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Evolving Microstructure & Perforated Solid Matrix



Evolving Microstructure

• Typically we are interested in the flow of a fluid as well as the transport of
substances distributed in the fluid: DARCY equations, tranport equations

• Sometimes, reactions of the substances are able to change hydrodynamical
properties of the porous media: minerals, electrically charged particles, biofilms

Oregon State University, Wildenschild Research Group, Iltis, Armstrong, Jansik.

• Strong coupling: flow→ transport→ porous medium→ flow, transport

• Applications: Filter systems, biobarriers (MEOR), ...
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Perforated Solid Matrix

• Some porous media do not have a throughout homogeneous structure of the void
spaces.

• Inclusions of the solid material may be of different size, e.g. carbonate rocks.

• We take this into account and hence consider fluid flow and solute transport in a
porous medium, where the solid matrix is assumed to be perforated, i.e. each
solid grain is porous.

• The fluid flow within the perforated solid matrix is given by Darcy’s law, but by the
Stokes equations in the large cavities (pore space). Therefore, a Darcy-Stokes
system at the pore-scale describes the fluid flow through the porous medium.

• In case of high flow rates or large microporosities, the flow within the permeable
grain is not negligible and hence affects solute transport (and reactions) in the
porous medium significantly [Landa-Marbán et al. ’18].
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From Pore-scale to an Effective Model



Pore-scale Model

We consider the following pore-scale model for the description of flow and transport in a porous
medium Ωε(t) with microporous solid matrix, which is evolving due to heterogeneous reactions
at the solid–liquid interface Γε,I.

Figure: Periodic representation of a porous medium Ω with perforated solid matrix (gray) and
the unit cell Y .
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Pore-scale Model

We consider the following pore-scale model for the description of flow and transport in a porous
medium Ωε(t) with microporous solid matrix, which is evolving due to heterogeneous reactions
at the solid–liquid interface Γε,I.

The fluid in the pore space is incompressible and described by the Stokes equations:{
µε2∆v ε` = ∇pε` in Ωε,`(t)

∇ · v ε` = 0 in Ωε,`(t) ,

where v ε` and pε` are the velocity and the pressure of the fluid, respectively.

The small viscosity of order ε2 physically balances the friction of the fluid on the interface,
[Hornung, Allaire ’97].

The fluid flow within the perforated solid matrix is described via Darcy’s law, cf. [1]:{
v εs = −1

µ
K (θεs)∇pεs in Ωε,s(t)

∇ · v εs = −B∂tθ
ε
s in Ωε,s(t) .

Also here v εs and pεs denote the velocity and the pressure, respectively, of the fluid contained in
the grains. Furthermore, K and θεs describe the changeable permeability tensor and inner
porosity of the microporous matrix, respectively.

[1]: R. Schulz, P. Knabner: Derivation and analysis of an effective model for biofilm growth in evolving porous media, Math.
Meth. Appl. Sci. 40 (8), 2930–2948, (2017).
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Furthermore, we consider the Beavers-Joseph interface condition, continuity of mass flux,
and continuity of normal stress at the solid-liquid interface Γε,I(t), cf. [2]:

(v ε` − v εs ) · νI = εB(1− θεs)v εn on Γε,I(t)
α

ε
√

K (θεs)
v ε` · τ = νI · ∇v ε` τ on Γε,I(t)

pε` − pεs = µε2νI · ∇v ε` νI on Γε,I(t)

with the normal velocity of the interface v εn and the dimensionless slip coefficient α. The unit
normal νI is defined to point into the solids and the tangential vector τ with length 1 being
orthogonal to νI.

Let cε` denote the solute concentration in the liquid phase. On the other hand, cεs is the solute
concentration distributed in the fluid contained in the grains. Therefore, the transport of solutes
is given by the following equations:{

∂tcε` −∇ · (D∇cε` − cε`v
ε
` ) = 0 in Ωε,`(t)×(0, T )

∂t(θ
ε
scεs)−∇ ·(Ds(θεs)∇cεs−cεsv εs ) = −σ(θεs)fs(cεs, θ

ε
s)ρ in Ωε,s(t)×(0, T )

Here σ(θεs(x , t)) denotes the specific surface of a single “microscopic grain”. The solid part of
the grains is assumed to have constant density ρ > 0.

