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Uncertainty in time-dependent problems

In many time-dependent problems of practical interest,
parameters and/or initial/boundary conditions can be uncertain.

One way to address the problem of how this uncertainty
impacts the solution is to expand the solution using polynomial
chaos expansions and obtain a system of differential equations
for the evolution of the expansion coefficients.

Main idea: Construct reduced models for a subset of the
polynomial chaos expansion coefficients that are needed for a
full description of the uncertainty.

We will use the Mori-Zwanzig formalism to construct such
reduced models.

Remark: Accurate reduced models require memory even for
simple systems.

Remark: The construction of accurate reduced models can be

very costly even for simple systems.
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The Mori-Zwanzig formalism

Zwanzig(1961), Mori(1965), Chorin, Hald, Kupferman (2000)

Suppose we are given an M-dimensional system of ordinary
differential equations

T — A(u(n) ()

with initial condition u(0) = up.

Transform into a system of linear partial differential equations

where the Liouvillian operator L = Z}"i s Hi(up) aﬂm. Note that
Lug; = Rj(Uo).
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Let ug = (g, Ug) where Uy is N-dimensional and g is M — N
-dimensional. Define a projection operator P : F(up) — F(ip).
Also, define the operator Q=1 — P.

B, §
— e g = e™PLug, + € Qlugy + / el S pl S QL Uy, ds
0

ot
(2)

We have used Dyson’s formula (Duhamel’s principle)

t
oll — ofQL f el'—s)Lp| 5@l gs, (3)
0
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The Mori-Zwanzig formalism

Zwanzig(1961), Mori(1965), Chorin, Hald, Kupferman (2000)

Suppose we are given an M-dimensional system of ordinary
differential equations

d‘;&” — R(u(t)) (1)

with initial condition u(0) = up.

Transform into a system of linear partial differential equations

where the Liouvillian operator L = 3", R;(up) 2 54, - Note that
LUU; (UO)
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Let ug = (g, Ug) where Uy is N-dimensional and g is M — N
-dimensional. Define a projection operator P : F(up) — F(ip).
Also, define the operator Q=1 - P.

.
— e g = e PLug, + € QLug, + / el pl S QL Uy, ds
0

ot
(2)

We have used Dyson’s formula (Duhamel’s principle)

[
elt = gtk 4 f el!=s)Lp| esClds. (3)
0
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Since the solutions of the orthogonal dynamics equation
remain orthogonal to the range of P, we can project the
Mori-Zwanzig equation (2) and find

t
% e to = Pe™PLug, + P / el pL S QLug,ds.  (4)
0
Use (4) as the starting point of approximations for the evolution

of the quantity Pe'“uy, for k = 1,..., N (note that the equation

(4) involves the orthogonal dynamics operator e®@t).

Construct reduced models based on mathematical, physical
and numerical observations.

These models come directly from the original equations and the
terms appearing in them are not introduced by hand.
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Let ug = (g, Ug) where U is N-dimensional and g is M— N
-dimensional. Define a projection operator P : F(up) — F (o).
Also, define the operator Q =1/ — P.

. §
— et = e PLugy + €™ QLug, + / el pl 5 QL Uy, ds
0

ot
(2)
fork=1,....N.

We have used Dyson’s formula (Duhamel’s principle)

[
elt = ek / el!=s)Lp| eSClds. (3)
0
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Scalar linear differential equation

Consider
au

dt
where x ~ U[0.1]. Let u =~ S, u,L(w), where w ~ U[-1.1]
and {L,} are the Legendre polynomials. We obtain

dUr 2 ZZRU; G4, r=0..... M. (6)

=0 j=0

= — K. (5)

where e;, = [, Li(w)L(w)L(w)Lidw.

The projection P is defined as, (Pf)(u) = f(u. ﬁ)_ with
U=(p,th,....00) ad 0= (Uhysi;:--, Upt ).

Remark: To compute the memory term in closed form we need
to introduce a finite-rank projection (in addition to P). We use

(P'oi)(0.1) = Z(;J,{u. t). B (0))h(D).

