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The incompressible Navier-Stokes equations on the 3D torus T* are given by
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where
o u=u(x,t)=(u(x,t),us(x,t),us(x,t)) € R is the velocity field
e p=p(x,t) € Ris the pressure
o v = (11,T9,23) € TPand t > 0
e p is the density of the fluid and v is the kinematic viscosity

o 9 5
o [(u-V)u], = ulﬁ—;”; + “28_2 + ugﬁ—;”;, for k=1.2.3

o f = f(x,t) is the external forcing term.

Goal: prove the existence (constructively) of periodic orbits



Periodic orbits in the 3D Navier-Stokes equations
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ou+ (u-Viu—vAu+-Vp=f onT’ xR
p

}V‘U:@ on T® x R

Does not lead to a diagonal dominant derivative in Fourier space

ﬁ We consider the vorticity equation

1
8tu+(u-V)u—yAu+;Vp:f on T® x R

V

(V-u:()) on T® x R

0
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Let the vorticity w = V X w. Using (u- V)u =V (%) — U X W :

VX ((u-Vu) =V x (wxu)
=(u-V)wo—(w-V)utw(V-u)—u(V-w),

and since u and w are divergence free :

VX(((u-Vu)=(u - Viw—(w-V)u.
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2

Let the vorticity w = V X w. Using (u- V)u =V (%) — U X W :

VX ((u-Vu) =V x (wxu)
=(u-V)wo—(w-V)utw(V-u)—u(V-w),

and since u and w are divergence free :
VX((u-Vu=u-Vw-—(w-V)u.
The vorticity equation is then given by

(athr(u-V)w—(w-V)u—VAw:g)onT?’XR,

where ¢ = V x f.



Periodic orbits in the 3D Navier-Stokes equations

atw—l-@u-V)w—(w-V)u]— VAW = g

still depends on the velocity
We express 1 in term of w by solving

(qu:w
V- -u=020.

\

Applying a curl to the first equation, and using that V - u = 0, we get
—Au =V X w,

and so

u=—-A"V x w.



Periodic orbits in the vorticitz eguation

@tw = VA@— ((A_lv X w) - V) w+ (w-V) (A_lv X w) =g I

diagonal dominant linear part in Fourier space
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I Orw — VAW —(((A—lv X w) - V) w+ (w-V) (A_lv X wD: g I

nonlinear terms



Periodic orbits in the vorticitz eguation

@(«U—VACU—((A_lVXw)-V)w+(w-V)(A‘1wa):g I

Describes the “dynamics’ of the vorticity as time evolves



Periodic orbits in the vorticitz eguation

@(«U—VACU—((A_lew)-V)w+(w-V)(A‘1wa):g I

Plugging the space-time expansion w(x,t) = Z wy e TR g the
n=(n,nq)cZ*
vorticity equation leads to F'(W) = (F,,(W)),czs = 0, where
wWo, n=~0
— Gn, TN 7& 0

ptateni e VA B nl) n70,
n —T9 T 0 y 5
L0 =0 (U, = —-A""V X w)




Periodic orbits in the vorticitz eguation

atw—VAw—((A_1V><w)-V)er(w-V)(A_lew):g I

The periodic orbits need to be isolated fixed points
To eliminate arbitrary time shift, we impose a Poincaré phase condition.

F,=20
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The periodic orbits need to be isolated fixed points
To eliminate arbitrary time shift, we impose a Poincaré phase condition.
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Periodic orbits in the vorticitz eguation

Looking for periodic orbits of the vorticity equation boils down to solve

Fon= () ) =) we(ul)
\

we solve using computer-assisted analysis

Lemma : Assume that the external forcing term f does not depend
on time, that F (W) = 0 and that V - w = 0. Letu = Muw. Then there

exists a pressure term p such that (u, p) is a 2= o -periodic solution of
the forced incompressible Navier-Stokes equatlons on the 3D torus T°

1
Ou+ (u-Vu—vAu+-Vp=f onT’ xR
P

V-u=0, onT’xR.



A general nonlinear problem

to solve in a Banach space
]:(x) =0 x1
y X
L3
®
[ M0y
L4
X
° 6
L5
® X
7
®

Most of the time impossible to compute exactly !



A general nonlinear problem

to solve in a Banach space
F(x)=0 P

O X
O

O
O O

Alternative: find small balls in which it is demonstrated (in a
mathematically rigorous sense) that a unique solution exists.



How to find these small isolating balls ?

|. Let z a numerical approximation of F(x) =0in X
computed using a finite dimensional reduction.
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How to find these small isolating balls ?

. Let  a numerical approximation of F(x) =0in X
computed using a finite dimensional reduction.

. Construct with the help of the computer a linear
operator A that is an approximate inverse of D F ().

. Verify that A is an injective linear operator.

. Define T'(x) = v — AF(x)a Newton-like operator
about the numerical approximation .

