$

CPL Lagrangian Coherent Structures

Finite-Time Lyapunov Exponent (FTLE)

- Dynamical systems of the form:
 - $\begin{cases} \boldsymbol{x}(t_0; t_0, \boldsymbol{x}_0) = \boldsymbol{x}_0 \\ \dot{\boldsymbol{x}}(t; t_0, \boldsymbol{x}_0) = \boldsymbol{\nu}(\boldsymbol{x}(t; t_0, \boldsymbol{x}_0), t) \end{cases}$
- Integrate particle trajectories to determine the flow map:

$$\mathbf{x}_{0} \to \phi_{t_{0}}^{t} = \mathbf{x}(t; t_{0}, \mathbf{x}_{0})$$

= $\mathbf{x}_{0} + \int_{t_{0}}^{t} \mathbf{v}(\mathbf{x}(\tau; t_{0}, \mathbf{x}_{0}), \tau) d\tau$

- Exponentially growing perturbations in the flow map quantify a stretching rate: $\max|\delta x| = \sqrt{\lambda_{\max}(C)} |\overline{\delta x_0}| \quad \text{where} \quad C = \frac{\partial \phi_{t_0}^t}{\partial x_0} \frac{\partial \phi_{t_0}^t}{\partial x_0} \quad \max|\delta x| = e^{\sigma |T|} |\overline{\delta x_0}|$
- Maximal material stretching measured by the FTLE (σ):

$$e^{\sigma|T|} = \sqrt{\lambda_{\max}(C)} \quad \Rightarrow \quad \sigma = \frac{1}{|T|} \ln \sqrt{\lambda_{\max}(C)} = \frac{1}{|T|} \ln \left\| \frac{\partial \phi_{t_0}^t}{\partial x_0} \right\|$$

FD and FTLE

9

- Use Finite Difference to determine Cauchy-Green strain tensor
 - Seed five particles on an orthogonal grid
 - Trace fluid particles in velocity field, which is usually stored in separate files and post-processed
 - requires lots of memory/storage
 - large Δt
 - Use central FD stencil to determine Cauchy-Green strains: $\partial \xi / \partial x$, $\partial \xi / \partial y$, $\partial \eta / \partial x$, $\partial \eta / \partial y$
 - Eigenvalue of the CG tensor determines FTLE

DG-FTLE

- Fluid particles are initialized at the Lobatto quadrature nodes.
- Particles are integrated in time with a 3rd-order Adams-Bashforth scheme.

The flow map is approximated by a high-order polynomial interpolant, Φ_N .

- After the time interval, *T*, DG operators are used to determine the deformation gradient: $f'(\xi_i) \approx (I_N f(\xi_i))' = \sum_{i=0}^N f_j \ell'_j(\xi_i) = \sum_{i=0}^N D_{ij} f_j$
- Under mapped coordinates (2D):

$$\begin{pmatrix} \frac{\partial \Phi}{\partial x_0} \\ \frac{\partial \Phi}{\partial y_0} \end{pmatrix} = \begin{pmatrix} \frac{\partial \xi}{\partial x_0} & \frac{\partial \eta}{\partial x_0} \\ \frac{\partial \xi}{\partial y_0} & \frac{\partial \eta}{\partial y_0} \end{pmatrix} \begin{pmatrix} \frac{\partial \Phi}{\partial \xi} \\ \frac{\partial \Phi}{\partial \eta} \end{pmatrix} \qquad \Rightarrow \qquad \frac{\partial \Phi}{\partial x_0} = \frac{1}{J} \left[\left(\sum_{k=0}^N D_{ik}^{(\xi)} \Phi_{kj} \right) \frac{\partial y_0}{\partial \eta} - \left(\sum_{k=0}^N D_{jk}^{(\eta)} \Phi_{ik} \right) \frac{\partial y_0}{\partial \xi} \right] \\ \Rightarrow \qquad \frac{\partial \Phi}{\partial y_0} = \frac{1}{J} \left[\left(\sum_{k=0}^N D_{jk}^{(\eta)} \Phi_{ik} \right) \frac{\partial x_0}{\partial \xi} - \left(\sum_{k=0}^N D_{ik}^{(\xi)} \Phi_{kj} \right) \frac{\partial x_0}{\partial \eta} \right]$$

[Nelson and Jacobs, ASME, '13]

CPL Fluid Particle Tracking Algorithm

Fluid tracers are integrated in a 3-step algorithm:

- 1. The host cell of the particle is located
- 2. The fluid velocity is interpolated from the DG grid to the particle's location: expensive!
- 3. The particle velocity is integrated in time with a 3rd-order Adams-Bashforth scheme

Fluid particles are initialized at the Lobatto quadrature nodes=> **no connectivity issues**

San Diego State

Duplicate particles are present at the subdomian boundaries, are removed to trace fewer particles

[Nelson and Jacobs, JCP, '15]

Inverse Mapping

- Deformed subdomains are constructed from the particle locations at a given time.
- The isoparametric mapping is built from the particles initialized in the original subdomain.
 - The faces are parametrized with particles initialized at the edges of the original subdomain.

