

Real-world Evaluation of Drivers with Glaucoma

Joanne Wood¹

¹School of Optometry & Vision Science, Queensland University of Technology, Brisbane, Australia;

Collaborators: Alex Black,¹ Kerry Mallon,¹ Ravi Thomas,^{2,3} Cynthia Owsley⁴

²Queensland Eye Institute, Brisbane, Australia; ³University of Queensland, Brisbane, Australia; ⁴Department of Ophthalmology, University of Alabama at Birmingham, Birmingham, AL, US

Conflict of Interest Disclosure

□ XI have no potential conflict of interest to disclose

□ I have the following potential conflict(s) of interest to report :

- □ Receipt of grants/research supports:
- □ Receipt of honoraria or consultation fees:
- □ Participation in a company sponsored speaker's bureau:
- □ Stock shareholder:
- □ Spouse/partner:
- □ Other support (please specify):

Glaucoma and Driving

- Glaucoma is characterised by visual field defects and contrast sensitivity loss
 - Functional impact on activities of daily living such as driving
 - Driving is important for maintaining independence^{1,2}
 - Cessation linked to isolation and depression
- Drivers with glaucoma regularly assessed to ensure that they meet the visual standards for driving
 - Conflicting evidence regarding the impact of glaucoma on driving ability and safety
 - Unclear whether visual licensing requirements predict the capacity for safe/unsafe driving in those with glaucoma

Assessing Fitness to Drive for commercial and private vehicle drivers

Glaucoma: Crash Risk

- Previous research: self-reported crashes
 - Drivers with severe glaucomatous field loss reported more crashes in the previous 10 yrs than controls (n=144 G; 157 C)¹
 - 25% of those with severe field loss (MD -10 dB or worse in the worse eye) reported MVC in past 10 years

Have you been involved in one or more traffic accident in the past ten years? yes/no

 No association between integrated binocular visual field (IVF) loss and crashes reported in the previous 5 yrs (n=247)²

Glaucoma: Crash Risk

FIGURE 1. Driver's view through the windshield and side windows of a vehicle; this view is the widest possible panoramic view from the driver vantage point as the driver's head turns from one side of the roadway to the other.

- Previous research: state-recorded crashes
 - Case-control study, drivers with glaucoma (n=48) were >6x more likely to crash than controls, strongest association with impaired selective attention (Useful Field of View)¹
 - At-fault crash rates
 - 6x higher with moderate/severe loss (AGIS scores) in worse eye (n=240)²
 - 2x higher with severe binocular PD impairment (n=438)³
 - 1.65x higher with severe loss in novel 'driving visual field' (n=206)⁴

Figure 1 The Esterman Visual Field Test (EVFT) grid superimposed over a road scene as seen from the driver's perspective (A), and an example of a clinical EVFT output (B). Test locations within the region covered by the car windscreen are coloured red: it can be seen that many points on the EVFT, especially in the inferior visual field, are irrelevant to the driving scene.

Glaucoma: Real-World Driving Performance

- On-road driving assessment
 - Useful to evaluate real-world driving performance, using standardised protocols and can explore which aspects of performance are impaired
- Previous on-road driving research: drivers with glaucoma demonstrate poorer performance:
 - Lane-keeping, scanning ability, anticipatory skills (n=10-27)^{1,2}
 - More driving instructor interventions (n=20)^{3,4}
- Underlying differences in performance poorly explained by standard clinical vision tests^{2,4}
 - These standard tests unlikely to capture the relevant visual requirements of driving
 - Potential compensation by increased visual scanning

Glaucoma and Open-Road Driving

- 75 older adults aged 65+ with a diagnosis of glaucoma and mild to moderate field loss (M=73.2 ± 6.0 yrs)
 - HFA 24-2 Mean Defect:
 - Better eye: -1.21 dB ± 4.90 (-23.24 3.99 dB)
 - Worse eye: -7.75 dB ± 8.47 (-31.00 2.10 dB)
- 70 age-matched drivers without glaucoma (M=72.6 ± 5.0 yrs)
- All participants licensed to drive and drove regularly
 - Mean days/week: 4.9 (glaucoma) vs 5.3 (controls)
- Vision testing battery:
 - Visual acuity, visual fields (binocular Esterman, monocular 24-2), contrast sensitivity (Pelli-Robson), motion sensitivity (moving dot RDK)

