Nontrivial Dynamics in the Forced Navier-Stokes Equations: A Computer-Assisted Proof

Nontrivial Dynamics in the Forced Navier-Stokes Equations: A Computer-Assisted Proof

Joint work with

J.B. van den Berg VU Amsterdam

Maxime Breden ENS / U. Laval

Lennaert van Veen UOIT

SIAM Conference on Applications of Dynamical Systems Snowbird, UTAH 5.21.2017

The incompressible Navier-Stokes equations on the 3D torus \mathbb{T}^3 are given by

$$\begin{cases} \partial_t u + (u \cdot \nabla)u - \nu \Delta u + \frac{1}{\rho} \nabla p = f, & \text{on } \mathbb{T}^3 \times \mathbb{R} \\ \nabla \cdot u = 0, & \text{on } \mathbb{T}^3 \times \mathbb{R}, \end{cases}$$

The incompressible Navier-Stokes equations on the 3D torus \mathbb{T}^3 are given by

$$\begin{cases} \partial_t u + (u \cdot \nabla)u - \nu \Delta u + \frac{1}{\rho} \nabla p = f, & \text{on } \mathbb{T}^3 \times \mathbb{R} \\ \nabla \cdot u = 0, & \text{on } \mathbb{T}^3 \times \mathbb{R}, \end{cases}$$

where

- $u = u(x,t) = (u_1(x,t), u_2(x,t), u_3(x,t)) \in \mathbb{R}^3$ is the velocity field
- $p = p(x, t) \in \mathbb{R}$ is the pressure
- $x=(x_1,x_2,x_3)\in\mathbb{T}^3$ and $t\geq 0$
- \bullet ρ is the density of the fluid and ν is the kinematic viscosity
- $[(u \cdot \nabla)u]_k = u_1 \frac{\partial u_k}{\partial x_1} + u_2 \frac{\partial u_k}{\partial x_2} + u_3 \frac{\partial u_k}{\partial x_3}$, for k = 1, 2, 3
- f = f(x, t) is the external forcing term.

Goal: prove the existence (constructively) of periodic orbits

$$\begin{cases} \partial_t u + (u \cdot \nabla)u - \nu \Delta u + \frac{1}{\rho} \nabla p = f & \text{on } \mathbb{T}^3 \times \mathbb{R} \\ \hline \nabla \cdot u = 0 & \text{on } \mathbb{T}^3 \times \mathbb{R} \end{cases}$$

Does not lead to a diagonal dominant derivative in Fourier space

We consider the vorticity equation

$$\nabla \left\{ \begin{array}{l} \partial_t u + (u \cdot \nabla) u - \nu \Delta u + \frac{1}{\rho} \nabla p = f \quad \text{on } \mathbb{T}^3 \times \mathbb{R} \\ \hline \nabla \cdot u = 0 \quad \text{on } \mathbb{T}^3 \times \mathbb{R} \end{array} \right.$$

Let the vorticity
$$\omega \stackrel{\text{def}}{=} \nabla \times u$$
. Using $(u \cdot \nabla)u = \nabla \left(\frac{u^2}{2}\right) - u \times \omega$:

$$\nabla \times ((u \cdot \nabla)u) = \nabla \times (\omega \times u)$$
$$= (u \cdot \nabla)\omega - (\omega \cdot \nabla)u + \omega(\nabla \cdot u) - u(\nabla \cdot \omega),$$

and since u and ω are divergence free :

$$\nabla \times ((u \cdot \nabla)u) = (u \cdot \nabla)\omega - (\omega \cdot \nabla)u.$$

Let the vorticity $\omega \stackrel{\text{def}}{=} \nabla \times u$. Using $(u \cdot \nabla)u = \nabla \left(\frac{u^2}{2}\right) - u \times \omega$:

$$\nabla \times ((u \cdot \nabla)u) = \nabla \times (\omega \times u)$$

$$= (u \cdot \nabla)\omega - (\omega \cdot \nabla)u + \omega(\nabla \cdot u) - u(\nabla \cdot \omega),$$

and since u and ω are divergence free :

$$\nabla \times ((u \cdot \nabla)u) = (u \cdot \nabla)\omega - (\omega \cdot \nabla)u.$$

The vorticity equation is then given by

$$(\partial_t \omega + (u \cdot \nabla) \omega - (\omega \cdot \nabla) u - \nu \Delta \omega = g) \text{ on } \mathbb{T}^3 \times \mathbb{R},$$

where $g \stackrel{\text{def}}{=} \nabla \times f$.