T,

where h” are Hermite polynomials.



Scalar linear differential equation

Consider
du

dt
where x ~ U[0,1]. Let u =~ 3"V , u;L,(w), where w ~ U[—1,1]
and {L,} are the Legendre polynomials. We obtain

dUr__LLkUJeUﬁ r:o!...,M, (6)

=0 j=0
where e;; = [, Li(w)L(w)L(w)}adw.

The projection P is defined as, (Pf)(&) = f(i1,0), with
U—(U&U-; ..... Uﬁ)aﬂdU—(UA 1,....Um).

Remark: To compute the memory term in closed form we need
to introduce a finite-rank projection (in addition to P). We use

(P'ej)(@,t) =Y (gj(u,t), b (D)) (D),

v

= —KU, (5)

where h” are Hermite polynomials.
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Since the solutions of the orthogonal dynamics equation
remain orthogonal to the range of P, we can project the
Mori-Zwanzig equation (2) and find

{
{% Lok = Pe™PLugx + P / e\t pL S QLug,ds.  (4)
0
Use (4) as the starting point of approximations for the evolution

of the quantity Pe'-uy, for k = 1,..., N (note that the equation

(4) involves the orthogonal dynamics operator e'@.).

Construct reduced models based on mathematical, physical
and numerical observations.

These models come directly from the original equations and the
terms appearing in them are not introduced by hand.
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Scalar linear differential equation

Consider
du

dt
where x ~ U[0,1]. Let u ~ "V , urL,(w), where w ~ U[—1,1]
and {L,} are the Legendre polynomials. We obtain

= —KU, (5)

au,
- —--) ) kuey, r=0,...,M, (6)
i=0 j=0
where g;; = [, Li(w)Lj(w)L(w)}adw.

The projection P is defined as, (Pf)(&) = f(i1,0), with
u=(up,Uy,...,.up) and u = (Ups1,-.-..,Uy).

Remark: To compute the memory term in closed form we need
to introduce a finite-rank projection (in addition to P). We use

(P'ej)(@,t) =Y (pj(u,t), b (D)) (@),
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where h” are Hermite polynomials.
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Let ug = (U, Ug) where &g is N-dimensional and g is M —N
-dimensional. Define a projection operator P : F(ug) — F(Up).
Also, define the operator Q=1 — P.

. {
— e uo, = e PLugk + € QLugy + / el 5L pl o5 QL Uy ds
0

ot
(2)
fork=1,....N.

We have used Dyson’s formula (Duhamel’s principle)

[
elt = gL 4 f ell=s)Lp| eSQLds. (3)
0
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Since the solutions of the orthogonal dynamics equation
remain orthogonal to the range of P, we can project the
Mori-Zwanzig equation (2) and find

{
%Pe”'ugk — Pe"PLugy + P / el=9LpL S QLug,ds.  (4)
0
Use (4) as the starting point of approximations for the evolution

of the quantity Pe“ug, for k = 1,..., N (note that the equation

(4) involves the orthogonal dynamics operator e'@").

Construct reduced models based on mathematical, physical
and numerical observations.

These models come directly from the original equations and the
terms appearing in them are not introduced by hand.
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Scalar linear differential equation

Consider
du

dt
where & ~ U[0,1]. Let u =~ ", u,L,(w), where w ~ U[-1,1]
and {L,} are the Legendre polynomials. We obtain

dUr:-LLkUJeHn rZU,---TMr (6)

i=0 j=0
where e;; = [, Li(w)L(w)L(w)}adw.

The projection P is defined as, (Pf)(&) = f(i1,0), with
UZ(U{},U1 ..... Uh)aﬂdU—(Un 1,...,Um).

Remark: To compute the memory term in closed form we need
to introduce a finite-rank projection (in addition to P). We use

(Pe)(@, 1) ~ 3 (¢i(u, 1), H (@) (D),

|

= —KU, (5)

where h” are Hermite polynomials.
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(a) (D)
Figure: Comparison of the relative error for the models with and

without memory for the linear equation with uncertain coefficient.

