A Data Scalable Hessian/KKT Preconditioner for Large Scale Inverse Problems*
 SIAM CSE17

Nick Alger ${ }^{1}$, Umberto Villa ${ }^{1}$, Tan Bui-Thanh ${ }^{2}$, Omar Ghattas ${ }^{1}$

${ }^{1}$ Center for Computational Geosciences and Optimization (CCGO), Institute for Computational Engineering and Sciences (ICES),

The University of Texas at Austin
${ }^{2}$ Department of Aerospace Engineering and Engineering Mechanics, and Institute for Computational Engineering and Sciences (ICES),

The University of Texas at Austin
February 27th, 2017
*This work was funded by DOE grants DE-SC0010518 and DE-SC0009286, and AFOSR grant FA9550-12-1-0484

Overview of the work

KKT system:

$$
\underbrace{\left[\begin{array}{ccc}
\alpha R^{*} R & & T^{*} \\
& B^{*} B & A^{*} \\
T & A &
\end{array}\right]}_{k} \underbrace{\left[\begin{array}{l}
a \\
u \\
\lambda
\end{array}\right]}_{x}=\underbrace{\left[\begin{array}{l}
b_{q} \\
b_{u} \\
b_{\lambda}
\end{array}\right]}_{b}
$$

Preconditioner:

$$
P:=\left[\begin{array}{lll}
\alpha R^{*} R+\rho T^{*} T & & \\
& B^{*} B+\rho A^{*} A & \\
& & \frac{1}{\rho} \nu
\end{array}\right]
$$

Condition number bound

$$
\text { cond }\left(P^{-1 / 2} K P^{-1 / 2}\right) \leq \frac{3}{\delta(1-\beta)}
$$

Inverse problem

Forward problem: Given q, compute y.
Inverse problem: Given y, estimate q.

Uninformed modes

indistinguishable variations in conductivity

Optimization problem

Regularized least-squares optimization problem:

$\min _{q, u} \overbrace{\frac{1}{2}\|B u-y\|^{2}}^{$| try to match |
| :---: |
| observations |$}+\overbrace{\frac{\alpha}{2}\|R q\|^{2}}^{$| regularization: |
| :---: |
| stabilize reconstruction |
| of |$}$

Data misfit

- data misfit:

$$
\mathcal{J}_{d}(q):=\frac{1}{2}\|B u(q)-y\|^{2}
$$

- data misfit Hessian:

$$
H_{d}:=\frac{d^{2} \mathcal{J}_{d}}{d q^{2}}
$$

- Eigenstructure of H_{d} characterizes local sensitivity of observations to parameter perturbations

Parameter space (q's live here)

 data misfit

Spectrum of misfit Hessian

Eigenvalues of data misfit and regularization Hessian

Hessian spectrum and data scalability

- Spectral structure of the Hessian controls convergence of optimization schemes.
- Increasing data worsens the spectral structure of the Hessian.
- Data scalable methods must make progress on all informed modes every iteration.

Consequently, the following are not data scalable:

- Gradient methods (gradient descent, nonlinear CG, Nesterov, L-BFGS)
- Newton-Krylov methods with regularization preconditioning

Gradient ascent path on a mountain

*Original image by Mountains to Sound Greenway Trust, https://commons.wikimedia.org/w/index.php?curid=705297

Gradient ascent path on a mountain

*Original image by Mountains to Sound Greenway Trust, https://commons.wikimedia.org/w/index.php?curid=705297

Gradient path in 2D

ill conditioned

well conditioned

Gradient path in 3D

level set skeleton for $\mathrm{f}(\mathrm{x})$

Gradient path in nD

Newton/SQP

Accounts for scaling in all directions at once?:

- Newton
- Gauss-Newton
- Sequential quadratic programming (SQP) - l-bfgs X

Newton/SQP: address ill-conditioning with linear algebra

Newton-Krylov/SQP-Krylov:

- Solve linear system at each iteration with Krylov method
- Linear systems become harder solve with increasing data
- Decouples nonlinearity from ill-conditioning
- Allows us to directly address ill-conditioning with linear algebra/preconditioning

Sequential quadratic programming / Gauss-Newton

- Linearize constraint equation at current point:

$$
F(q, u)=\underbrace{\frac{\partial F}{\partial q}}_{T} \underbrace{\left(q-q^{(k)}\right)}_{\delta q}+\underbrace{\frac{\partial F}{\partial u}}_{A} \underbrace{\left(u-u^{(k)}\right)}_{\delta u}+\text { higher order terms }
$$