$$\partial_t \omega + \underbrace{(u \cdot \nabla) \omega - (\omega \cdot \nabla) u}_{\text{still depends on the velocity}} - \nu \Delta \omega = g$$

We express u in term of ω by solving

$$\begin{cases} \nabla \times u = \omega \\ \nabla \cdot u = 0. \end{cases}$$

Applying a curl to the first equation, and using that $\nabla \cdot u = 0$, we get

$$-\Delta u = \nabla \times \omega,$$

and so

$$u = -\Delta^{-1}\nabla \times \omega.$$

$$(\Delta^{-1}\nabla \times \omega) \cdot \nabla \omega + (\omega \cdot \nabla) (\Delta^{-1}\nabla \times \omega) = g$$

diagonal dominant linear part in Fourier space

$$\partial_t \omega - \nu \Delta \omega - \left(\left(\Delta^{-1} \nabla \times \omega \right) \cdot \nabla \right) \omega + \left(\omega \cdot \nabla \right) \left(\Delta^{-1} \nabla \times \omega \right) = g$$

'nonlinear terms

$$\partial_t \omega - \nu \Delta \omega - \left(\left(\Delta^{-1} \nabla \times \omega \right) \cdot \nabla \right) \omega + \left(\omega \cdot \nabla \right) \left(\Delta^{-1} \nabla \times \omega \right) = g$$

Describes the "dynamics" of the vorticity as time evolves

$$\partial_t \omega - \nu \Delta \omega - \left(\left(\Delta^{-1} \nabla \times \omega \right) \cdot \nabla \right) \omega + \left(\omega \cdot \nabla \right) \left(\Delta^{-1} \nabla \times \omega \right) = g$$

Plugging the space-time expansion $\omega(x,t)=\sum_{n=(\tilde{n},n_4)\in\mathbb{Z}^4}\omega_ne^{i(\tilde{n}\cdot x+n_4\Omega t)}$ in the

vorticity equation leads to $F(W) = (F_n(W))_{n \in \mathbb{Z}^4} = 0$, where

$$F_n(W) = \begin{cases} \omega_0, & n = 0 \\ i\Omega n_4 + \nu \tilde{n}^2)\omega_n + i \left[M\omega \cdot \left(\tilde{D} \otimes \omega \right) \right]_n \\ -i \left[\omega \cdot \left(\tilde{D} \otimes M\omega \right) \right]_n - g_n, & n \neq 0 \end{cases}$$

with
$$W\stackrel{\mathrm{def}}{=} (\Omega, (\omega_n)_{n\in\mathbb{Z}^4})$$
, $M\omega=(M_n\omega_n)_{n\in\mathbb{Z}^4}$ and

leads to a diagonal dominant derivative

$$M_n \stackrel{\text{def}}{=} \begin{cases} \frac{i}{\tilde{n}^2} \begin{pmatrix} 0 & -n_3 & n_2 \\ n_3 & 0 & -n_1 \\ -n_2 & n_1 & 0 \end{pmatrix} & \tilde{n} \neq 0, \\ 0 & \tilde{n} = 0. & u = -\Delta^{-1} \nabla \times \omega \end{cases}$$

$$\partial_t \omega - \nu \Delta \omega - \left(\left(\Delta^{-1} \nabla \times \omega \right) \cdot \nabla \right) \omega + \left(\omega \cdot \nabla \right) \left(\Delta^{-1} \nabla \times \omega \right) = g$$

The periodic orbits need to be isolated fixed points

To eliminate arbitrary time shift, we impose a Poincaré phase condition.

$$\partial_t \omega - \nu \Delta \omega - \left(\left(\Delta^{-1} \nabla \times \omega \right) \cdot \nabla \right) \omega + \left(\omega \cdot \nabla \right) \left(\Delta^{-1} \nabla \times \omega \right) = g$$

The periodic orbits need to be isolated fixed points

To eliminate arbitrary time shift, we impose a Poincaré phase condition.