Remark: Memory is very important for accurate prediction even
for moderate times.
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Periodically forced nonlinearly damped particle

Consider
du

E=u—u3—+—f(t,w), (7)
where f = wsintand w ~ U(—1,1). Letu~ M, u;Li(w),

where w ~ U[—-1,1] and {L;} are the Legendre polynomials.

We obtain
| Py
% - Z UjUg Um@jkmi + f i =0.....0, (&
j.k.m=0
where eymi = [, Li(w)Li(w)Lm(w)Li(w)5dw.
The projection P is dehned as, (Pf)(0) = f(&1,0), with
U= (ug, Uy,...,up) and U = (Up+1,- .., Upy).

Remark: To compute the memory term in closed form we need
to introduce a finite-rank projection (in addition to P). We use
Hermite polynomials as before.
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(b)

Figure: Comparison of the solution without memory, with memory and
exact solution for the periodically forced damped particle equation.

Remark: We construct a reduced model withA=1and M = 6.
The model with memory uses 10 basis functions (highest order
3) for the memory term integrand. The integrands for the
memory term can be computed by solving Volterra equations.
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(a) ()

Figure: Comparison of the relative error (logarithmic scale) for the
models with and without memory for the periodically forced damped
particle equation.

Remark: Memory is very important for accurate prediction even
for short times.
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Application to the 1D Burgers equation

Consider the Burgers equation
Ur + Uly = VUxx. (9)

We assume periodic BCs and u(0, x) = ug(x).

We can have e.g. uncertain viscosity coefficient and/or
uncertain initial conditions.

For a simple case with » = 0.03 one needs about 100 Fourier
modes to resolve the solution. If e.g. up(x,£) = (1 +€)sinx
where £ ~ U[-1, 1], we need the first 7 Legendre polynomials
to fully resolve the uncertainty in the solution.

Remark: If we resolve 2 of the 7 expansion coefficients, then
for the memory term term we would need to have a basis in
100 x 2 dimensions. It is prohibitively expensive to use with
high orders.
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Remark: If we have some prior information about the system
then we may be able to reduce the number of arguments of the
basis functions. Otherwise, we need to compute the term

P [, el'=S)LPLeSAL QL ug,ds without relying on a finite-rank
projection.

Main idea: Construct a hierarchy of equations for the evolution
of the memory term and its derivatives.

Let wok(t) = P fnf ell=s)L Pl eSQL QL ug, ds. We find

dwok
dt

where

— Pe™PLQLug — Pe'™®)- PLe% % QLugy + wyk(t)

t
wi(t) =P | etPLe" )L QL QLugkds
t—to
and we have assumed that the memory extends only fp units
back.
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Also

aw;
at

where

= PePLQLQLUg, — Pe'" ) PLeP U QLQL Uy, + wor (1),

[
ng(f) = P i ESLPLE“_S}GLQLOLGLUURO'S.

This hierarchy continues

d
Wf;;”“‘ — Pe'-PL(QL)™" QLugy—

Pel!—0)Lpl eoCL( QL) QLugk + Wik (1)

where
t

Wk (f) = P eSLPLe!"S)CL( QL) " QLugds.
t—t
Of course, this is the closure problem which we can address by
assuming that wy.(t) = 0.
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In addition to the closure, we have to estimate the terms
Pel!—b)L Pl g QL QL gy, . .Pel—0)LPLebC(QL)™ QLugk. This
can be achieved by using a discretized version e.g. trapezoidal
rule for wo(t), . . ., Wn—1)(t) and solving for the unknown
terms.

Remark: The expansion above amounts to an expansion of the
evolution operator for the orthogonal dynamics equation. There
are alternative expansions which involve the full dynamics
operator.

Remark: There is an unknown parameter, the length f, of the
memory. One can compute estimate f using a construction
akin to renormalization. The estimate of f; is determined
through an optimization problem.

Remark: The whole process of approximating the memory can
be recast as a set of ODEs which augments the Galerkin
model.
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Also

aw; k
at

where

= PE"H'PLOLOLUO;( PE[I_LJ'}LPLEE'OLOLOLUGk = Wogl(l).

