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Dynamic processes; timing and sequencing of events is essential

What is an appropriate model for biological dynamics?



What is an appropriate model of biological dynamics?

Perhaps simplest models are ordinary differential equations

dx

o = f(z,\), € R", XeA

In order to use the model we need to “solve” the differential equation.

Challenges.

* Nonlinearity f is heuristic
 parameter space is high dimensional
* parameters are not known.

What does it mean to “solve” a differential equation in this context?



Solving differential equations
Newton: Find an analytic representation for =(¢) : R — R"

Poincare,Smale,...: Qualitative theory, structural stability, bifurcation
theory

* Need analytical form of nonlinearity
» Limitation by dimension of phase space
» Limitation by dimension of the parameter space

“Solve” differential equations by describing

Lattice of attractors/Morse decompositions



How to build a Morse decomposition?
State Transition Graph

2 Don’t know exact current state, so

/ l don’t know exact next state

Linear time Algorithm!

/ \ Simple decomposition of

« o Dynamics:

;
N ey

\-/ \Al Strongly connected

‘/ \ * path components

. Nonrecurrent Morse Graph
Vertices: States o .
(gradient-like) of state transition graph

Edges: Dynamics



How to define a State Transition Graph?



Switching systems

(Glass, Snoussi, Thomas, Edwards, Plahte, Mestl, Chaves, Gouze,...)
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Every interaction mediated by
a piece-wise constant function
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Phase space
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Switching systems give rules to construct state transition

.\ /.
. / la. Morse graph
WXL

Vertices: States
Edges: Dynamics



Parameter space
(Combinatorial bifurcation theory)

. 3 x>1 1/2 y>1
v "’”’*({ 1/2 :1:<1){ 1 y<l
: 3 x>2
v = _y+{1/2 T <2

Study general system where parameters
describe expression levels, and thresholds

. by x>1 ay y>1
o= _$+({CL1 $<1>{b2 y <1



Combinatorial bifurcation theory

State transition diagram changes only when a target point of a
domain moves through a threshold:
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State transition graph

State transition graph
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Geometry of the parameter space
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| Changes in STG when : {(Target point); = 0,}; ;
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In each region bounded by these hyper surfaces
the Morse graph is the same.

Geometric parameter
graph




Combinatorial description of multi parameter dynamical system
(computable!)

Description in classical DSGRN database
dynamics

Conley-Morse Graphs

Cusp Parameter Graph
Catastrophe




A simple example- a toggle switch

|
o @
(Gardner, Cantor, Collins; Nature 2000) |
uz T2 < b2

' uz  Xo < 72012
X1 = —X1 + 9
2 2> 010 ! !

T1 = —7Y1T1 + « \ l[10 X9 > 72(912

*

ru21 $1<(921 X2:_X2_|_<

| lo1 x> 0o

[ uo1 Xy < 110

To = —7Y2X2 + { 21 X1 > %921

X1 =121, X2 i= Y2x2

Parameter selection (node in the parameter graph
Phase space ( P graph)

XQA l12 < 71021 < U129
(l12,u21) (l12, l21) lo1 < Y2012 < U2
o - FP(0,1)
Y2012
S~ ® -« O
(U12, U21) (U12, 121)
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Y1021 X1 ® 0~ FP(1,0)



DSGRN database for toggle switch

FP(0,1)

FP(0,1)

U2 < y1621
Yobi12 < loq

FP(0,1)

l19 < 71021 < U9
Vob12 < U1

FP(1,1)

U2 < Y1621
lo1 < ¥9012 < U921

FP(1,0) FP(O,1)

FP(0,0)

Y1021 < 12
Vol12 < U9y

l19 < 71021 < u12
lo1 < 2012 < uoq

FP(1,0)

u12 < Y1621
U1 < Y2012

FP(1,0)

v1021 < l12
lo1 < Y2012 < w9y

l12 < y1b21 < u1o
u21 < Y2012

FP(1,0)

Y1021 < 12
U1 < Y2012




Application to cell cycle progression switch

For larger networks visual inspection of the parameter graph is not
possible

Use summary descriptions:
percentage of the parameter graph that admits certain dynamics
percentage of the reduced parameter graph that admits certain
sequence of dynamic behaviors as input changes

Evaluate multiple networks - search in the space of networks



Yao, et. al., Origin of bistability underlying

CANCER

mammalian cell cycle entry, MSB, 2011

Growth signals

Deregulation of the RB—E2F pathway is
- implicated in most, if not all, human cancers.

Goal: minimal network that
exhibits resettable bistability

' Bistability:

|
!
Two equilibria:
\A/\B/ (A) Rb ON, E2F OFF = quiescence
(B) Rb OFF, E2F ON = proliferation
> Resettable bistabllity:
MD MD: ON -> OFF

System moves from B to A

Yao et. al. tested 3-node networks on 20,000 random parameter choices
for bistability, and resettable bistability to find minimal network(s).



Yao, et. al., Origin of bistability underlying

Test networks for dynamics phenotype

mammalian cell cycle entry, MSB, 2011

Construct all subnetworks with 4 nodes that: I
- Has input node S v
- only one edge between two nodes 2
(49 networks satisfy this requirement) 7 ( Jd
Evaluate each network on prevalence in \\U
its parameter graph of: A T
1. bistability with S in the middle 1 l
of its range. v
g . A
I | > A f
2. bistability AND Off FP when S is low S :
= resettable bistability ® o,
| | S
A A
3. resettable bistability AND On FP when S is high A t
= hysteresis :
¢ ¢




Results

When S is in the middle range:
35 networks have some bistability

Out of these 28 have some
resettable bistability

Some bistability (at middle S), 35 total networks
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Some resettable bistability, 28 total networks
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Some full inducibility, 15 total networks

Hysteresis:
two networks where
full hysteresis
occupies more than half
of the parameter graph
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# networks

20 40 60 80 100
% reduced parameters
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| | These match top two networks of Yao 2011
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6 node network analysis

Rb-E2F bistable switch

Question: How good and robust is this network at providing a
clear resettable on/off signal and support hysteresis?



Test subnetworks

O= O= O=
keep edge 7 (aye ) (e (ye )
and choose \ 7) -

2a or 2b cyen
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Comparison across species

In our small search we find Yeast cell cycle entry:
this as the best network (human):
(s> o=

l

e No homology between
l individual genes

Cam3)
only network structure

very similar
J g () o
CEer-Ro D Csor—
U (o) |s the structure selected U

G{)E/for its dynamics i.e. for being a robust

bistable switch?

Resettable Bistability |Hysteresis Resettable Bistability | Hysteresis
43.3 % 14 % 42.3% 5.6%




Discussion

» Switching systems provide rules to construct state transition graphs

- DSGRN database describes Morse decomposition for all parameters.

- The results are rigorous and encourage refinement

* Our results illustrate usefulness of lattices of attractors/Morse
decompositions as primary descriptors of dynamics in biological
systems.
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