[2]: T. Arbogast, H.L. Lehr: Homogenization of a Darcy-Stokes system modeling vuggy porous media, Comput. Geosci. 10 (3),
291–302, (2006).
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We also have the rate of precipitation/dissolution fs in the inner of the grain, which is
assumed to be given via fs(cεs, θ

ε
s) := k(r(cεs)− ωs) with a constant k , a function r for the

precipitation and the dissolution rate ωs ∈ H(θs,max − θεs) with the set-valued Heaviside graph:

H(ψ) :=


{0} , ψ < 0

[0, 1] , ψ = 0

{1} , ψ > 0 .

It is reasonable to define the dissolution rate as follows:

ωs(θεs) :=

{
1 , θεs < θs,max

min{r(cεs), 1} , θεs = θs,max ,

where θs,max ∈ (0, 1) denotes the solid porosity in such a way that a crystalline layer is absent.

The porosity θεs of the perforated solid matrix is assumed to satisfy the following ordinary
differential equation, cf. [3]:

∂tθ
ε
s = −σ(θεs)fs(cεs, θ

ε
s) .

Throughout this talk, at initial time t = 0 each single solid grain is perforated uniformly,
i.e. θεs(x1, 0) = θεs(x2, 0) if x1, x2 ∈ Ωε,s,i,j(t) for some i, j .

[3]: R. Schulz, N. Ray, F. Frank, H. Mahato, P. Knabner: Strong solvability up to clogging of an effective diffusion-precipitation
model in an evolving porous medium, Eur. J. Appl. Math. 28 (2), 179–207, (2017).
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We still need appropriate boundary conditions describing the interchange of solutes across
the interface Γε,I(t):

(D∇cε` − cε`v
ε
` − Ds(θεs)∇cεs + cεsv εs ) · νI = εv εn((1− θεs)ρ + θεscεs − cε`) on Γε,I(t) .

These conditions ensure mass conservation at Γε,I. Furthermore, we assume the solute
concentration to be continuous across the interface Γε,I, hence the right-hand side simplifies to

εv εn(1− θεs)(ρ− cε`) .

The normal velocity v εn of the interface Γε,I is caused by precipitation and dissolution on Γε,I,
such that we have

v εn = −k(r(cε`)− ω) on Γε,I(t)

with ω ∈ H(dist (x ,Ωε,s(t))) and the Euclidian distance function dist. Similar to ωs we
define ω = 1 whenever crystalline layer is present. Otherwise, we set ω = min{r(cε`), 1}.
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To locate the interface Γε,I, we use the level-set framework:

The moving interface Γε,I can be described as the zero set of an appropriate level-set
function Lε : ΩT → R:

Γε,I(t) = {ξ ∈ Ω | Lε(ξ, t) = 0} ,
where ΩT := Ω× (0, T ). Thus the liquid phase and the complementary perforated solid phase
are characterized via:

Ωε,`(t) = {ξ ∈ Ω | Lε(ξ, t) < 0} and Ωε,s(t) = {ξ ∈ Ω | Lε(ξ, t) > 0} .

The level-set function Lε satisfies the hyperbolic differential equation

∂tL
ε + v εn|∇Lε| = 0 in ΩT .

We are choosing an initial data Lε0 corresponding to Lε such that Γε,I(0) is nothing, but the zero
set of Lε0.
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To derive an effective model which approximates the original problem of the pore-scale we
make use of the periodic homogenization method. We assume that all variable functions can
be represented with the formal asymptotic expansion with respect to the small scale parameter
ε, e.g.

v ε` (x , t) = v0
` (x , x

ε
, t) + εv1

` (x , x
ε
, t) + ε2v2

` (x , x
ε
, t) + ...

Defining the vector y := x
ε

the functions vk
` , k = 0, 1, 2, ... , depend on the two space variables

x : “macroscopic” variable locating of the microstructure
y : “microscopic” variable describing the oscillations inside the microstructure

As a consequence, the expansion of the gradient and the Laplacian read

∇ = ∇x + ε−1∇y and ∆ = ∆x + 2ε−1∇x · ∇y + ε−2∆y ,

respectively.

