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Hundred years ago ...

In 1912, Max von Laue
discovered the
diffraction of X-rays by
crystals

In 1913, W.H. Bragg and his son
W.L. Bragg realized one could
determine crystal structure from
X-ray diffraction patterns



Phase Retrieval Problem

Signal of interest: x(t1, t2)
Fourier transform

x̂(ω1, ω2) =

∫
x(t1, t2)e−2πi(t1ω1+t2ω2) dt1dt2

We measure the intensities of the Fraunhofer diffraction
pattern, i.e., the squared modulus of the Fourier transform
of the object. The phase information of the Fourier
transform is lost.
Goal: Recover phase of x̂(ω1, ω2), or equivalently,

recover x(t1, t2), from |x̂(ω1, ω2)|2.



Uncovering the double helix structure of the DNA with
X-ray crystallography in 1951.

Nobel Prize for Watson, Crick, and Wilkins in 1962 based on
work by Rosalind Franklin



Difficult inverse problem:
Determine DNA structure based on diffraction image

Problem would be easy if we could somehow recover the phase
information (“phase retrieval”), because then we could just do
an inverse Fourier transform to get DNA structure.



“Shake-and-Bake”

In 1953, Herbert Hauptman, Jerome Karle, and Isabella Karle
developed the Direct method for phase retrieval, based on
probabilistic methods and structure invariants and other
constraints, expressed as inequalities.

Nobel Prize in 1985 for H.Hauptman and J.Karle.
Method works well for small and sometimes for medium-size
molecules (less than a few hundred atoms)



Is phase information really important?
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Phase retrieval – why do we care today?

Enormous research activity in recent years due to new imaging
capabilities driven by numerous applications.



X-ray crystallography

Method for determining atomic structure within a crystal
Knowledge of phase crucial to build electron density map
Initial success of phase retrieval for certain cases by using
a combination of mathematics, very specific prior
knowledge, and ad hoc “bake-and-shake”-algorithm
(1985-Nobel Prize for Hauptman and Karle).
Very important e.g. in macromolecular crystallography for
drug design.



Diffraction microscopy

X-ray crystallography has been extended to allow imaging
of non-crystalline objects by measuring X-ray diffraction
patterns followed by phase retrieval.
Localization of defects and strain field inside nanocrystals
Quantitative 3D imaging of disordered materials such as
nanoparticles and biomaterials
Potential for imaging single large protein complexes using
extremely intense and ultrashort X-ray pulses



At the core of phase retrieval lies the problem:

We want to recover a function x(t) from intensity
measurements of its Fourier transform, |x̂(ω)|2.

Without further information about x , the phase retrieval
problem is ill-posed. We can either impose additional
properties of x or take more measurements (or both)

We want an efficient phase retrieval algorithm based on a
rigorous mathematical framework, for which:

(i) we can guarantee exact recovery,
(ii) which is stable in the presence of noise.

Want flexible framework that does not require any prior
information about the function (signal, image,...), yet can
incorporate additional information if available.
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General phase retrieval problem

Suppose we have x0 ∈ Cn or Cn1×n2 about which we have
quadratic measurements of the form

A(x0) = {|〈ak ,x0〉|2 : k = 1,2, . . . ,m}.

Phase retrieval:

find x
obeying A(x) = A(x0) := b.

Goals:
Find measurement vectors {ak}k∈I such that x0 is
uniquely determined by {|〈ak ,x0〉|}k∈I .
Find an algorithm that reconstructs x0 from {|〈ak ,x0〉|}k∈I .



General phase retrieval problem

Suppose we have x0 ∈ Cn or Cn1×n2 about which we have
quadratic measurements of the form

A(x0) = {|〈ak ,x0〉|2 : k = 1,2, . . . ,m}.

Phase retrieval:

find x
obeying A(x) = A(x0) := b.

Goals:
Find measurement vectors {ak}k∈I such that x0 is
uniquely determined by {|〈ak ,x0〉|}k∈I .
Find an algorithm that reconstructs x0 from {|〈ak ,x0〉|}k∈I .



When does phase retrieval have a unique solution?

We can only determine x from its intensity measurements
{|〈ak ,x〉|2} up to a global phase factor:
If x(t) satisfies A(x) = b, then so does x(t)e2πiϕ for any ϕ ∈ R.
Thus uniqueness means uniqueness up to global phase.