- Linearized optimization problem:

$$
\min _{\delta q, \delta u} \frac{1}{2}\|B \delta u-\delta y\|^{2}+\frac{\alpha}{2}\left\|R \delta q-r_{k}\right\|^{2}
$$

such that $T \delta q+A \delta u=f_{0}$

- SQP/Gauss-Newton:
$\underset{\text { constraint }}{\text { Linearize }} \rightarrow \underset{\text { linearized problem }}{\stackrel{\text { Solve }}{\text { Update }}} \rightarrow \underset{\text { optimization variables }}{\text { Unt }} \rightarrow$ Repeat \ldots

Linear systems in SQP / Gauss-Newton

- SQP:

$$
\min _{\delta q, \delta u} \frac{1}{2}\|B \delta u-\delta y\|^{2}+\frac{\alpha}{2}\left\|R \delta q-r_{k}\right\|^{2}
$$

such that $T \delta q+A \delta u=f_{0}$
Must solve system of the form $\mathbf{K x}=\mathbf{b}$, where

$$
K=\left[\begin{array}{ccc}
\alpha R^{*} R & & T^{*} \\
& B^{*} B & A^{*} \\
T & A &
\end{array}\right]
$$

- Gauss-Newton: (eliminate δu by solving for it)

$$
\min _{\delta q} \frac{1}{2}\|\underbrace{B A^{-1} T}_{J} \delta q-\widehat{\delta y}\|^{2}+\frac{\alpha}{2}\left\|R \delta q-r_{k}\right\|^{2}
$$

Must solve system of the form $\mathbf{H p}=-\mathbf{g}$, where

$$
H=J^{*} J+\alpha R^{*} R \text {. }
$$

- Coefficient matrices are equivalent:

$$
K \xlongequal[\text { Schur complement } \rightarrow]{\stackrel{\leftarrow \text { Define auxiliary variables }}{ }} H
$$

Hessian preconditioning is hard

- Regularization and data misfit terms in Hessian "fight" each other by construction
\Longrightarrow Hard to find preconditioners that work for both terms at once
- Hessian is dense: only accessible via matrix-vector products \Longrightarrow Cannot use preconditioners that require entries of the matrix (e.g., algebraic multigrid, algebraic domain decomposition, etc.)
- 15+ years of research by many groups, not much success
- Idea: precondition KKT matrix instead

Regularization preconditioning

Hessian:

$$
H=\underbrace{J^{*} J}_{\begin{array}{c}
\text { compact } \\
\text { operator }
\end{array}}+\alpha \underbrace{R^{*} R}_{\begin{array}{c}
\text { differential } \\
\text { operator }
\end{array}}
$$

Regularization preconditioned Hessian:

$$
\frac{1}{\alpha} R^{-*} H R^{-1}=\underbrace{\frac{1}{\alpha} R^{-*} H_{d} R^{-1}+I}_{\begin{array}{c}
\text { compact perturbation } \\
\text { of identity }
\end{array}}
$$

- mesh independent convergence of regularization preconditioned Newton-Krylov.

Problem:

$$
\frac{1}{\alpha} R^{-T} H_{d} R^{-1} \text { becomes "less compact" as: }
$$

- the data increases
- the regularization decreases

Regularization preconditioning addresses uninformed modes

Adjoint Schur complement KKT preconditioning

- Generic saddle point optimization problem:

$$
\begin{array}{rlrl}
\min _{q, u} & \frac{1}{2}\|B u-y\|^{2}+\frac{\alpha}{2}\|R q\|^{2} & \rightarrow & \min _{x} \\
& \frac{1}{2} x^{*} M x+g^{*} x \\
\text { such that } & T q+A u=f & & \text { such that } \\
C x=h
\end{array}
$$

- KKT matrix in generic saddle point form:

$$
\left[\begin{array}{ccc}
\alpha R^{*} R & & T^{*} \\
& B^{*} B & A^{*} \\
T & A &
\end{array}\right] \rightarrow\left[\begin{array}{cc}
M & C^{*} \\
C &
\end{array}\right]
$$

- Murphy, Golub, Wathen:
$\lambda\left(\left[\begin{array}{ll}M & \\ & C^{*} M^{-1} C\end{array}\right]^{-1}\left[\begin{array}{cc}M & C^{*} \\ C & \end{array}\right]\right)$ consists of 3 points.
\Rightarrow Krylov methods converge in 3 iterations!
- Problem: M is not invertible due to limited observations.