Applying the formal expansion on the level-set equation we obtain

∂tL
0 + v0

n |∇yL0| = 0 in Ω× Y × (0, T ) ,

where the scalar v0
n denotes the ε0-ordered terms of an approriate extension of v εn.
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Owing to the assumption on θεs at initial time, the initial data θ0
s(., 0) is independent of y . Thus,

we obtain that θ0
s (x ,t) does not depend on y likewise.

Also v0
n (x ,t) is independent of y (due to c0

` (x ,t) ). The coarea formula of geometric measure theory
yields

∂t |Y 0
` (x ,t)| =

∫
Γ0

I (x ,t)

v0
n (x ,y ,t) dσy = |Γ0

I (x ,t)| · v0
n (x ,t) in ΩT ,

which is nothing but the change of the liquid phase volume fraction θ = |Y 0
` | in time within the

domain Ω. Let us denote the volume fraction of the entire void space (including microscopic
perforations of the solid) or porosity by

ϑ(x ,t) := θ(x ,t) +

∫
Y 0

s (x ,t)

θ0
s (x ,t) dy =

(
θ + (1− θ)θ0

s

)
(x ,t) .

Since v0
n is independent of y , the normal velocity is constant along the interface in a unit cell.

This enables us to characterize the geometrical setting of the surfaces Γ0
I (x ,t) via θ(x ,t). In this

case, the hyperbolic level-set equation reduces to an ODE for θ, cf. [1,3,4]:

∂tθ = −|Γ0
I (θ)|k (r(c0)− ω0) in ΩT .

[4]: T. L. van Noorden: Crystal precipitation and dissolution in a porous medium: effective equations and numerical experiments,
Multiscale Model. Simul. 7, 1220–1236, (2009).
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Derivation of the DARCY (macro)-equations

ε−1: p0 independent of y : p0
(x ,t) = p0

` (x ,t) = p0
s (x ,t) .

ε0: DARCYs law: q(x ,t)

(
:=
∫

Y 0
` (x ,t)

v0
` (x ,y ,t) dy +

∫
Y 0

s (x ,t)
v0

s (x ,y ,t) dy
)

= −1
µK(x ,t)∇xp0

(x ,t)

with the permeabilty tensor

[K]i ,j (x ,t) :=

∫
Y 0
` (x ,t)

(ω`,j)i (x ,y ,t) dy +

∫
Y 0

s (x ,t)

(ωs,j)i (x ,y ,t) dy ,

where (ωk ,j , πk ,j) : Y 0
k (x ,t)→ Rd ×R, k ∈ {`, s}, solves the cell problem

(C1)



−∆yω`,j +∇yπ`,j = ej in Y 0
` (x,t)

∇y · ω`,j = 0 in Y 0
` (x,t)

(K (θ0
s))−1ωs,j +∇yπs,j = ej in Y 0

s (x,t)

∇y · ωs,j = 0 in Y 0
s (x,t)

(ω`,j − ωs,j) · ν0
I = 0 on Γ0

I (x,t)

α√
K (θ0

s )
ω`,j · τ 0 = ν0

I · ∇yω`,jτ
0 on Γ0

I (x,t)

π`,j − πs,j = µν0
I · ∇yω`,jν

0
I on Γ0

I (x,t)

ω`,j and π`,j are Y -periodic ,

See [2].

∇x · q(x ,t) = −B
∫

Y 0
s (x ,t)

∂tθ
0
s − B

∫
Γ0

I (x ,t)

(1− θ0
s)v0

n dσy = −B∂tϑ(x ,t) ,

i.e. the change of the porosity ϑ(x ,t) induces fluid flow.
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Derivation of the upscaled transport equation

ε−2: c0 independent of y , i.e. c0
(x ,t) = c0

` (x ,t) = c0
s (x ,t), since

−D∆yc0
` = 0 in Y 0

` (x,t)

−Ds(θ0
s (x,t))∆yc0

s = 0 in Y 0
s (x,t)

D∇yc0
` · νI = Ds(θ0

s (x,t))∇yc0
s · νI on Γ0

I (x,t)

c0
` is Y -periodic.