Looking for periodic orbits of the vorticity equation boils down to solve

$$\mathcal{F}(W) = \begin{pmatrix} F_*(W) \\ (F_n(W))_{n \in \mathbb{Z}^4} \end{pmatrix} = 0, \qquad W \stackrel{\text{def}}{=} \begin{pmatrix} \Omega \\ (\omega_n)_{n \in \mathbb{Z}^4} \end{pmatrix}.$$

we solve using computer-assisted analysis

Lemma : Assume that the external forcing term f does not depend on time, that $\mathcal{F}(W)=0$ and that $\nabla\cdot\omega=0$. Let $u\stackrel{\mathrm{def}}{=}M\omega$. Then there exists a pressure term p such that (u,p) is a $\frac{2\pi}{\Omega}$ -periodic solution of the forced incompressible Navier-Stokes equations on the 3D torus \mathbb{T}^3

$$\begin{cases} \partial_t u + (u \cdot \nabla)u - \nu \Delta u + \frac{1}{\rho} \nabla p = f, & \text{on } \mathbb{T}^3 \times \mathbb{R} \\ \nabla \cdot u = 0, & \text{on } \mathbb{T}^3 \times \mathbb{R}. \end{cases}$$

A general nonlinear problem

$$\mathcal{F}(x) = 0$$

 \bullet^{x_1}

to solve in a Banach space

 x_3

 $\bullet x_2$

 \bullet^{x_4}

 x_6

 Δx_5

 \mathcal{X}_7

A general nonlinear problem

$$\mathcal{F}(x) = 0$$

to solve in a Banach space

1. Let \bar{x} a numerical approximation of $\mathcal{F}(x) = 0$ in X computed using a finite dimensional reduction.

- 1. Let \bar{x} a numerical approximation of $\mathcal{F}(x) = 0$ in X computed using a finite dimensional reduction.
- 2. Construct with the help of the computer a linear operator A that is an approximate inverse of $D\mathcal{F}(\bar{x})$.

- 1. Let \bar{x} a numerical approximation of $\mathcal{F}(x) = 0$ in X computed using a finite dimensional reduction.
- 2. Construct with the help of the computer a linear operator A that is an approximate inverse of $D\mathcal{F}(\bar{x})$.
- 3. Verify that A is an injective linear operator.

- I. Let \bar{x} a numerical approximation of $\mathcal{F}(x) = 0$ in X computed using a finite dimensional reduction.
- 2. Construct with the help of the computer a linear operator A that is an approximate inverse of $D\mathcal{F}(\bar{x})$.
- 3. Verify that A is an injective linear operator.
- 4. Define $T(x) = x A\mathcal{F}(x)$ a Newton-like operator about the numerical approximation \bar{x} .

- 1. Let \bar{x} a numerical approximation of $\mathcal{F}(x) = 0$ in X computed using a finite dimensional reduction.
- 2. Construct with the help of the computer a linear operator A that is an approximate inverse of $D\mathcal{F}(\bar{x})$.
- 3. Verify that A is an injective linear operator.
- 4. Define $T(x) = x A\mathcal{F}(x)$ a Newton-like operator about the numerical approximation \bar{x} .
- 5. Consider $B_{\bar{x}}(r) \subset X$ the closed ball of radius r centered at \bar{x} .

- 1. Let \bar{x} a numerical approximation of $\mathcal{F}(x) = 0$ in X computed using a finite dimensional reduction.
- 2. Construct with the help of the computer a linear operator A that is an approximate inverse of $D\mathcal{F}(\bar{x})$.
- 3. Verify that A is an injective linear operator.
- 4. Define $T(x) = x A\mathcal{F}(x)$ a Newton-like operator about the numerical approximation \bar{x} .
- 5. Consider $B_{\bar{x}}(r) \subset X$ the closed ball of radius r centered at \bar{x} .
- 6. Find r > 0 such that $T : B_{\bar{x}}(r) \to B_{\bar{x}}(r)$ is a contraction mapping (tool : radii polynomials).

A Newton-Kantorovich type argument

Theorem : Let $T:X\to X$ defined by $T(x)=x-A\mathcal{F}(x)$ with $T\in C^1(X)$. Let r>0 and consider bounds ε and $\kappa=\kappa(r)$ satisfying

$$||T(\bar{x}) - \bar{x}||_{X} = ||A\mathcal{F}(\bar{x})||_{X} \le \varepsilon$$

$$\sup_{w \in B_{\bar{x}}(r)} ||DT(w)||_{X} = \sup_{w \in B_{\bar{x}}(r)} ||I - A \cdot D\mathcal{F}(w)||_{X} \le \kappa(r).$$

lf

$$p(r) \stackrel{ ext{def}}{=} \varepsilon + r\kappa(r) - r < 0$$
 (radii polynomial)

then $T:B_{\bar{x}}(r)\to B_{\bar{x}}(r)$ is a contraction with Lipschitz constant $\kappa(r)<1$. Moreover A is injective and therefore $\mathcal{F}=0$ has a unique solution in $B_{\bar{x}}(r)$.

