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Bayesian inference

I Quantity of interest X (random variable)

I Data Y (random variable)

Bayes’ theorem updates our degree of certainty given:

1 Data/observations

2 Physical models

I Prior distribution: πX models our degree of certainty about X

I Likelihood distribution: πY |X quantifies model-data mismatch

I Posterior distribution: πX |Y updates the prior given Y

I Bayes’ rule relates the densities using the law of total probability

π(x |y) ∝ π(x)π(y |x)
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Motivating problem: state space modeling

Static parameter estimation—

I Given: data y1:T with an unobservable state z1:T
I We want to characterize the distribution over static parameters x |y1:T

I x is low-dimensional

x Marginal
of interest

State
(Unobserved)

z1 z2 z3 . . . zT

Observedy1 y2 y3 . . . yT
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Marginalize state variables

x Marginal
of interest

State
(Unobserved)

z1 z2 z3 . . . zT

Observedy1 y2 y3 . . . yT

Marginalizing avoids characterizing the joint density over [x , z1:T ]

π(x |y1:T )︸ ︷︷ ︸
Posterior

∝ π(x)︸︷︷︸
Prior

∫
π(z1:T , y1:T |x) dz︸ ︷︷ ︸

Likelihood
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Partitioned space

Partition parameter space:

1 Coordinates characterized by MCMC (x)

2 Coordinates to be “marginalized away” (z1:T )

I Model evaluations are (even more) computationally expensive

I We only have noisy estimates of the likelihood

π̂(y1:T |x) ≈
∫
π(z1:T , y1:T |x) dz
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Previous work

I Pseudo-marginal MCMC characterizes marginal distributions
Beaumont, 2010, Andrieu and Roberts, 2009

I Exploit the target density’s regularity to build a surrogate model
I Polynomial approximations Marzouk et al., 2007, Marzouk and Xiu, 2009

I Gaussian processes Rasmussen, 2006, Bernardo et al., 2008, Sacks et al., 1989, Santner et al., 2003

I Continual surrogate refinement asymptotically guarantees we
characterize the true target distribution Conrad et al., 2016
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Our contribution

I Trigger surrogate refinement using a specialized error indicator for
local polynomial approximations

I Derive an ideal refinement rate using a surrogate-bias and
MCMC-variance trade-off

I Build the surrogate model from noisy target density evaluations
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Local polynomial surrogates

I Given: n (potentially noisy) density evaluations at points {x (i)}ni=1

I Minimize the least squares error between π(x) and a degree p
polynomial π̆(x)

Conn, 2009, Stone, 1977, Kohler, 2002

π̆(x) = arg min
ρ(x)

n∑
i=1

(
ρ(x (i))− π(x (i))

)2
K (x (i), x)

I Locally supported kernel K (x ′, x) finds k nearest neighbors
I Note: this is NOT a Markov transition kernel

I Bk(x): smallest ball centered at x with k density evaluations

K (x ′, x) =

{
1 x ′ ∈ Bk(x)

0 otherwise
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Local polynomial surrogates

Build a local approximation in a ball around each point . . .
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Surrogate convergence

In the exact evaluation case, the surrogate π̆(x) approaches π(x) as:

1 The ball size ∆→ 0 (number of evaluations n→∞)

2 Λ-poisedness is maintained inside each ball

Large balls Small balls
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Recall: Markov chain Monte Carlo (MCMC)

Three step algorithm:

1 Propose x ′ ∼ qX (·|x (t))

2 Acceptance probability

α = min

(
1,

π(x ′)q(x (t)|x ′)
π(x (t))q(x ′|x (t))

)
3 Accept/reject

x (t+1) =

{
x ′ with probability α

x (t) else

I MCMC requires an expensive
density evaluation every step

I Computationally prohibative
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Local approximation MCMC

π̆(x) ≈ π(x) is a local polynomial approximation of the target density

Four step algorithm:

1 Possibly refine π̆(·) near x (t)

2 Propose x ′ ∼ qX (·|x (t))

3 Acceptance probability

α = min

(
1,

π̆(x ′)q(x (t)|x ′)
π̆(x (t))q(x ′|x (t))

)
4 Accept/reject

x (t+1) =

{
x ′ with probability α

x (t) else
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Refinement strategy

