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• Problem: Electron emitters are fundamentally non-deterministic.

• Solution from (quantum) optics: Single Photon Sources

• How can stochastic fluctuations in electron emission be tackled? 

TOWARDS NON-STOCHASTIC ELECTRON SOURCES
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Figure Courtesy:https://en.wikipedia.org/wiki/Spontaneous_parametric_down-conversion

Stochastic single photons
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Measure one photon



STATE OF THE ART ELECTRON SOURCES FOR MICROSCOPY
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RH et al., Appl. Phys. B 129, 40 (2023)

Figures of merit for electron emitters

• Beam Brightness: 𝐵𝐵 = 𝐼𝐼
4π𝟐𝟐𝜀𝜀𝑛𝑛2

• Spectral resolution Δ𝐸𝐸
Nanotip field emitters

Nanotip emitter
Electron in tip

Tunneling barrier

Free electron

Cold field emission

Energy broadening:

• Emission process

• Beam dynamics



TEMPORAL DISTRIBUTION OF ELECTRONS IN A BEAM
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Continuous electron beam
Time

Zoom in

Random electron timing distributions1 s2



TEMPORAL DISTRIBUTION OF ELECTRONS IN A BEAM
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• Stochastic Coulomb forces

• Börsch (longitudinal) effect

• Löffler (transverse) effectFCoulomb



• Controlling stochastic Coulomb interaction by
temporal gating

• Coulomb-correlated few-electron states

• Applications of Coulomb-correlated electrons

OUTLINE
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FIELD EMITTER-BASED PULSED ELECTRON SOURCES
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A. Feist et al., Ultramicroscopy 176 (2017)

Laser-driven field emission from a Schottky or cold field emitter

For cold field emitters: RH et al., Appl. Phys. B 129, 40 (2023)

 First, suppress continuous emission by 
reducing filament current / extraction voltage 

 Localized single-photon photoemission from the 
tip apex



OUR ULTRAFAST TRANSMISSION ELECTRON MICROSCOPE
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 peak brightness:  Bpeak = 1.7·1013 A/m²sr

High brightness Electron pulses

electron 
hologram

A. Feist et al., Ultramicroscopy 176 (2017)

pump

probe

Combining two experimental techniques:
 State-of-the-art electron microscopy
 Pump-probe spectroscopy with femtosecond 

temporal resolution

local diffractive probing
crystal lattice, temperature

electron spectroscopy
optical near-fields, temperature,

valence electronic structure

2 
µm

phase-sensitive imaging 
E/B fields, strain

dark field imaging
structural phase 

strain

N. Rubiano da Silva et al., Phys. Rev. X 8 
(2018).
M. Möller et al., Commun. Phys 3 (2020).

T. Danz et al., Science 371 (2021).
T. Domröse et al., Nat. Mat. 22 (2023).

A. Feist et al., Struct. Dyn. 5 (2018).
N. Bach et al., Struct. Dyn. 9 (2022).

M. Liebtrau et al., Light Sci Appl 10 (2021).
J. H. Gaida et al., Nat. Photon. (2024).



TEMPORALLY GATED ELECTRON BEAM
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Continuous Electron Beam Time

Femtosecond laser

Temporally Gated Electron Pulses

Temporal gating enables control of electron timing



PHOTOEMISSION OF MULTIPLE ELECTRONS
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Time

Photoemission laser

Singlets DoubletsTriplets

Generation of n-states with predictive Coulomb interactions

Quadruplets



• Controlling stochastic Coulomb interaction by
temporal gating

• Coulomb-correlated few-electron states

• Applications of Coulomb-correlated electrons

OUTLINE
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LASER-TRIGGERED ELECTRON MICROSCOPY
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Imaging 
energy filter

Objective 
lenses

Laser pulse
Power scalingn-event classification

Laser pulse train

Trepetition  ≫ Time resolution detector

Electron pulse train

W(100) / ZrO
(Schottky emitter)

suppressor

extractor

A. Feist et al., Ultramicroscopy, 176 (2017)

R. Haindl et al., Nat. Phys. (2023), see also for pair correlations from free-standing nanotips: S. Meier, J. Heimerl, and P. Hommelhoff, Nat. Phys. (2023)



ACCELERATION-ENHANCED COULOMB INTERACTION
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FAcc

• Center of mass frame

• Two particle energy difference: ∆𝐸𝐸 = 𝐸𝐸C

• Very small on 100 nm length scale: ~10 meV

• Laboratory frame

• Momentary change of energy difference: 𝑃𝑃(t) ∝ �v(t) FC(t)

• Integrated energy difference: ∆𝐸𝐸 = ∫ 𝑑𝑑𝑑𝑑 𝑃𝑃(𝑡𝑡)

R. Haindl et al., Nat. Phys. (2023)

• This is a quasi-one-dimensional system!

• Sizeable Coulomb interaction is possible even after 
substantial electron travel time!



E - E0 (eV) E - E (eV) E - E (eV) E - E (eV)

SPECTRAL SHAPE OF ELECTRON NUMBER STATES
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event-averaged n=1 n=2 n=3 n=4

Characteristic peak structure for electron number statesImaging 
energy filter

Objective 
lenses

Laser pulse

E - E0 (eV)

R. Haindl et al., Nat. Phys. (2023)



n=3 energy pair histogram

ENERGETIC CORRELATION OF ELECTRON NUMBER STATES
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R. Haindl et al., Nat. Phys. (2023)



TRANSVERSE CHARACTERIZATION
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Few-electron states exhibit…
 … n-integer virtual source size increase 
 … n-integer virtual source size shift
 … transverse correlations

R. Haindl et al., Nat. Phys. (2023)



• Controlling stochastic Coulomb interaction by
temporal gating

• Coulomb-correlated few-electron states

• Applications of Coulomb-correlated electrons

OUTLINE
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Antibunching of few-electron states

CONTROL OVER THE STATISTICS OF AN ELECTRON BEAM
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R. Haindl et al., Nat. Phys. (2023)
R. Haindl et al., Nat. Phys. (2023)

See also for antibunching: S. Keramati et al., PRL 127, 180602 (2021)

Spatial filtering of electron beams

Suppression of higher order electron states
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STATISTICAL CONTROL VIA ENERGY FILTERING
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Two-electron state as a source of heralded electrons

++

R. Haindl et al., Nat. Phys. (2023)

Suppression of multi-electron states



STATISTICAL CONTROL APPLICATOINS
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Precise dose-counting

Electron detector Delicate sample A. Feist, C. Ropers, and R. Haindl, “Electron Beam Apparatus and Method for 
Generating a Pulsed Electron Beam and Applications Thereof,” (WO2024061773)

Novel Electron Source Concept:

• pulsed electron source
• energy dispersive filter
• fast (realtime) electronics

Shot-noise-reduced imaging and lithography



Armin Feist Till Domröse Marcel Möller John Gaida Sergey Yalunin Claus RopersLink to publication

Summary & Outlook

• Electron number states with characteristic spectral 
and spatial correlations

• Applications of correlated few-electron states in 
correlated probing, imaging and lithography



MERGING INTEGRATED PHOTONICS AND ELECTRON BEAMS
POSTER BY ARMIN FEIST
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Armin 
Feist

Generation of Correlated Electron-Photon Pairs

In-situ Metrology of Integrated Photonic DevicesLaser-Driven Electron Optics 
& GHz-PHz Beam Modulations 

 nanometer & µeV resolution using e-beams

 heralded single electrons & enhanced imaging
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