ε−1: The terms of order ε−1 describing the transport lead to

c1
` (x ,y ,t) = ∇xc0

(x ,t) · η`(x ,y ,t) and c1
s (x ,y ,t) = ∇xc0

(x ,t) · ηs(x ,y ,t) ,

where (η`, ηs) := (η`,j , ηs,j)
d
j=1, j = 1, ..., d , solves the following PDEs in the unit cell:

(C2)



−D∆yη`,j = 0 in Y 0
` (x,t)

−Ds(θ0
s (x,t))∆yηs,j = 0 in Y 0

s (x,t)(
D∇yη`,j − Ds(θ0

s)∇yηs,j
)
· ν0

I = −(D − Ds(θ0
s))ej · ν0

I on Γ0
I (x,t)

η`,j = ηs,j on Γ0
I (x,t)

η`,j is Y -periodic .

ε0: Integrating over the equation corresponding to the ε0-terms gives

∂t
(
ϑc0) = ∇x ·

(
D∇xc0 − qc0) + ρ∂tϑ .
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Effective Model

Darcy’s law:
q = −1

µ
K∇xp0 in ΩT

∇x · q = −B∂tϑ in ΩT

Transport equation:

∂t (ϑc0) = ∇x · (D∇xc0 − qc0) + ρ∂tϑ in ΩT

Evolution of the microstructure:
∂tθ = −|Γ0

I (θ)|k (r(c0)− ω0) in ΩT

∂tθ
0
s = −σ(θ0

s) k (r(c0)− ω0
s ) in ΩT

with ϑ = θ + (1− θ)θ0
s .

The dissolution rate ω0
s is defined by ω0

s (θ, θ0
s) :=

{
1 , θ0

s < θs,max

min{r(c0), 1} , θ0
s = θs,max

,

where θs,max(x ,t) = 0 if θ(x ,t) < θclean(x ,t) otherwise θs,max(x ,t) > 0.

The effective parameters, depending on θ, θ0
s and containing the essential information of the

microscale, are given by the solutions of the cell problems (C1), (C2):

[K]i,j (x,t) :=

∫
Y 0
` (x,t)

(ω`,j)i (x,y,t) dy +

∫
Y 0

s (x,t)

(ωs,j)i (x,y,t) dy ,

[D]i,j (x,t) := D
∫

Y 0
` (x,t)

(δi,j + ∂yiη`,j) (x,y,t) dy + Ds(θ0
s)

∫
Y 0

s (x,t)

(δi,j + ∂yiηs,j) (x,y,t) dy .

[5]: Schulz R.: Crystal precipitation and dissolution in a porous medium: Evolving microstructure and perforated solid matrix,
Special Topics Rev. Porous Media, accepted.
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Computational Illustration



Computational Illustration

In the following we illustrate the impact of the porous matrix on the permeability. We first
compare the cell problems’ solution for the Stokes regime with those of the Stokes-Darcy
regime (C1). A representative porous matrix (quadratic inclusion) Ys = [1

4,
3
4]× [1

4,
3
4] is

considered. Here, different values of permeability ranging from K = 10−1 to = 10−7 are
considered in the Darcy region. Grids of fineness 2−6 are used for the discretization.

Figure: Cell problems’ solutions π (top), ω1 (middle) and ω2 (bottom) for Stokes-Darcy regime (C1) with right hand side e2

and K = 10−1 (left), K = 10−4 (2nd column), K = 10−7 (3rd column) and Stokes flow (right).

R. Schulz Precipitation-Dissolution in a Porous Medium with Perforated Solid Matrix 18



We compare the impact on the permeability values:

• For the Stokes regime, we calculate K = 0.0131.

• The table shows the different permeability K for the Stokes-Darcy regime ranging
from 0.795 to 0.0134.

K 100 10−1 10−2 10−3 10−4 10−5 10−6 10−7 10−8

K 0.795 0.189 0.0436 0.0196 0.0149 0.0138 0.0135 0.0134 0.0134

• It is evident that the impact of the Darcy regime is negligible for small values of K
in the porous matrix.]

[6]: Schulz R., Ray N., Zech S., Rupp A., Knabner P.: Beyond Kozeny-Carman: Predicting the permeability in porous media,
submitted.
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Advective Biofilms



Advective Biofilms

Oregon State University, Wildenschild Research Group, Iltis, Armstrong, Jansik.

