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1. Underdetermined linear inverse problems

Linear inverse problem

Estimate x ∈ Rn with an underdetermined observation model

b = Ax + e, A ∈ Rm×n,

where

m� n

additive Gaussian noise e is a realization of random variable E ∼ N (0, Im)

a priori, x is believed to be sparse, that is

‖x‖0 � n.
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2. Bayesian Sparsity promotion

Sparsity promotion: hierarchical model

Hierarchical conditionally Gaussian prior hypermodel

X ∼ N (0,Dθ), Dθ = diag(θ1, . . . , θn),

Assume the prior variances θj > 0 are mutually independent random variables
following a Gamma distribution,

Θj ∼ Gamma(β, θ∗j ) ∝ θβ−1
j exp

(
− θj
θ∗j

)
, 1 ≤ j ≤ n.

Posterior density

πX ,Θ|B(x , θ) ∝ exp

−1

2
‖b − Ax‖2 − 1

2

n∑
j=1

x2
j

θj
+ η

n∑
j=1

log θj −
n∑

j=1

θj
θ∗j


where η = β − 3/2 > 0.
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3. IAS algorithm: a bit of magic

Iterared Alternating Sequential (IAS) algorithm

To compute xMAP we minimize the Gibbs energy

E (x ; θ) =

(a)︷ ︸︸ ︷
1

2
‖b − Ax‖2 +

n∑
j=1

x2
j

2θj
−

n∑
j=1

(
η log θj −

θj
θ∗j

)
︸ ︷︷ ︸

(b)

(1)

Given the initial value θ0 = θ∗, x0 = 0, and k = 0, iterate until convergence:

(a) Update xk → xk+1 by minimizing E (x ; θk);

(b) Update θk → θk+1 by minimizing E (xk+1; θ);

(c) Increase k → k + 1.
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3. IAS algorithm: a bit of magic

Exact IAS algorithm

Initialize: k = 0, θ0 = θ∗;

While ‖θk − θk−1‖ > tol

1 Update x ; xk+1 = argmin
{
‖b − Ax‖2 + ‖D−1/2

θ x‖2
}

by solving[
A

D
−1/2
θ

]
x =

[
b
0

]
in the least squares sense.

2 Setting x = xk+1, update the components of θk+1 according to the formula

θj = θ∗j

(
η

2
+

√
η2

4
+

x2
j

2θ∗j

)
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3. IAS algorithm: a bit of magic

Convexity and Convergence of exact IAS

The exact IAS algorithms with the Gamma hyperprior is such that:

The Gibbs energy functional is strictly convex

The Gibbs functional has a unique minimizer

If Step 1 and Step 2 are solved exactly the algorithm converges to the global
minimizer

For η > 0 small, the Gibbs energy (1) is approximately equal to the penalized
least squares functional with a weighted `1-penalty 1.

.

1Calvetti D, Pascarella A, Pitolli F, Somersalo E, Vantaggi B (2015) A hierarchical
Krylov–Bayes iterative inverse solver for MEG with physiological preconditioning. Inverse
Problems 31:125005
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4. Hyperparameters

A convergence result

Let the function for updating the variance f : Rn → Rn have components

fj(xj) = θ∗j

(
η

2
+

√
η2

4
+

x2
j

2θ∗j

)

Theorem
For a Gamma hyperprior, the exact IAS algorithm converges to the unique
minimizer (x̂ , θ̂) of the Gibbs energy functional. Moreover, the minimizer (x̂ , θ̂)
satisfies the fixed point condition

x̂ = argmin
{
E
(
x | F (x)

)}
, θ̂ = F (x̂),

where F is the map with jth component fj .
2.

2Calvetti D, Pascarella A, Pitolli F, Somersalo E, Vantaggi B (2015) A hierarchical
Krylov–Bayes iterative inverse solver for MEG with physiological preconditioning. Inverse
Problems 31:125005
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4. Hyperparameters

Scale parameter and sparsity

Under the assumptions of our hierarchical Bayesian model we have shown that

The exact IAS iteration converges to the global minimizer of the functional

Lη(x) = E (x , f (x))

and, for small η > 0

Lη(x) = L0(x) + ηg(x , η)︸ ︷︷ ︸
→0 as η→0

,

where

L0(x) =
1

2
‖b − Ax‖2 +

√
2

n∑
j=1

|xj |√
θ∗j

.
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4. Hyperparameters

Gamma hyperprior parameters

From the result above it follows that

1 For small η, the IAS minimization problem is a small perturbation of the
weighted `1 penalized least squares functional

2 The parameter η controls the sparsity of the solution.

3 The scale parameters θ∗j play the role of sensitivity weights in inverse
problems

4 Data components may have different sensitivity to different components xj .
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4. Hyperparameters

`2 Stable Signal Recovery

Two remarks

xη = argmin {Lη(x)}︸ ︷︷ ︸
=IAS solution

x1 = argmin {L0(x)}︸ ︷︷ ︸
=`1penalized solution

.

1 The difference xη − x1 is a vector whose size depends continuously on η.

2 If A has the Restricted Isometry Property (RIP) and the data comes from a
sparse vector3, then xη is close to the underlying sparse solution.