{

Wor(t) = P eSLPLe" )L QL QLQLuyk ds.

JI—Ig
This hierarchy continues

dw{n—uk

at
Pel! !.;.}LpLeﬂJGL(OL)” 1OLU{),¢¢ - Wpk( )

= Pe™PL(QL)"" QLug,—

where

Y
W (1) = P / &St PLe )9 QL )" QLuok ds.
Jt—t

Of course, this is the closure problem which we can address by
assuming that w.(t) = 0.




Remark: If we have some prior information about the system
then we may be able to reduce the number of arguments of the
basis functions. Otherwise, we need to compute the term

P [, el'=9)LPLeSALQL ug,ds without relying on a finite-rank
projection.

Main idea: Construct a hierarchy of equations for the evolution
of the memory term and its derivatives.

Let wok(f) = P [, el'=)LPLeSAL QLug,ds. We find

d—:?k = Pe'- PLQLug — Pel' ")t PLe" QLug, + wik(t)

t
wi(t) =P | eStPLe" )L QL QLU ds
t—to
and we have assumed that the memory extends only fp units
back.
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Also

aw;
at

where

= PePLQLQLUg, — Pe'" ) PLeP U QLQL Uy, + wox (1),

[

ng(f) = = ESLPLE(r_s)OLQLQLGLngdS.

This hierarchy continues

d
Sk — Pl PL(QLY™" QLuok-

Pell—0)Lpl eoCL( QL) QLugk + Wik (1)

where
t

wnk(t) = P eSLPLe! SO QL) " QLugkds.
t—f
Of course, this is the closure problem which we can address by
assuming that wy(t) = 0.
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In addition to the closure, we have to estimate the terms
Pell—0)L Pl goCQLQY 14, .. . .P&““’ﬂ)HF-'LE,-'@'DL(OL)“’"1 QLugk. This
can be achieved by using a discretized version e.g. trapezoidal
rule for wok(t), . .., W,—1)k(t) and solving for the unknown
terms.

Remark: The expansion above amounts to an expansion of the
evolution operator for the orthogonal dynamics equation. There
are alternative expansions which involve the full dynamics
operator.

Remark: There is an unknown parameter, the length f, of the
memory. One can compute estimate fy using a construction
akin to renormalization. The estimate of f; is determined
through an optimization problem.

Remark: The whole process of approximating the memory can
be recast as a set of ODEs which augments the Galerkin
model.
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\a) ()

Figure: Evolution of the mean and the standard deviation of the
gradient of the solution using only the first two Legendre polynomials.

Conclusion: The construction of reduced models for UQ can
be necessary and costly. It must account for memory effects.
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In addition to the closure, we have to estimate the terms
Pell—0)LP] gbQLQY 1y, .. . .Pel! *ID)LPLeW"-(OL)”" QLug,. This
can be achieved by using a discretized version e.g. trapezoidal
rule for wo(t), . . ., Wn—1)(t) and solving for the unknown
terms.

Remark: T he expansion above amounts to an expansion of the
evolution operator for the orthogonal dynamics equation. There
are alternative expansions which involve the full dynamics
operator.

Remark: There is an unknown parameter, the length f, of the
memory. One can compute estimate fp using a construction
akin to renormalization. The estimate of t; is determined
through an optimization problem.

Remark: The whole process of approximating the memory can
be recast as a set of ODEs which augments the Galerkin
model.
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evolution operator for the orthogonal dynamics equation. There
are alternative expansions which involve the full dynamics
operator.

Remark: There is an unknown parameter, the length f, of the
memory. One can compute estimate fp using a construction
akin to renormalization. The estimate of f; is determined
through an optimization problem.

Remark: The whole process of approximating the memory can
be recast as a set of ODEs which augments the Galerkin
model.
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Remark: If we have some prior information about the system
then we may be able to reduce the number of arguments of the
basis functions. Otherwise, we need to compute the term

P [, el'=9)tPLeSAL QL ug,ds without relying on a finite-rank
projection.

Main idea: Construct a hierarchy of equations for the evolution
of the memory term and its derivatives.