Driving Performance: Open-Road

- Driving Instructor and Occupational Therapist (masked)
- Dual brake vehicle
- Standard route (19 km)
 - Car park to more complex traffic situations
 - City and suburban streets
 - 148 locations at which driving ability rated
- Quantitative driving scores
 - Types of driving errors (eg. lane-keeping, observation, merging) and driving situations (eg. give-way, roundabouts) where errors made
 - Number of critical errors (CE) requiring driving instructor interventions
 - Global driver safety rating (1-10)

Results: Visual Function

- Visual acuity, contrast sensitivity and central visual fields of the glaucoma patients were significantly worse than that of the age-matched controls (p<0.05)
- Esterman fields were not significantly different

	Group Mean (SD)	
	Glaucoma	Controls
Visual Function		
Binocular Visual Acuity (logMAR)	0.01 (0.11)	-0.05 (0.09)
Binocular Contrast Sensitivity (LogCS)	1.87 (0.14)	1.95 (0.03)
HFA MD 24-2 Best Eye	-1.21 (4.90)	1.86 (1.15)
HFA MD 24-2 Worst Eye	-7.75 (8.47)	1.01 (1.38)
Esterman Efficiency Score (max 100)	95.9 (5.9)	96.4 (4.2)

Results: Overall Driving Scores

- Drivers with glaucoma were rated as significantly less safe than controls (5.2 vs 5.8)
- Drivers with glaucoma were 2x more likely to have a critical error (CE) requiring instructor intervention than controls
 - RR = 2.06 (95% CI 1.17 3.62)

	Group Mean (SD)	
Driving Outcomes	Glaucoma	Controls
CE total#	0.83 (1.16)	0.43 (0.73)*
CE observation#	0.48 (0.76)	0.24 (0.52)*
CE vehicle control#	0.11 (0.35)	0.14 (0.39)
CE lane keeping#	0.19 (0.39)	0.16 (0.40)
CE speed#	0.15 (0.56)	0.06 (0.29)

Wood JM, Black AA, Mallon K, Thomas R, Owsley C (2016) Glaucoma and driving: On-Road driving characteristics. PLoS ONE 11: e0158318.

Results: Driving Errors and Driving Locations

- Types of errors
 - Significant differences: lane keeping, observation and approach

- Location of errors
 - Significant differences: traffic-light controlled intersections, give-way

Results: Visual Predictors of Driving

- None of the standard visual field measures were significantly associated with driving performance or safety ratings
 - Worse eye MD best of the vision measures

Results: Visual Predictors of Driving

- None of the standard visual field measures were strongly associated with driving performance or safety ratings
 - Worse eye MD best of the vision measures
- BUT motion sensitivity was significantly associated with a range of driving performance measures

Results: Visual Predictors of Driving

- None of the standard visual field measures were strongly associated with driving performance or safety ratings
 - Worse eye MD best of the vision measures
- BUT motion sensitivity was significantly associated with a range of driving performance measures
 - High sensitivity and specificity when combined with measures of cognitive and motor performance and driving exposure

ROC curve: motion test combined with cognitive and motor measures

Discussion

- Small but significant differences in driving safety between groups
 - Drivers with mild to moderate glaucoma were rated as less safe than controls
 - Errors included lane-positioning, approach and observation and were more common at give-way and traffic-light controlled intersections

 Critical errors that involved an instructor intervention were higher - observation errors were the main problem

Discussion

- Of the visual function tests assessed, motion sensitivity was most strongly associated with driving performance
 - Standard vision tests (including visual fields) were poorly associated with driving ability and safety in drivers with mild to moderate glaucoma
- Some drivers may compensate for their field loss through eye movements, which may explain the lack of predictive ability of visual fields for driving¹⁻³
 - Potential for training interventions to enhance scanning and search strategies while driving
- Fitness to drive should be based on performance rather than age or disease status
 - Consider the use of on-road assessments to assist in licensing decisions
 - Decisions must ensure fair outcomes for all drivers including those with glaucoma

Acknowledgments

- National Health and Medical Research Council grant 1008451
- National Eye Institute grant R01EY18966 and National Institute on Aging grant (P30AG22838), EyeSight Foundation of Alabama, and Research to Prevent Blindness.
- Vision and driving research team and Ivor Booker
- All drivers who participated in this study

Supplementary Data

Supplementary Data