Augmented Lagrangian

- Problem: M is not invertible due to limited observations.
- Solution: penalize constraint violations even more!

$$
\begin{array}{ll}
\min _{x} & \frac{1}{2} x^{*} M x+g^{*} x \rightarrow \\
\text { such that } & C x=h
\end{array} \min _{x} \quad \frac{1}{2} x^{*} M x+g^{*} x+\frac{\rho}{2}\|C x-h\|^{2} .
$$

- Augmented KKT matrix:

$$
\left[\begin{array}{cc}
M & C^{*} \\
C &
\end{array}\right] \rightarrow\left[\begin{array}{cc}
M+\rho C^{*} C & C^{*} \\
C &
\end{array}\right]
$$

- $M+\rho C^{*} C$ is invertible*.
(*provided optimization problem is well-posed)

Augmented adjoint Schur complement preconditioner

- Augmented preconditioner:

$$
\left[\begin{array}{ll}
M & \\
& C^{*} M^{-1} C
\end{array}\right] \rightarrow\left[\begin{array}{ll}
M+\rho C^{*} C & \\
& C^{*}\left(M+\rho C^{*} C\right)^{-1} C
\end{array}\right]
$$

- Golub, Greif, Varah:

$$
\begin{aligned}
& \lambda\left([\begin{array} { c c }
{ M + \rho C ^ { * } C } & { C ^ { * } (M + \rho C ^ { * } C) ^ { - 1 } C }
\end{array}] ^ { - 1 } \left[\begin{array}{cc}
M & C^{*} \\
C &]) \\
& \subset\left[-1, \frac{1-\sqrt{5}}{2}\right] \cup\left[1, \frac{1+\sqrt{5}}{2}\right]
\end{array}\right.\right.
\end{aligned}
$$

\Rightarrow Krylov methods converge very fast.
Difficulty: Preconditioner requires solving $M+\rho C^{*} C$ and $C^{*}\left(M+\rho C^{*} C\right)^{-1} C$.

Workaround: Replace these with approximations that are easier to solve.

Approximation of Schur complement

We must approximate the following operator:

$$
S:=C^{*}\left(M+\rho C^{*} C\right)^{-1} C .
$$

S is the (negative) Schur complement for the adjoint variable.

- As $\rho \rightarrow \infty$, constraint is enforced in objective function, \Longrightarrow adjoint variable doesn't have to "work as hard" \Longrightarrow better conditioning of the Schur complement
- Use approximation:

$$
S \approx \frac{1}{\rho} I
$$

- Approximation exact as $\rho \rightarrow \infty$

Approximation of objective block

Next, we must approximate the following operator:

$$
M+\rho C^{*} C=\left[\begin{array}{cc}
\alpha R^{*} R+\rho T^{*} T & \rho T^{*} A \\
\rho A^{*} T & B^{*} B+\rho A^{*} A
\end{array}\right]
$$

- Off-diagonals scaled by ρ
- ρ small: off-diagonals are less important
- Approximation: set off-diagonals to zero

$$
M+\rho C^{*} C \sim\left[\begin{array}{ll}
\alpha R^{*} R+\rho T^{*} T & \\
& B^{*} B+\rho A^{*} A
\end{array}\right]
$$

The combined preconditioner

After afforementioned approximations, preconditioner becomes:

$$
P:=\left[\begin{array}{lll}
\alpha R^{*} R+\rho T^{*} T & & \\
& B^{*} B+\rho A^{*} A & \\
& & \frac{1}{\rho} I
\end{array}\right]
$$

- Schur complement block: want ρ large
- Objective 2×2 block: want ρ small

Question: can ρ be chosen just right to make both of these approximations good?

Answer: yes, set $\rho=\sqrt{\alpha}$.