We devise a refinement strategy such that:

I Refinements cannot happen every MCMC step

I The expected number of refinements is infinite as t →∞

I The refinement frequency decays as t →∞

I We choose new points that maintain Λ-poisedness
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Over- versus under-refinement

I Two error sources after a finite number of MCMC steps:
1 MCMC variance (CLT: decays like 1/t)
2 Surrogate bias

I Frequent refinement ⇒ MCMC variance dominates error

I Infrequent refinement ⇒ surrogate bias dominates error

Over-refined Under-refined
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Bias-variance trade-off

I Assume the MCMC variance decays with the number of steps

[MCMC variance] ≤ CMCMCt−1

I The surrogate bias is bounded

[Surrogate bias] = |π̂(x)− π(x)| ≤ CSurrogateΛ̄∆p+1

I Balance MCMC variance with surrogate bias squared

CMCMCt−1 ∼ C 2
SurrogateΛ̄2∆2(p+1)
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Structural refinement strategy

Balance MCMC variance with surrogate bias squared

I Divide the chain into m levels

I Prescribe an error threshold γ(m) = γ0m−γ1 on each level
I γ0: initial error threshold
I γ1: error threshold decay rate

I Switch to level m + 1 when

CMCMCt−1m = γ0
2m−2γ1

I Since CMCMC is unknown

tm = ϕ1M2γ1

I Require γ1 > 0.5 so the length of each level tm − tm−1 grows
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Structural refinement

At x (t), refine the surrogate if:

1 The local error indicator is greater than the level’s threshold

∆p+1(x (t)) > γ0M−γ1

Red dots:

Exact density
evaluations

Purple line:

Local polynomial
approximation

Grey line:

Binned MCMC
samples
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Expected error (structural refinement)

I MCMC with exact evaluations is a lower bound for the expected error
I The expected error decays at the same rate as MCMC with exact

evaluations (γ1 > 0.5)
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Expected error (structural refinement)

I The expected number of refinements is the same (when γ1 > 0.5)
I When γ1 ≤ 0.5, the surrogate is underrefined

I The error is dominated by the structural bias
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Expected error (structural refinement)

I Efficiency improves with polynomial order
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Local polynomial surrogates

Consider situations with noisy evaluations of the target density
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Surrogate convergence (noisy density evaluations)

The expected surrogate E[π̆(x)] approaches π(x) as:

1 The ball size ∆→ 0 (number of evaluations n→∞)

2 Λ-poisedness is maintained inside each ball

Large balls Small balls

Replacing π(x) with π̆(x) within MCMC asymptotically characterizes the
target distribution Davis et al., in progress
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State space example: stochastic volatility

I Hyperparameters: [ν, φ, σ2] = g(x1, x2, x3)

I g is nonlinear transformation such that x ∼ N(0, I ) imples [ν, φ, σ2]
are sampled from Gamma distributions

Z1 ∼ N(ν, (1− φ2)−1) and Zt |Zt−1 ∼ N(ν + φ(Zt−1 − ν), σ2)

Yt ∼ N(0, exp (Zt))

x Marginal
of interest

State
(Unobserved)

z1 z2 z3 . . . zT

Observedy1 y2 y3 . . . yT
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Problem statement: stochastic volatility

I Given: data y1:T

I Define the target posterior marginal distribution

π(x |y1:T ) =

∫
π(x , z1:T |y1:T ) dz1:T

∝ π(x)︸︷︷︸
Prior

∫
π(y1:T |z1:T , x)π(z1:T |x) dz1:T︸ ︷︷ ︸

Marginal likelihood

I Estimate the marginal likelihood with importance sampling
I Choosing the biasing distribution is nontrivial!
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Stochastic volatility results: PM-MCMC
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Stochastic volatility results: LA-MCMC
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I Number of importance sampling estimates: ≈ 2.8× 103 � 2× 105
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Conclusions

I Building and refining a local polynomial approximations significantly
reduces computational expense

I An ideal refinement rate comes from a bias-variance trade-off between
surrogate model error and MCMC variance defines ideal

I We characterize distributions given noisy target density evaluations by
building an asymptotically exact surrogate
I e.g., posterior marginal distributions

I Code: MIT Uncertainty Quantification (MUQ) libraries

muq.mit.edu
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