Let woi(t) = P ftf ell=s)Lpl eSQL QI uy,ds. We find

dwok
at

where

= PEH"PLQLUOR — Pe“_tﬂ)LPLeI”GLOLng + W1k(t)

t
wi(t) =P |  etPLe" )L QL QLuykds
t—to
and we have assumed that the memory extends only fp units
back.
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Application to the 1D Burgers equation

Consider the Burgers equation
Ut + Ulyx = vlUxx. (9)

We assume periodic BCs and u(0, x) = ug(x).

We can have e.g. uncertain viscosity coefficient and/or
uncertain initial conditions.

For a simple case with » = 0.03 one needs about 100 Fourier
modes to resolve the solution. If e.g. ug(x,£€) = (1 +£)sinx
where £ ~ U[-1, 1], we need the first 7 Legendre polynomials
to fully resolve the uncertainty in the solution.

Remark: If we resolve 2 of the 7 expansion coefficients, then
for the memory term term we would need to have a basis in
100 x 2 dimensions. It is prohibitively expensive to use with
high orders.
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Remark: If we have some prior information about the system
then we may be able to reduce the number of arguments of the
basis functions. Otherwise, we need to compute the term

P [, el'=9)LPLeSAL QL ug,ds without relying on a finite-rank
projection.

Main idea: Construct a hierarchy of equations for the evolution
of the memory term and its derivatives.

Let wo(t) = P fnf ell=s)Lpl esQL QL ug, ds. We find

dwok
dt

where
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back.
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Application to the 1D Burgers equation

Consider the Burgers equation
U + Ulx = vlUxx. (9)

We assume periodic BCs and u(0, x) = ug(x).

We can have e.g. uncertain viscosity coefficient and/or
uncertain initial conditions.

For a simple case with » = 0.03 one needs about 100 Fourier
modes to resolve the solution. If e.g. ug(x,£€) = (1 +£)sinx
where £ ~ U[—-1, 1], we need the first 7 Legendre polynomials
to fully resolve the uncertainty in the solution.

Remark: If we resolve 2 of the 7 expansion coefficients, then
for the memory term term we would need to have a basis in
100 x 2 dimensions. It is prohibitively expensive to use with
high orders.
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Periodically forced nonlinearly damped particle

Consider
adu

E=u—u3+f(t+w)* (7)
where f = wsintand w ~ U(—1,1). Letu= 1, u;Li(w),

where w ~ U[—1,1]| and {L;} are the Legendre polynomials.

We obtain
dU,; e .
E = U;j — Z U,rukumefkmf‘*‘n- IZOM! (8)
j.k.m=0
where eymi = [, Li(w)Li(w)Lm(w)Li(w)5dw.
The projection Pis deﬁned as, (Pf)(&) = f(&1, 0), with
U= (ug, Uq,...,up) and 0 = (Up1,- .., Upy).

Remark: To compute the memory term in closed form we need
to introduce a finite-rank projection (in addition to P). We use
Hermite polynomials as before.
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() (D)

Figure: Comparison of the solution without memory, with memory and
exact solution for the linear equation with uncertain coefficient.

Remark: We construct a reduced model with A =1 and M = 6.
The model with memory uses 21 basis functions (highest order

o) for the memory term integrand. The integrands for the
memory term can be computed by solving Volterra equations.
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Scalar linear differential equation

Consider
du

dt
where x ~ U[0,1]. Let u~ M, u,L,(w), where w ~ U[—1,1]
and {L,} are the Legendre polynomials. We obtain

= —KU, (5)

au,

- :~> S kuey,  r=0,....M 6)
i=0 j=0

where e;; = [, Li(w)Lj(w)L(w)}adw.

The projection P is defined as, (Pf)(&) = f(i1,0), with
u=(ug,Uq,...,up)and U = (Ups1,..-, Upm).

Remark: To compute the memory term in closed form we need
to introduce a finite-rank projection (in addition to P). We use

(P'oi)(@, t) = ) (@i, 1), H(2))H (@),

|

where h” are Hermite polynomials.
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