. Consider Bz(r) C X the closed ball of radius r
centered at T.

. Find r > O such that T': Bz(r) — Bz(r) is a
contraction mapping (tool : radii polynomials).



A Newton-Kantorovich type argument

Theorem: Let T : X — X defined by T'(z) = x — AF(z) with T € C'(X).
Let > 0 and consider bounds ¢ and k = k() satisfying

IT(z) —z||lx = [[AF(z)|lx <€
sup |[DT(w)|lx = sup [[[—A DF(w)|x < &(r).
we Bz (r) weBz(r)

If

p(”l“) = e + 7“/43(7“) — r < 0 (radii polynomial)

then T': Bz(r) — Bgz(r) is a contraction with Lipschitz constant x(r) < 1.
Moreover A is injective and therefore F = 0 has a unique solution in Bz ().

p(r)
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Periodic orbits in the vorticitz eguation

We consider the Banach space &, = C x (&17((3))3 with the norm

_ (1)
W, = max (192, max [, )

4
where for a complex valued sequence a € CZ',

lall = 3 laaly™.

neZ4



Periodic orbits in the vorticitz eguation

We consider the Banach space &, = C x (&17((@))3 with the norm

_ (1)
W, = max (192, max [, )

4
where for a complex valued sequence a € CZ',

lall = 3 laaly™.

neZ4

We solve the problem F (W) = 0 in the subspace of X, of divergence
free sequences |
X4 = (W e X,, V-w=0}.



The aEproximate inverse A

DF(W)

DF™ (W)

Q

_l_

™




The aEproximate inverse A

DF™ (W) 0

2

DF(W)

def

Ly, = 1Q2n4+1vN0



The aEproximate inverse A

2

DF(W)™

A, ()
0
O T
0
Am ~ Df(m)(W)_l [y = i Qnq+vn?

(Computer-assisted computation)
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The aEproximate inverse A

Am 0

Final step : prove that T' (W) = W — AJF (W) is a contraction on B, (V).




Using the symmetries to reduce the dimension

The equation

)
wo, n=>0

F,(W) = { (iQn4 + vii*)w, + 1 [Mw- ([)@w)}n
—1 [w-(D@Mu})} —gn, NF0

n

\

has a rather large group of symmetries, generated by the following elements.

— Reflection in the z-direction: S, (w,) = (w((f) () —w) ) .

Nz ,My,Nz)’ o (—nz,ny,nz)’ (—nz,ny,nz)
o . e (@ (y) ()
Reflection in the y-direction : .S, (w,,) Wi~y m2)> ey 1217 % mamyms) ) -
_ onin the »-direction _ (@ LW e
Reflection in the z-direction: S, (w,) = Wiy} P ey, ) Clmamyn) )

— Translation over d = 27” in the vertical direction : Tj(w,,) = (e I ) W, -

— Translation over s = 7 in time (where 7 is the period) : P(w,) = (e z ) Wi,

— A shift over 7 in both the x and y directions D(w,,) = (—1)""vw,.

— Rotation about the axis * = y = 0 over /2 followed by a shift over 7 in the
x-direction : R(w,) = (—1)™ (—w¥ () (<) ).

(_ny7n$7nz) ! (_nyﬂnﬂhnz) ! w(—ny,nx,nz)



Result: a 2D periodic orbit in the Navier-Stokes equations

1
ou+ (u-Viu—vAu+-Vp=f onT’ xR
P

V-u=0 onT’ xR

4.4 ' ' ' : | — Sin(il?l) C05(372)/2
/ (1,22, 23) = | cos(x1)sin(zs)/2
| 0
4.2} | |
I
'8 : 3D
= 4 2D : '
o | (NxaNyaszNt) — (177 1770’9)
: n = 12803
2al ® Re~17.59 :
|
eq !
i ) — V8w ~ (0.285

16 17 18 19 20 Re
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Periodic orbits in the 2D Navier-Stokes equations

3 days computation with INTLAB (MATLAB)
on an Apple MacBook Pro
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Isosurfaces of the vertical vorticity ws = 0., us —0,,u; (the last component of w = V X u).
For the forcing function g, the isosurfaces would be perfectly cylindrical, equal in size and
stationary. Red and green indicate positive and negative values for the isosurfaces (at about
80% of the maximal value in each frame). The tubular structures represent vortex tubes,
with anticlockwise (green) and clockwise (red) rotational motion around them.



Fully 3D periodic orbits in the Navier-Stokes equations?
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Isosurfaces of the vertical vorticity ws = 0., us —0,,u; (the last component of w = V X u).
For the forcing function g, the isosurfaces would be perfectly cylindrical, equal in size and
stationary. Red and green indicate positive and negative values for the isosurfaces (at about
80% of the maximal value in each frame). The tubular structures represent vortex tubes,
with anticlockwise (green) and clockwise (red) rotational motion around them.
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