• Once the faces are constructed, the interior particle locations are mapped to the reference element through the inverse of the isoparametric map.

Interpolation

• Given the locations of the particles in the reference element, the flow map is interpolated from the quadrature points as follow

$$\Psi'_{ijk} = \sum_{l=0}^{N} \sum_{m=0}^{N} \sum_{n=0}^{N} \Psi_{lmn} \ell_l(\alpha'_{ijk}) \ell_m(\beta'_{ijk}) \ell_n(\gamma'_{ijk})$$

• Hence,

CPL

$$\bar{\Psi}_p' = \mathcal{I}_{pq}^{-1} \bar{\Psi}_q$$

$$p = i(N+1)^2 + j(N+1) + k$$
$$q = l(N+1)^2 + m(N+1) + n$$

• The conditioning of the I operator is related to the deformation of the flow map

$$\Delta lpha \equiv \max | oldsymbol{lpha}_{ij} - oldsymbol{lpha}'_{ij} |$$

 $\kappa(I) \equiv rac{\lambda_{max}(I)}{\lambda_{min}(I)}$

Gyre Flow

2D Gyre Flow

 \succ

-0.8

Velocity given by:

 $u = -\pi A \sin(\pi x) \cos(\pi y)$ $v = \pi A \sin(\pi y) \cos(\pi x)$

- Gyre is a spatially periodic flow consisting of recirculating cells.
- Note FTLE ridges forming around the edges of the vortices.

FTLE Field

Velocity Field

Spectral Convergence

CPL

• Accuracy and convergence rate increases with grid refinement.

CPL Inviscid Vortex

Vortex Advected by Uniform Flow Velocity given by:

- $\delta u = -(U_{\infty} * \beta) * (y Y_c) / R * \exp(-r^2/2)$ $\delta v = (U_{\infty} * \beta) * (x - X_c) / R * \exp(-r^2/2)$ $u_0 = U_{\infty} + \delta u, v_0 = \delta v$
- The vortex flow is computed using the DG Euler solver.
- The spectral FTLE algorithm is implemented within the code and computed on-the-fly.

• Errors include numerical errors in particle tracking, computation of the deformation gradient, and numerical errors in DG.

GPL

Conditioning

2.5

Error Analysis

- Spectral convergence
- High deformation leads to high condition number
- Condition number increases with larger subdomains and higher-order polynomial
- Condition number decreases with grid refinement

Subdomain deformation at T = 2.5

Viscous flow over square cylinder

- Re = 150, based on cylinder width
- M = 0.3
- 6th-order

• High-order method from forward-time flow map.

CPL

- Agrees well with standard method.
- Some difference in near wake due to poor conditioning.

CPL Multiple Forward FTLE Fields

CPL Interpolation Conditioning

Forward FTLE (T = 10)

Х

Condition Number $\kappa(I) \equiv \frac{\lambda_{max}(I)}{\lambda_{min}(I)}$

Parameter $\Delta \alpha$ $\Delta \alpha \equiv \max | \boldsymbol{\alpha}_{ij} - \boldsymbol{\alpha}'_{ij} |$

2D Airfoil DNS

- Problem Parameters
 - Re = 20,000
 - Pr = 0.72
 - \circ CFL = 0.8
 - \circ AOA = 4°

- NACA 65(1)-412 Airfoil
- Polynomial orders
 - Curved-sided mesh, P = 4, 6, 8, 10, 12
 - Straight-sided mesh, P = 4, 6, 8, 10, 12

FTLE Field

Mesh Refinement

CRL

- Conditioning can be improved by refining the mesh.
- Coarse: N = 24, Fine: N = 6

Х

CPL Multiple Forward FTLE Fields

ABC Flow

- 1,000 elements
- P = 24 (13,997,521 particles)
- T = 2
- Exact velocity (no interpolation)

 $u(x, y, z) = A \sin(z) + C \cos(y)$ $v(x, y, z) = B \sin(x) + A \cos(z)$ $w(x, y, z) = C \sin(y) + B \cos(x)$

$$A = \sqrt{3}, B = \sqrt{2}, C = 1$$

Filtered

Unfiltered

3D Airfoil

- Fluid Solution: P = 8
- FTLE: P = 36

30

A FTLE algorithm is developed that commutes with a higher-order DG-based DNS solver

- Exponentially convergent
- Uses same grid as fluid solver
 - Geometric complexity
 - Prevents expensive interpolation to determine flow map
- Multiple FTLEs can determined in parallel with DNS preventing expensive post-processing
- Overhead is 10-50% depending on polynomial order