3Candes E, Romberg JK and Tao T(2006): Stable Signal Recovery from Incomplete and
Inaccurate Measurements, Comm Pure Appl Math LIX: 1207–1223
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4. Hyperparameters Sensitivity scaling

Sparse signal and exchangeability

Assume the underlying signal x is sparse supp(x) = I ⊂ {1, 2, . . . , n} and b0 is the
noiseless measurement. Define

SNR|I =
E
{
‖b0‖2 | supp(x) = I

}
E {‖e‖2}

.

Lemma
With our assumptions about X and E

SNR|I =

∑
j∈I βθ

∗
j ‖Aej‖2

tr (Σ)
.

Proof.

E
{
‖b0‖2

}
= TrE

{
b0b

T
0

}
= TrE

{
AxxTAT

}
= Tr

(
AE
{
xxT

}
AT
)
,

and from the Gamma hyperprior

E
{
xxT

}
= Eθ

{
E
{
xxT | θ

}}
= E

(
diag

(
θ
))

= diag
(
βθ∗
)
.
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4. Hyperparameters Sensitivity scaling

Choice of scale parameter

How should θ∗ be chosen?

Theorem

Given an estimate SNR of SNR, if

P
(
‖x‖0 = k

)
= pk , p0 = 0,

n∑
k=1

pk = 1

and if
SNR |I= SNR |I′ , ∀ I, I′ : card(I) = card(I′),

then

θ∗j =
C

‖Aej‖2
, C = SNRTr

(
Σ
) n∑

j=1

pk
k

In the literature ‖Aej‖2 is the sensitivity of the data to jth component of x .
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5. Converge rate of exact IAS

Sparsity and quadratic convergence

Theorem
If

fj
(
xj
)

is monotonically increasing

fj(0) ≥ θ̃ > 0

x∗ is sparse with supp(x∗) = T , |T | = S

then exact IAS converges quadratically in θTC , where TC is the complement of T .

Theorem
Under the conditions of the previous theorem, if

x∗ is nearly sparse (compressible)

‖xTC ‖∞ ≤ ζ
then

JTC ≤
√
S
ζ

θ̃
.
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5. Converge rate of exact IAS

Sparsity and quadratic convergence

The theorems implies that

If ζ is small enough, the convergence is effectively quadratic in θTC

The `1 solution from noisy data approximates well the underlying sparse
signal4,

As β →
(
3/2
)+

, the exact IAS solution approaches the `1 penalized solution
hence is close to the underlying sparse signal.

4Candes E, Romberg JK and Tao T(2006): Stable Signal Recovery from Incomplete and
Inaccurate Measurements, Comm Pure Appl Math LIX: 1207–1223
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6. Inexact IAS

Inexact IAS and quasi-MAP estimate

1 For large scale problems and few observations (A ∈ Rm×n, m < n), the least
squares step of IAS [

A

D
−1/2
θ

]
x =

[
b
0

]
can be solved approximately by priorconditioned CGLS5 6

2 If Σ−1 = STS, apply the CGLS method to

SAD
1/2
θ w = Sb

stopping on Morozov discrepancy principle at jth step, where

dj >
√
m > dj+1, dj = ‖Sb − SAD

1/2
θ wj‖.

3 Retrieve original variable xk = D
1/2
θ wj

5Calvetti et al. Priorconditioned CGLS-Based Quasi-MAP Estimate, Statistical Stopping
Rule, and Ranking of Priors. SIAM J. Sci. Comput. 39-5 (2017)

6Calvetti et al. Bayes meets Krylov: preconditioning CGLS for underdetermined systems. D
Calvetti, F Pitolli, E Somersalo, B Vantaggi. SIAM Review, to appear.
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6. Inexact IAS

Pros of inexact IAS

1 Suitable for large problems

2 Computationally efficient

3 Follows classical scheme of inner/outer iterations

4 Can be interpreted as flexible right preconditioning

5 Number of CGLS steps decreases with outer iterations

6 When the underlying signal is sparse, the algorithm automatically reduced the
effective dimensionality of the problem to solve
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7. Open questions

Open questions for inexact IAS

At the present, the inexact IAS

1 Does not have a proof of convergence, only numerical evidence

2 The solution produced is an approximation of the MAP estimate, hence we
call it quasi MAP estimate (qMAP)

3 A quadratic rate of convergence of signal and prior variances has been
observed numerically: a rigorous proof is in progress.
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8. Computed examples

Computed examples

A ∈ 1000× 1000 is a Gaussian blurring kernel over 15 pixels

Data come from a piecewise constant signal

Additive scaled white noise 0.01% of max of noise-free data

Conditionally Gaussian first order smoothness prior

Gamma hyperprior
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8. Computed examples
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8. Computed examples
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8. Computed examples
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8. Computed examples
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8. Computed examples

An application to MEG

In this example we see the effect of the focality parameter

Data: 153 measurements at magnetometers

A is the leadfield matrix 153× 75000

Sparsity prior
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8. Computed examples
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