Error analysis for coupled time-dependent Navier-Stokes and Darcy flows

Beatrice Riviere compm.rice.edu

Rice University

March 11, 2019 SIAM GS

Collaborators: Nabil Chaabane, Vivette Girault, Charles Puelz

Outline

- Coupled Darcy and Navier-Stokes model
- Discontinuous Galerkin scheme
- Analysis and numerical results

A MultiPhysics Problem

Applications in environment, energy, biomedicine, manufacturing...

Initial Plume

1.00 0.95 0.89 0.84 0.78 0.78 0.67 0.62 0.56 0.51 0.46 0.40 0.35 0.29 0.24 0.18 0.13 0.07 0.02

1.00 0.95 0.89 0.84 0.78 0.73 0.67 0.62 0.56 0.51 0.46 0.40 0.35 0.29 0.24 0.18 0.13 0.07 0.02

1.00 0.95 0.89 0.84 0.78 0.73 0.67 0.62 0.56 0.51 0.46 0.40 0.35 0.29 0.24 0.18 0.13 0.07

1.00 0.95 0.89 0.84 0.78 0.73 0.67 0.62 0.56 0.51 0.46 0.40 0.35 0.29 0.24 0.18 0.13 0.07 0.02

1.00 0.95 0.89 0.84 0.78 0.73 0.67 0.62 0.51 0.46 0.40 0.35 0.29 0.24 0.18 0.13 0.07

Navier-Stokes/Darcy

Navier-Stokes in Ω_1 : (surface flow)

$$\frac{\partial \mathbf{u}}{\partial t} - \nabla \cdot (2\mu \mathbf{D}(\mathbf{u}) - p_1 \mathbf{I}) + \mathbf{u} \cdot \nabla \mathbf{u} = \mathbf{f}_1, \text{ in } \Omega_1 \times (0, T)$$
$$\nabla \cdot \mathbf{u} = 0, \text{ in } \Omega_1 \times (0, T)$$

Darcy in Ω_2 : (porous media flow)

$$-\nabla \cdot (\mathbf{K} \nabla p_2) = f_2, \text{ in } \Omega_2 \times (0, T)$$

Navier-Stokes/Darcy

 \sim

Navier-Stokes in Ω_1 : (surface flow)

$$\frac{\partial \mathbf{u}}{\partial t} - \nabla \cdot (2\mu \mathbf{D}(\mathbf{u}) - p_1 \mathbf{I}) + \mathbf{u} \cdot \nabla \mathbf{u} = \mathbf{f}_1, \text{ in } \Omega_1 \times (0, T)$$
$$\nabla \cdot \mathbf{u} = 0, \text{ in } \Omega_1 \times (0, T)$$

Darcy in Ω_2 : (porous media flow)

$$-
abla \cdot (\mathbf{K}
abla \mathbf{p}_2) = \mathbf{f}_2, \quad \text{in} \quad \Omega_2 \times (\mathbf{0}, \mathbf{T})$$

Interface conditions on interface $\Gamma_{12}=\partial\Omega_1\cap\partial\Omega_2$

$$\mathbf{u} \cdot \mathbf{n}_{12} = -\mathbf{K} \nabla p_2 \cdot \mathbf{n}_{12}, \text{ on } \Gamma_{12} \times (0, T)$$
(1)
$$\left((-2\mu \mathbf{D}(\mathbf{u}) + p_1 \mathbf{I}) \mathbf{n}_{12} \right) \cdot \mathbf{n}_{12} = p_2, \text{ on } \Gamma_{12} \times (0, T)$$
(2)
$$\mathbf{u} \cdot \boldsymbol{\tau}_{12}^j = -2\mu G^j (\mathbf{D}(\mathbf{u}) \mathbf{n}_{12}) \cdot \boldsymbol{\tau}_{12}^j, 1 \le j \le d-1, \text{ on } \Gamma_{12} \times (0, T)$$
(3)

where

$$G^{j} = rac{\mu lpha}{(\mathbf{K} au_{12}^{j}, au_{12}^{j})^{1/2}}$$

Coupling via Bilinear Forms

- **Γ**₁₂: interface between Ω_1 and Ω_2
- Integrate by parts the divergence operators in momentum and Darcy equations (with test functions **v** in Ω₁ and *q* in Ω₂)

$$\mathcal{T}_{12} = -\int_{\Gamma_{12}} (2\mu \mathbf{D}(\mathbf{u}) - p_1 \mathbf{I}) \mathbf{n}_1 \cdot \mathbf{v} - \int_{\Gamma_{12}} \mathbf{K} \nabla p_2 \cdot \mathbf{n}_2 q$$

