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Problem statement

We want to characterize the distribution 7 using MCMC
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Problem statement

We want to characterize the distribution 7 using MCMC

Two problems:
@ The probability density function 7(x) is computationally expensive

@ Only noisy density evaluations are available 7(x) ~ m(x)
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Bayesian inference

> Quantity of interest X (random variable)
» Data Y (random variable)

Bayes' theorem updates our degree of certainty given:
@ Data/observations
@ Physical models
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Bayesian inference

> Quantity of interest X (random variable)
» Data Y (random variable)

Bayes' theorem updates our degree of certainty given:
@ Data/observations
@ Physical models

> Prior distribution: mx models our degree of certainty about X

> Likelihood distribution: 7y |x quantifies model-data mismatch

» Posterior distribution: mx|y updates the prior given Y

> Bayes’ rule relates the densities using the law of total probability

m(x|y) oc w(x)m(y[x)
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Motivating problem: state space modeling

Static parameter estimation—
> Given: data y;.7 with an unobservable state z;.1
> We want to characterize the distribution over static parameters x|y;.7

> x is low-dimensional

Marginal

of interest

2 (7 State
\12) - \i) (Unobserved)

W
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Marginalize state variables

Marginal
of interest

State
(Unobserved)

Marginalizing avoids characterizing the joint density over [x, z;.7]

r(xlya. 1) o< 7(x) / (21, v1.71x) dz
—_— —~~

Posterior Prior

/

Likelihood
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Partitioned space

Partition parameter space:
@ Coordinates characterized by MCMC (x)

@ Coordinates to be “marginalized away” (z1.7)

» Model evaluations are (even more) computationally expensive

> We only have noisy estimates of the likelihood

) ~ / (21 1.7 1) dz
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Previous work

> Pseudo-marginal MCMC characterizes marginal distributions
Beaumont, 2010, Andrieu and Roberts, 2009

> Exploit the target density's regularity to build a surrogate model

> Po|ynomia| apprOXimationS Marzouk et al., 2007, Marzouk and Xiu, 2009
> Gaussian ProCesses Rasmussen, 2006, Bernardo et al., 2008, Sacks et al., 1989, Santner et al., 2003

> Continual surrogate refinement asymptotically guarantees we
characterize the true target distribution conrad et a1, 2016
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Our contribution

> Trigger surrogate refinement using a specialized error indicator for
local polynomial approximations

> Derive an ideal refinement rate using a surrogate-bias and
MCMC-variance trade-off

> Build the surrogate model from noisy target density evaluations
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Local polynomial surrogates

> Given: n (potentially noisy) density evaluations at points {x()}7_,

» Minimize the least squares error between 7(x) and a degree p

polynomial 7(x)
Conn, 2009, Stone, 1977, Kohler, 2002

> Locally supported kernel K(x’, x) finds k nearest neighbors
> Note: this is NOT a Markov transition kernel

> Bi(x): smallest ball centered at x with k density evaluations

1 X' € Bk(x)
0 otherwise

K(x',x) = {
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Local polynomial surrogates

Build a local approximation in a ball around each point ...
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Surrogate convergence

In the exact evaluation case, the surrogate 7(x) approaches 7(x) as:
@ The ball size A — 0 (number of evaluations n — o)

Large balls Small balls
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Surrogate convergence

In the exact evaluation case, the surrogate 7(x) approaches 7(x) as:
@ The ball size A — 0 (number of evaluations n — o)

@ A-poisedness is maintained inside each ball

Poorly poised Well poised
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Recall: Markov chain Monte Carlo (MCMC)

Three step algorithm:
@ Propose x' ~ gx(-|x(®)
@ Acceptance probability

a = min (1 m(x")q(xV]x) >

T r(x(0)g(x'|x(1) V
Posterior Distribution

@ Accept/reject

(t41) _ x" with probability «
X - X(t) else Metropolis et al., 1953
Hastings, 1970

and variations . . .
Haario et al., 2006
Parno and Marzouk, 2014
Brooks et al., 2011
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Recall: Markov chain Monte Carlo (MCMC)

Three step algorithm:
@ Propose x' ~ gx(-|x(®)
@ Acceptance probability

a=min|1 7r(x’)q(xm|x’)
(<) q([x(0)

M

@ Accept/reject

Metropolis et al., 1953
Hastings, 1970

, . .
L(E41) X with probability a
x() else

and variations . . .
. . Haario et al., 2006
> MCMC reql‘“res an eXpenSlVe Parno and Marzouk, 2014

density evaluation every step Brooks et al., 2011

» Computationally prohibative
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Local approximation MCMC