Squared subsystems

Preconditioner subsystems:

$$
\begin{aligned}
& \alpha R^{*} R+\rho T^{*} T \\
& B^{*} B+\rho A^{*} A
\end{aligned}
$$

- Terms do not "fight" each other
- Symmetric positive definite
- Have access to matrix entries*
- Can use algebraic multigrid, algebraic domain decomposition,

Condition number bound

- Define the damped projectors:

$$
\begin{aligned}
Q_{R} & :=T\left(\frac{\alpha}{\rho} R^{*} R+T^{*} T\right)^{-1} T^{*} \\
Q_{J} & :=T\left(\frac{1}{\rho} J^{*} J+T^{*} T\right)^{-1} T^{*} .
\end{aligned}
$$

- Let δ, β be AM and GM bounds on Q_{R}, Q_{J} :

$$
\begin{aligned}
& 0<\delta \leq \lambda_{\min }\left(Q_{R}+Q_{J}\right) \\
& \lambda_{\max }\left(Q_{R} Q_{J}\right)^{1 / 2} \leq \beta<1
\end{aligned}
$$

Theorem

$$
\operatorname{cond}\left(P^{-1 / 2} K P^{-1 / 2}\right) \leq \frac{3}{\delta(1-\beta)}
$$

Proof.
Use Brezzi theory.

Bounds on δ, β

Theorem
Let R be a spectral filtering regularization operator with eigenvalues of $R^{*} R$ given by r_{i}. Denote the eigenvalues of $J^{*} J$ by d_{i}^{2}. Set $\rho=\sqrt{\alpha}$. If the following appropriate regularization assumptions hold:

1. $0<c_{u} \leq d_{i}^{2}+\alpha r_{i}^{2}$,
2. $d_{i} r_{i} \leq c_{o}<\infty$
then

$$
\begin{aligned}
& \delta \geq \frac{1}{2}\left(1+c_{o}^{2}\right)^{-1} \\
& \beta \leq\left(1+c_{u}\right)^{-1 / 2}
\end{aligned}
$$

Discussion of appropriate regularization assumptions

1. $0<c_{u} \leq d_{i}^{2}+\alpha r_{i}^{2}$,
2. $d_{i} r_{i} \leq c_{o}<\infty$

- Condition 1: Problem not under-regularized (Hessian nonsingular)
- Condition 2: Problem not over-regularized
- Condition 2: Multiplicative nature of condition 2 makes it easily satisfied
- Condition 2: Satisfied with constant $c_{o}=1.0$ for Poisson source inversion problem with observations of Fourier modes, and Laplacian or weaker regularisation.

Numerical test problem

- Poisson source inversion problem
- $\Delta u=q$
- Point measurements of u
- True q : picture of POB building at UT Austin

Iterate comparison

- Top row: Our preconditioner on KKT system
- Bot row: Regularization preconditioning on Hessian

Convergence comparison

- Our preconditioner converges fast
- Regularization preconditioning stalls
- Replacing subsystem solves with a few multigrid V-cycles results in nearly the same convergence rate

Mesh scalability

h	$\#$ triangles	MINRES iterations
$5.68 \mathrm{e}-02$	1800	51
$2.84 \mathrm{e}-02$	7200	50
$1.89 \mathrm{e}-02$	16200	51
$1.41 \mathrm{e}-02$	29000	51
$1.13 \mathrm{e}-02$	45250	51
$9.44 \mathrm{e}-03$	65100	51
$8.09 \mathrm{e}-03$	88550	51
$7.07 \mathrm{e}-03$	116000	51
$6.29 \mathrm{e}-03$	146700	51
$5.66 \mathrm{e}-03$	181000	51

Data scalability

- Steady convergence rate over wide range of regularization parameter choices
- Can take regularization parameter very small if there is sufficient data

Conclusion

- Increasing data worsens spectral properties of Hessian
- Existing numerical optimization schemes slow with big data
- We addressed the problem with a data scalable KKT preconditioner
- Performs well when problem is neither over- nor underregularized

Paper: N. Alger, U. Villa, T. Bui-Thanh, O. Ghattas, A data scalable augmented Lagrangian KKT preconditioner for large scale inverse problems. Submitted to SISC (in review).
https://arxiv.org/pdf/1607.03556v1.pdf

Thanks to

Co-authors:

- Umberto Villa
- Omar Ghattas
- Tan Bui-Thanh

Colleagues:

- James Martin
- Toby Isaac
- Vishwas Rao
- Aaron Myers

Other:

- Anonymous reviewer: improvement in bound: $2+2 \sqrt{2} \rightarrow 3$