Define n₁₂ = n₁ and use interface conditions to rewrite

$$T_{12} = \int_{\Gamma_{12}} \boldsymbol{p}_2 \mathbf{v} \cdot \mathbf{n}_{12} - \int_{\Gamma_{12}} \mathbf{u} \cdot \mathbf{n}_{12} \boldsymbol{q} + \sum_{j=1}^{d-1} \frac{1}{G^j} \int_{\Gamma_{12}} \mathbf{u} \cdot \boldsymbol{\tau}_{12}^j \mathbf{v} \cdot \boldsymbol{\tau}_{12}^j$$

Coupling via Bilinear Forms

- **Γ**₁₂: interface between Ω_1 and Ω_2
- Integrate by parts the divergence operators in momentum and Darcy equations (with test functions **v** in Ω₁ and *q* in Ω₂)

$$\mathcal{T}_{12} = -\int_{\Gamma_{12}} (2\mu \mathbf{D}(\mathbf{u}) - p_1 \mathbf{I}) \mathbf{n}_1 \cdot \mathbf{v} - \int_{\Gamma_{12}} \mathbf{K} \nabla p_2 \cdot \mathbf{n}_2 q$$

Define n₁₂ = n₁ and use interface conditions to rewrite

$$T_{12} = \int_{\Gamma_{12}} \boldsymbol{p}_2 \mathbf{v} \cdot \mathbf{n}_{12} - \int_{\Gamma_{12}} \mathbf{u} \cdot \mathbf{n}_{12} \boldsymbol{q} + \sum_{j=1}^{d-1} \frac{1}{G^j} \int_{\Gamma_{12}} \mathbf{u} \cdot \boldsymbol{\tau}_{12}^j \mathbf{v} \cdot \boldsymbol{\tau}_{12}^j$$

Variational methods allow for easy handling of interface conditions via traces of functions *Cesmelioglu, Girault, Riviere, ESAIM M2AN, 2013.*

Discrete Scheme

Find $(\mathbf{u}_h^{n+1}, p_{1h}^{n+1}, p_{2h}^{n+1}) \in \mathbf{X}^h \times M_1^h \times M_2^h$, for all $0 \le n \le N_T$ such that

$$(\frac{\mathbf{u}_{h}^{n+1} - \mathbf{u}_{h}^{n}}{\Delta t}, \mathbf{v})_{\Omega_{1}} + a_{S}(\mathbf{u}_{h}^{n+1}, \mathbf{v}) + b_{S}(\mathbf{v}, p_{1h}^{n+1}) + c_{NS}(\mathbf{u}_{h}^{n}, \mathbf{u}_{h}^{n}; \mathbf{u}_{h}^{n+1}, \mathbf{v})$$

+ $a_{D}(p_{2h}^{n+1}, q) + (p_{2h}^{n+1}, \mathbf{v} \cdot \mathbf{n}_{12})_{\Gamma_{12}} - (\mathbf{u}_{h}^{n+1} \cdot \mathbf{n}_{12}, q)_{\Gamma_{12}} + \sum_{j=1}^{d-1} \frac{1}{G^{j}} (\mathbf{u}_{h}^{n+1} \cdot \tau_{12}^{j}, \mathbf{v} \cdot \tau_{12}^{j})_{\Gamma_{12}}$
= $(\mathbf{f}_{1}^{n+1}, \mathbf{v})_{\Omega_{1}} + (f_{2}^{n+1}, q)_{\Omega_{2}}, \quad \forall (\mathbf{v}, q) \in \mathbf{X}^{h} \times M_{2}^{h}$

$$b_{\mathcal{S}}(\mathbf{u}_{h}^{n+1},q)=0. \ \forall q\in M_{1}^{h}.$$

Interior penalty discontinuous Galerkin discretizations Discontinuous piecewise polynomials of degree k for NSE velocity and Darcy pressure, and k - 1 for NSE pressure

Linear problem: Easy?

Linear problem: Easy? Not so...

- Linear problem: Easy? Not so...
- Because of coupling, discretization of $\bm{u}\cdot\nabla\bm{u}$ does not satisfy positivity property

$$\forall \mathbf{u}_h, \mathbf{v}_h \in \mathbf{X}^h, \quad c_{NS}(\mathbf{u}_h, \mathbf{u}_h; \mathbf{v}_h, \mathbf{v}_h) \geq \frac{1}{2} (\mathbf{u}_h \cdot \mathbf{n}_{12}, \mathbf{v}_h \cdot \mathbf{v}_h)_{\Gamma_{12}}$$