7(x) = m(x) is a local polynomial approximation of the target density

Four step algorithm:
@ Possibly refine 7(-) near x(t)
@ Propose x' ~ gx(-[x(1)
@ Acceptance probability

B COLIESIED V
a=min | 1, F(x0)g(/[xO) Posterior Distribution

@ Accept/reject

/ . oy
L(E1) X with probability «
x(1) else
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Refinement strategy

We devise a refinement strategy such that:
> Refinements cannot happen every MCMC step
> The expected number of refinements is infinite as t — oo
> The refinement frequency decays as t — oo

> We choose new points that maintain A-poisedness
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Over- versus under-refinement

> Two error sources after a finite number of MCMC steps:

@ MCMC variance (CLT: decays like 1/t)
@ Surrogate bias

> Frequent refinement = MCMC variance dominates error

> Infrequent refinement = surrogate bias dominates error

i

Over-refined Under-refined
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Bias-variance trade-off

> Assume the MCMC variance decays with the number of steps

[MCMC variance] < Cuvcmct !

P> The surrogate bias is bounded

[Surrogate bias] = |#(x) — 7(x)| < Csurrogate NAPT?

> Balance MCMC variance with surrogate bias squared

1 2 72 A 2(p+1
Cvmemct™ ™ ~ CSurrogateA A ( )
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Structural refinement strategy

Balance MCMC variance with surrogate bias squared

» Divide the chain into m levels

> Prescribe an error threshold v(m) = vym~"" on each level

P ~p: initial error threshold
P ~1: error threshold decay rate

> Switch to level m+ 1 when
Cmemcty,t = 7o>m™27
> Since Cucmc is unknown
ty = cp1M271
> Require 71 > 0.5 so the length of each level t,, — t,,—1 grows
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Structural refinement

At x(9), refine the surrogate if:

@ The local error indicator is greater than the level’s threshold
APTH(x()) > AgM—

Red dots:

Exact density
evaluations

Purple line:

Local polynomial
approximation

Grey line:

Binned MCMC
samples
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Expected error (structural refinement)

> MCMC with exact evaluations is a lower bound for the expected error
> The expected error decays at the same rate as MCMC with exact
evaluations (y; > 0.5)
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Expected error (structural refinement)

» The expected number of refinements is the same (when y; > 0.5)
> When v; < 0.5, the surrogate is underrefined
> The error is dominated by the structural bias
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Expected error (structural refinement)

> Efficiency improves with polynomial order
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Local polynomial surrogates

Consider situations with noisy evaluations of the target density
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Surrogate convergence (noisy density evaluations)

The expected surrogate E[7(x)] approaches 7(x) as:
@ The ball size A — 0 (number of evaluations n — o0)

@ A-poisedness is maintained inside each ball

Large balls Small balls
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Surrogate convergence (noisy density evaluations)

The expected surrogate E[7(x)] approaches 7(x) as:
@ The ball size A — 0 (number of evaluations n — o0)

@ A-poisedness is maintained inside each ball

Large balls Small balls

Replacing 7m(x) with 7(x) within MCMC asymptotically characterizes the
tal’get distribution Davis et al., in progress
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State space example: stochastic volatility

» Hyperparameters: [v, &, 0°] = g(x1, x2, x3)
» g is nonlinear transformation such that x ~ N(0, /) imples [, ¢, 7]
are sampled from Gamma distributions

Z1 ~ N, (1-¢2)7Y) and Z|Zi—1 ~ N+ ¢(Zs—1 — 1), 0?)
Yt ~ N(O,exp (Zf))

Marginal
of interest

State
(Unobserved)
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Problem statement: stochastic volatility

> Given: data y;.1

> Define the target posterior marginal distribution
m(xlyrr) = /W(X,Zl:Tb/l:T) dzy.1

x 7T(X)/W(YI:T’ZI:T;X)T"(ZI:T‘X) dzi.T
—~

Prior ~~
Marginal likelihood

> Estimate the marginal likelihood with importance sampling
> Choosing the biasing distribution is nontrivial!
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Stochastic volatility results: PM-MCMC
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Stochastic volatility results: LA-MCMC

» Number of importance sampling estimates: ~ 2.8 x 103 < 2 x 10°
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Conclusions

> Building and refining a local polynomial approximations significantly
reduces computational expense

> An ideal refinement rate comes from a bias-variance trade-off between
surrogate model error and MCMC variance defines ideal

> We characterize distributions given noisy target density evaluations by
building an asymptotically exact surrogate
> e.g., posterior marginal distributions

» Code: MIT Uncertainty Quantification (MUQ) libraries

muqg.mit.edu
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