• The increase of a biomass on the surface of the solid matrix changes the porosity
and impede the flow through the pores.

• Such microorganims can be used for forming biobarriers which restrict the flow of
ground water, e.g. to control the propagation of contaminants.

• In filter systems biofilms lead to an unwanted decrease in efficiency (biofouling).

• Biofilms form fluid channels significantly supporting the transport of nutrients. This
advective transport within the biomass facilitates also the “deepest” bacteria to get
nutrients in an adequate time.
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Pore-scale Model

• In this sense, a biofilm itself should be considered as a porous medium, with the
fluid channels as “pores” and immobile bacteria or EPS as “organic grains”.

We consider the following pore-scale model for the description of transport within a
porous medium Ωε(t), which is evolving due to de-/attachment at the solid–liquid
interface Γε,I.

Figure: Periodic representation of a porous medium Ω and the unit cell Y , where each solid
grain (gray) is surrounded by a biofilm (green).
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Effective Model

Darcy’s law:
q = −1

µ
K∇xp0 in ΩT

∇x · q = −B ∂tθ in ΩT

Transport equations:

∂t ((θ+θb(θs−θ))m0)=∇x · (Dm∇xm0 − qm0) + (θ + θb(θs − θ))
× (YRmon(n0,m0)− km) + R̃DA in ΩT

∂t(θsn0)=∇x · (Dn∇xn0 − qn0)− (θ + θb(θs − θ))
×Rmon(n0,m0)− (1−θb)(θs−θ)Rmon,b(n0) in ΩT

Change of porosity:

∂tθ = 1
ρb

R̃DA + (θs − θ)
(

kb − Y
ρb

Rmon,b(n0)
)

in ΩT .

On basis of the asymptotic expansion method the effective parameters are given by the
following solutions of cell problems, which contains the essential informations of the microscale:

[K]i,j (x,t) :=

∫
Y 0
` (x,t)

(ω`,j)i (x,y,t) dy +

∫
Y 0

s (x,t)

(ωs,j)i (x,y,t) dy ,

[Dm]i,j (x,t) := D
∫

Y 0
` (x,t)

(δi,j + ∂yiβ`,j) (x,y,t) dy + Dm,b

∫
Y 0

b (x,t)

(δi,j + ∂yiβb,j) (x,y,t) dy ,

[Dn]i,j (x,t) := D
∫

Y 0
` (x,t)

(δi,j + ∂yiη`,j) (x,y,t) dy + Dn,b

∫
Y 0

b (x,t)

(δi,j + ∂yiηb,j) (x,y,t) dy .
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The effective diffusion parameter Dn corresponding to the nutrients is given via the functions
η`,j (x ,.,t) : Y 0

` (x ,t)→ R and ηb,j (x ,.,t) : Y 0
b (x ,t)→ R solving the cell problem

(C2)



−∆yη`,j = 0 in Y 0
` (x,t)

−∆yηb,j = 0 in Y 0
b (x,t)

(D∇yη`,j − Dn,b∇yηb,j) · ν0
I = −(D − Dn,b)ej · ν0

I on Γ0
I (x,t)

η`,j = ηb,j on Γ0
I (x,t)

∇yηb,j · ν0
s = −ej · ν0

s on Γ0
s (x)

η`,j is Y -periodic .

The functions (β`, βb) := (β`,j, βb,j)
d
j=1 also solve componentwisely a system of PDEs similar

to (C2). In contrast to the above PDEs the boundary condition (C2)3 Γ0
I slightly changes by

replacing Dn,b with Dm,b.

Furthermore, the permeability tensor K is determined by the functions
(ωk ,j, πk ,j) : Y 0

k (x ,t)→ Rd × R, k ∈ {`, s} solving the cell problem (C1) with an additional
boundary condition on Γ0

s (x): −∇yπs,j · ν0
s = ej · ν0

s .

[7]: R. Schulz: Biofilm modeling in evolving porous media with Beavers-Joseph condition, Z. Angew. Math. Mech.,
2018;e201800123. https://doi.org/10.1002/zamm.201800123, (2019).
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Thank you for your attention!
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