- Linear problem: Easy? Not so...
- Because of coupling, discretization of $\bm{u}\cdot\nabla\bm{u}$ does not satisfy positivity property

$$orall \mathbf{u}_h, \mathbf{v}_h \in \mathbf{X}^h, \quad c_{NS}(\mathbf{u}_h, \mathbf{u}_h; \mathbf{v}_h, \mathbf{v}_h) \geq rac{1}{2} (\mathbf{u}_h \cdot \mathbf{n}_{12}, \mathbf{v}_h \cdot \mathbf{v}_h)_{\Gamma_{12}}.$$

To control this term, we need an a priori bound on velocity

$$\|\mathbf{u}_h^n\|_{\mathrm{DG},\Omega_1} \leq \mu C^*, \quad \forall n$$

Challenge: bound in $L^{\infty}(0, T; H^1)$ is needed instead of $L^{\infty}(0, T; L^2)!$

Analysis

Bounding Velocity in $L^{\infty}(0, T; H^{1}(\mathcal{T}_{h}))$

We need to bound the time derivative of velocity

$$\|\frac{\mathbf{u}_h^{n+1}-\mathbf{u}_h^n}{\Delta t}\|_{L^2(\Omega_1)} \leq \mathcal{C}$$

Bounding Velocity in $L^{\infty}(0, T; H^{1}(\mathcal{T}_{h}))$

We need to bound the time derivative of velocity

$$\|\frac{\mathbf{u}_h^{n+1}-\mathbf{u}_h^n}{\Delta t}\|_{L^2(\Omega_1)} \leq \mathcal{C}$$

Theorem: There is a constant \tilde{C} , independent of *h* such that for all $\mathbf{u}_h \in \mathbf{V}^h$ and for all $q_{2h} \in M_2^h$,

$$|(q_{2h}, \mathbf{u}_h \cdot \mathbf{n}_{12})_{\Gamma_{12}}| \leq \tilde{C} \|q_{2h}\|_{\mathrm{DG},\Omega_2} \|\mathbf{u}_h\|_{L^2(\Omega_1)}$$

Key ingredient: regularization of discrete functions by Scott-Zhang interpolant

Existence and Uniqueness

Theorem:

Assume small data condition that depends on:

 $\mu, \|\mathbf{f}_1\|_{L^{\infty}(L^2)}, \|\delta_t \mathbf{f}_1\|_{\ell^2(L^2)}, \|\mathbf{f}_2\|_{L^{\infty}(L^2)}, \|\delta_t \mathbf{f}_2\|_{\ell^2(L^2)}$

Then there is a unique solution $(\mathbf{u}_{h}^{n+1}, p_{1h}^{n+1}, p_{2h}^{n+1})$ to the numerical scheme.

Notation:

$$\delta_t g^i = \frac{g^{i+1} - g^i}{\Delta t}$$

Error Estimates

Under the small data assumption, there is a constant *C* independent of *h* and Δt such that for all $1 \le m \le N_T$, we have,

$$\begin{split} \|\mathbf{u}^{m}-\mathbf{u}_{h}^{m}\|_{L^{2}(\Omega_{1})}^{2}+\mu\Delta t\sum_{n=1}^{m}\|\mathbf{u}^{n}-\mathbf{u}_{h}^{n}\|_{\mathrm{DG},\Omega_{1}}^{2}+\Delta t\sum_{n=1}^{m}\|\boldsymbol{p}_{2}^{n}-\boldsymbol{p}_{2h}^{n}\|_{\mathrm{DG},\Omega_{2}}^{2}\\ +\Delta t\sum_{n=1}^{m}\sum_{j=1}^{d-1}\|\frac{1}{\sqrt{G^{j}}}(\mathbf{u}^{n}-\mathbf{u}_{h}^{n})\cdot\boldsymbol{\tau}_{12}^{j}\|_{L^{2}(\Gamma_{12})}^{2}\leq C(h^{2k}+\Delta t^{2}). \end{split}$$

This bound is valid if the exact solution satisfies the following regularity assumptions: $\mathbf{u} \in L^{\infty}(0, T; H^{k_1+1}(\Omega_1)^d)$, $\frac{\partial \mathbf{u}}{\partial t} \in L^2(0, T; L^{\infty}(\Omega_1)^d) \cap L^2(0, T; H^{k_1}(\Omega_1)^d)$, $\frac{\partial^2 \mathbf{u}}{\partial t^2} \in L^2((0, T) \times \Omega_1)^d$ and $p_2 \in L^{\infty}(0, T; H^{k_2+1}(\Omega_2))$.