A Newton-Kantorovich type argument

Theorem : Let $T:X\to X$ defined by $T(x)=x-A\mathcal{F}(x)$ with $T\in C^1(X)$. Let r>0 and consider bounds ε and $\kappa=\kappa(r)$ satisfying

$$||T(\bar{x}) - \bar{x}||_{X} = ||A\mathcal{F}(\bar{x})||_{X} \le \varepsilon$$

$$\sup_{w \in B_{\bar{x}}(r)} ||DT(w)||_{X} = \sup_{w \in B_{\bar{x}}(r)} ||I - A \cdot D\mathcal{F}(w)||_{X} \le \kappa(r).$$

lf

$$p(r) \stackrel{ ext{def}}{=} \varepsilon + r\kappa(r) - r < 0$$
 (radii polynomial)

then $T:B_{\bar{x}}(r)\to B_{\bar{x}}(r)$ is a contraction with Lipschitz constant $\kappa(r)<1$. Moreover A is injective and therefore $\mathcal{F}=0$ has a unique solution in $B_{\bar{x}}(r)$.

We consider the Banach space $\mathcal{X}_\eta=\mathbb{C} imes ig(\ell^1_\eta(\mathbb{C})ig)^3$ with the norm

$$\|W\|_{\mathcal{X}_{\eta}} = \max\left(|\Omega|, \max_{1 \leq l \leq 3} \|\omega^{(l)}\|_{\ell^{1}_{\eta}}\right),$$

where for a complex valued sequence $a \in \mathbb{C}^{\mathbb{Z}^4}$,

$$||a||_{\ell^1_\eta} = \sum_{n \in \mathbb{Z}^4} |a_n| \eta^{|n|_1}.$$

We consider the Banach space $\mathcal{X}_\eta=\mathbb{C} imes ig(\ell^1_\eta(\mathbb{C})ig)^3$ with the norm

$$\|W\|_{\mathcal{X}_{\eta}} = \max\left(|\Omega|, \max_{1 \leq l \leq 3} \|\omega^{(l)}\|_{\ell^{1}_{\eta}}\right),$$

where for a complex valued sequence $a \in \mathbb{C}^{\mathbb{Z}^4}$,

$$||a||_{\ell^1_\eta} = \sum_{n \in \mathbb{Z}^4} |a_n| \eta^{|n|_1}.$$

We solve the problem $\mathcal{F}(W)=0$ in the subspace of \mathcal{X}_η of divergence free sequences

$$\mathcal{X}_{\eta}^{div} \stackrel{\text{def}}{=} \{ W \in X_{\eta}, \ \nabla \cdot \omega = 0 \}.$$

$$D\mathcal{F}(\bar{W}) = \begin{bmatrix} D\mathcal{F}^{(m)}(\bar{W}) + \mathcal{E} & * & \\ & & * & \\ & & & \\ &$$

$$\mathcal{F}_n(W) = \mu_n \omega_n + i \left[M \omega \cdot \left(\tilde{D} \otimes \omega \right) \right]_n - i \left[\omega \cdot \left(\tilde{D} \otimes M \omega \right) \right]_n - g_n, \qquad \mu_n \stackrel{\text{def}}{=} i \Omega n_4 + \nu \tilde{n}^2$$

$$\mathcal{F}_n(W) = \mu_n \omega_n + i \left[M \omega \cdot \left(\tilde{D} \otimes \omega \right) \right]_n - i \left[\omega \cdot \left(\tilde{D} \otimes M \omega \right) \right]_n - g_n, \qquad \mu_n \stackrel{\text{def}}{=} i \Omega n_4 + \nu \tilde{n}^2$$

$$A_m \approx D\mathcal{F}^{(m)}(\bar{W})^{-1}$$

 $\mu_n \stackrel{\text{\tiny def}}{=} i\Omega n_4 + \nu \tilde{n}^2$

(Computer-assisted computation)

$$A_m \approx D\mathcal{F}^{(m)}(\bar{W})^{-1}$$

$$\mu_n \stackrel{\text{def}}{=} i\Omega n_4 + \nu \tilde{n}^2$$

(Computer-assisted computation)

Final step: prove that $T(W) = W - A\mathcal{F}(W)$ is a contraction on $B_r(\overline{W})$.