Conditions for uniqueness for a general signal x ∈ Cn:
4n − 2 generic measurement vectors are sufficient for
uniqueness
It seems 4n − 4 measurements are necessary

Uniqueness does not say anything about existence of feasible
algorithm or stability in presence of noise.
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Lifting

Following [Balan, Bodman, Casazza, Edidin, 2007], we will
interpret quadratic measurements of x as linear measurements
of the rank-one matrix X := xx∗:

|〈ak ,x〉|2 = Tr(x∗aka∗kx) = Tr(AkX )

where Ak is the rank-one matrix aka∗k .
Define the linear operator A: X → {Tr(AkX )}mk=1.

Now, the phase retrieval problem is equivalent to

find X
subject to A(X ) = b

X � 0
rank(X ) = 1

(RANKMIN)

Having found X , we factorize X as xx∗ to obtain the phase
retrieval solution (up to global phase factor).
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Phase retrieval as convex problem?

We need to solve:

minimize rank(X )
subject to A(X ) = b

X � 0.
(RANKMIN)

Note that A(X ) = b is highly underdetermined, thus cannot just
invert A to get X .
Rank minimization problems are typically NP-hard.

Use trace norm as convex surrogate for the rank functional
[Beck ’98, Mesbahi ’97], giving the semidefinite program:

minimize trace(X )
subject to A(X ) = b

X � 0.
(TRACEMIN)
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A new methodology for phase retrieval

Lift up the problem of recovering a vector from quadratic
constraints into that of recovering a rank-one matrix from affine
constraints, and relax the combinatorial problem into a
convenient convex program.

PhaseLift

But when (if ever) is the trace minimization problem
equivalent to the rank minimization problem?
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When is phase retrieval a convex problem?

Theorem: [Candès-Strohmer-Voroninski ’11]
Let x0 in Rn or Cn and suppose we choose the measurement
vectors {ak}mk=1 independently and uniformly at random on the
unit sphere of Cn or Rn. If m ≥ c n log n, where c is a constant,
then PhaseLift recovers x0 exactly from {〈ak ,x0〉|2}mk=1 with
probability at least 1− 3e−γ

m
n , where γ is an absolute constant.

Note that the “oversampling factor” log n is rather minimal!

First result of its kind: Phase retrieval can provably be
accomplished via convex optimization with small amount of
“oversampling”
Proof uses “dual certificate” in semidefinite programming and
advanced probability theory (random matrix theory, ...)



Geometric interpretation

Assume for simplicity that the trace of the solution were known
(easy to do in practice), say Tr(X ) = 1. In this case our problem
reduces to solving the feasibility problem

find X
such that A(X ) = b, X � 0

(knowledge of A determines Tr(X ))
This is a problem in algebraic geometry since we are trying to
find a solution to a set of polynomial equations.

Our main theorem states that xx∗ is the unique feasible point.
I.e, there is no other positive semidefinite matrix X in the affine
space A(X ) = b.



Geometric interpretation

The slice of the (red) positive semidefinite cone
{X : X � 0} ∩ {trace(X ) = 1} is quite “pointy” at xx∗. Therefore
it is possible for the (gray) affine space {A(X ) = b} to be
tangent even though it is of dimension about n2 − n.



Multiple structured illuminations

Using random masks to generate multiple illuminations.
[Candes-Eldar-S.-Voroninski, SIAM J. Imaging Sci., 2013].



Multiple illuminations using oblique illuminations



Numerical simulations: 1-dim. noisy data



(a) Original image (b) 3 Gaussian masks

(c) 8 binary masks (d) Error btw. (a) and (c)

Thanks to Stefano Marchesini from Berkeley Livermore Labs for data.



Many extensions and improvements of PhaseLift (1)

Number of measurements m ≥ cn log n can be reduced to
m ≥ c0n. (Candes-Li, 2012)
Theory for random Fourier masks (Candes-Li, 2013)
Sparse signals (Ohlsson et al. 2012, Li-Voroninsky, 2012,
Eldar et al. 2014, Hassibi et al. 2013)
Expander graphs and PhaseLift (Alexeev-Mixon-Bandeira,
2012)
PhaseLift and Spherical Designs (Gross-Krahmer-Kueng,
2013)



Many extensions and improvements of PhaseLift (2)

PhaseLift and STFT measurements, Ptychography
(Eldar-Mixon, 2014, Marchesini et al., 2014)
PhaseLift and Spherical Designs (Gross-Krahmer-Kueng,
2013)
More general bilinear problems, self-calibration (Schniter
2013, Bresler et al., 2014, Friedlander-Strohmer-Ling,
2014)
Rigorous nonconvex solvers (Candes, Li, Soltanolkotabi,
2015, Candes-Chen, 2015, Marchesini et al. 2015)
Blind deconvolution (Ahmed-Recht-Romberg 2014, Bresler
et al. 2015, Li-Ling-Strohmer-Wei 2016)