Error Bounds for NSE Pressure

We first need to control the error in the discrete time derivative of velocity in Ω_1 :

$$\|\delta_t(\mathbf{u}-\mathbf{u}_h)\|_{\ell^2(L^2)} \leq C(h^k+\Delta t)$$

This is obtained under the condition:

$$\frac{h^2 + \Delta t^2}{\min_{\mathcal{T} \in \mathcal{T}_h^1} h_{\mathcal{T}}} \leq \mathcal{C}$$

Error Bounds for NSE Pressure

We first need to control the error in the discrete time derivative of velocity in Ω_1 :

$$\|\delta_t(\mathbf{u}-\mathbf{u}_h)\|_{\ell^2(L^2)} \leq C(h^k+\Delta t)$$

This is obtained under the condition:

$$\frac{h^2 + \Delta t^2}{\min_{\mathcal{T} \in \mathcal{T}_h^1} h_{\mathcal{T}}} \leq \mathcal{C}$$

Then we can show

$$\|p_1 - p_{1h}\|_{\ell^2(L^2)} \leq C(h^k + \Delta t)$$

Smooth Solutions: k = 2

 $\Omega = \Omega_1 \cup \Omega_2, \quad \Omega_1 = (0,1) \times (0,1), \quad \Omega_2 = (0,1) \times (-1,0)$

velocity and pressure in NSE subdomain.							
h	$ \mathbf{u} - \mathbf{u}_h _{L^2(\Omega_1)}$	CR	$ abla_h(\mathbf{u}-\mathbf{u}_h) _{L^2(\Omega_1)}$	CR	$ p_1 - p_{1h} _{L^2(\Omega_1)}$	CR	
1/2	2.694e-02		4.383e-01		4.974e-01		
1/4	4.300e-03	2.65	1.151e-01	1.93	1.608e-01	1.63	
1/8	5.813e-04	2.89	2.871e-02	2.00	4.685e-02	1.78	
1/16	7.385e-05	2.98	7.051e-03	2.03	1.263e-02	1.89	
1/32	1.024e-05	2.85	1.738e-03	2.02	3.282e-03	1.94	

Male site and an end of NOE such dama size

Pressure in Darcy subdomain:

h	$ p_2 - p_{2h} _{L^2(\Omega_2)}$	Conv.	$\ abla_h(p_2 - p_{2h}) \ _{L^2(\Omega_2)}$	Conv.
1/2	3.1803e-03		5.4874e-02	
1/4	4.9972e-04	2.67	1.4217e-02	1.95
1/8	6.8328e-05	2.87	3.6107e-03	1.98
1/16	8.8834e-06	2.94	9.0948e-04	1.99
1/32	1.1711e-06	2.92	2.2822e-04	1.99

RICE

Numerical Results

Polygonal Interface: Set-up

Numerical Results

Polygonal Interface: Pressure and Streamlines

Interface Conditions

Define errors in imposing interface conditions in L^2 norm:

$$E_{7} = \|\mathbf{u} \cdot \mathbf{n}_{12} + \mathbf{K} \nabla p_{2} \cdot \mathbf{n}_{12}\|_{L^{2}(\Gamma_{12})}$$
$$E_{8} = \|p_{2} - ((-2\mu \mathbf{D}(\mathbf{u}) + p_{1}\mathbf{I})\mathbf{n}_{12}) \cdot \mathbf{n}_{12}\|_{L^{2}(\Gamma_{12})}$$
$$E_{9} = \|\mathbf{u} \cdot \boldsymbol{\tau}_{12} + 2\mu G^{1}(\mathbf{D}(\mathbf{u})\mathbf{n}_{12}) \cdot \boldsymbol{\tau}_{12}\|_{L^{2}(\Gamma_{12})}$$

Interface Conditions

Define errors in imposing interface conditions in L^2 norm:

$$E_7 = \|\mathbf{u} \cdot \mathbf{n}_{12} + \mathbf{K} \nabla p_2 \cdot \mathbf{n}_{12}\|_{L^2(\Gamma_{12})}$$
$$E_8 = \|p_2 - ((-2\mu \mathbf{D}(\mathbf{u}) + p_1 \mathbf{I})\mathbf{n}_{12}) \cdot \mathbf{n}_{12}\|_{L^2(\Gamma_{12})}$$
$$E_9 = \|\mathbf{u} \cdot \boldsymbol{\tau}_{12} + 2\mu G^1 (\mathbf{D}(\mathbf{u})\mathbf{n}_{12}) \cdot \boldsymbol{\tau}_{12}\|_{L^2(\Gamma_{12})}$$

Conclusions

- DG scheme for coupling time-dependent NSE and Darcy
- Convergence analysis for any polynomial degree
- Interface curve or surface does not have to be smooth
- Acknowledgement: NSF

Chaabane, Girault, Puelz, Riviere. Journal of Computational and Applied Mathematics, 2017.