Using the symmetries to reduce the dimension

The equation

$$F_n(W) = \begin{cases} \omega_0, & n = 0\\ (i\Omega n_4 + \nu \tilde{n}^2)\omega_n + i \left[M\omega \cdot \left(\tilde{D} \otimes \omega \right) \right]_n \\ -i \left[\omega \cdot \left(\tilde{D} \otimes M\omega \right) \right]_n - g_n, & n \neq 0 \end{cases}$$

has a rather large group of symmetries, generated by the following elements.

- Reflection in the x-direction: $S_x(\omega_n) = \left(\omega_{(-n_x,n_y,n_z)}^{(x)}, -\omega_{(-n_x,n_y,n_z)}^{(y)}, -\omega_{(-n_x,n_y,n_z)}^{(z)}, -\omega_{(-n_x,n_y,n_z)}^{(z)}\right)$.
- Reflection in the y-direction: $S_y(\omega_n) = \left(-\omega_{(n_x,-n_y,n_z)}^{(x)},\omega_{(n_x,-n_y,n_z)}^{(y)},-\omega_{(n_x,-n_y,n_z)}^{(z)}\right)$.
- Reflection in the z-direction : $S_z(\omega_n) = \left(-\omega_{(n_x,n_y,-n_z)}^{(x)}, -\omega_{(n_x,n_y,-n_z)}^{(y)}, \omega_{(n_x,n_y,-n_z)}^{(z)}\right)$.
- Translation over $d=\frac{2\pi}{l}$ in the vertical direction : $T_l(\omega_n)=\left(e^{\frac{2i\pi}{l}}\right)^{n_z}\omega_n$.
- Translation over $s=\frac{\tau}{l}$ in time (where τ is the period) : $P_l(\omega_n)=\left(e^{\frac{2i\pi}{l}}\right)^{n_t}\omega_n$.
- A shift over π in both the x and y directions $D(\omega_n) = (-1)^{n_x + n_y} \omega_n$.
- Rotation about the axis x=y=0 over $\pi/2$ followed by a shift over π in the x-direction : $R(\omega_n)=(-1)^{n_y}(-\omega_{(-n_y,n_x,n_z)}^{(y)},\omega_{(-n_y,n_x,n_z)}^{(x)},\omega_{(-n_y,n_x,n_z)}^{(z)}).$

Result: a 2D periodic orbit in the Navier-Stokes equations

$$\begin{cases} \partial_t u + (u \cdot \nabla)u - \nu \Delta u + \frac{1}{\rho} \nabla p = f & \text{on } \mathbb{T}^3 \times \mathbb{R} \\ \nabla \cdot u = 0 & \text{on } \mathbb{T}^3 \times \mathbb{R} \end{cases}$$

$$f(x_1, x_2, x_3) = \begin{pmatrix} -\sin(x_1)\cos(x_2)/2\\ \cos(x_1)\sin(x_2)/2\\ 0 \end{pmatrix}$$

$$(N_x, N_y, N_z, N_t) = (17, 17, 0, 9)$$

 $n = 12803$

$$\nu = \frac{\sqrt{8\pi}}{Re} \approx 0.285$$

3 days computation with INTLAB (MATLAB) on an Apple MacBook Pro

Isosurfaces of the vertical vorticity $\omega_3 = \partial_{x_1} u_2 - \partial_{x_2} u_1$ (the last component of $\omega = \nabla \times u$). For the forcing function g, the isosurfaces would be perfectly cylindrical, equal in size and stationary. Red and green indicate positive and negative values for the isosurfaces (at about 80% of the maximal value in each frame). The tubular structures represent vortex tubes, with anticlockwise (green) and clockwise (red) rotational motion around them.

Fully 3D periodic orbits in the Navier-Stokes equations?

Isosurfaces of the vertical vorticity $\omega_3 = \partial_{x_1} u_2 - \partial_{x_2} u_1$ (the last component of $\omega = \nabla \times u$). For the forcing function g, the isosurfaces would be perfectly cylindrical, equal in size and stationary. Red and green indicate positive and negative values for the isosurfaces (at about 80% of the maximal value in each frame). The tubular structures represent vortex tubes, with anticlockwise (green) and clockwise (red) rotational motion around them.

Thanks to my collaborators

J.B. van den Berg VU Amsterdam

Maxime Breden ENS / U. Laval

Lennaert van Veen UOIT

