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Introduction

Infectious disease and probability distributions

In the setting of a stochastic epidemic, there are many contexts where we
are interested in a probability distribution pk on the non-negative integers.

pk might represent the probability an infected individual will infect k
individuals — the offspring distribution.

pk might represent the probability an outbreak infects exactly k
individuals — the final size distribution.

pk(g) or pk(t) might represent the probability of k infected individuals
in generation g or time t — the intermediate size distribution
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Introduction

What is a Probability Generating Function (PGF)?

Consider a probability distribution on the non-negative integers, with pk
giving the probability of k.
Then

f(x) =

∞∑
k=0

pkx
k

is the Probability Generating Function for the distribution.
We can “visualize” the PGF as:

f(x) = p0 +
p1

x

+
p2

x x
+

p3

x
x
x

+
p4

xx xx

+ · · ·
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Introduction

Examples

The PGFs of many common distributions have compact analytic forms.

Poisson distribution: pk = e−λλk

k!

f(x) =

∞∑
k=0

e−λ
λkxk

k!
= e−λeλx = eλ(x−1)

Geometric distribution: pk = (1− r)rk, 0 ≤ r < 1

f(x) =

∞∑
k=0

(1− r)rkxk =
1− r

1− rx
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Introduction

Properties

p0 =
∑
pk0

k = f(0). (important if interested in extinction of a
disease).

p0 = p0 +
p1

0

+
p2

0 0

+
p3

0
0

0
+

p4

0 0 00

+ · · ·

∑
kpk =

∑
kpk1

k−1 = f ′(1) is the expected value of the distribution
(this could give R0).

〈K〉 = 0p0 +
1p1

1

+
2p2

1 1

+
3p3

1
1

1
+

4p4

1 1 11

+ · · ·
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Introduction

Products/addition

The PGF for the sum of two distributions is the product of their PGFs.

p0
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x x

p3

x
x
x

· · ·
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x
x
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. . .

q3

x
x
x

q3p0

x
x
x

q3p1

xx xx

. . .
. . .

...
...

...

In particular, if we choose k numbers from a distribution with PGF f(x),
their sum has PGF [f(x)]k (the grandchild distribution, conditional on k).
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Introduction

Function composition

If we choose k from a distribution with PGF ξ(x) =
∑
pkx

k and then
choose k numbers a1, . . . , ak from another distribution with PGF
h(x) =

∑
qax

a. Then the sum a1 + · · ·+ ak has PGF

f(x) = p0 +

p1

h(x)

+
p2

h(x) h(x)

+
p3

h(x)
h(x)
h(x)

+ · · ·

= ξ(h(x))

[If the “offspring distribution” has PGF µ(x), the number after g
generations has PGF µ[g](x) = µ(µ(· · ·µ(x) · · · )).]

Function composition corresponds to looking at later generations.
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Introduction

More Properties

If we know the analytic form of µ(x), we can numerically calculate
f(z) = µ[g](z) for any value of z without knowing f(z)’s expansion a
priori.

Then we can find the coefficients of f by

pk =
1

2πi

∮
|z|=1

f(z)

zk+1
dz =

1

2π

∫ 2π

0
f
(
e2πiθ

)
e−ikθ dθ

≈ 1

M

M∑
m=1

f
(
e2πim/M

)
e−2kπim/M

We just evaluate f at the M locations once, and then we can do the
summation for many values of k. It is very accurate if M � k, and
reasonably accurate up to k = M − 1.
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Introduction

Applications

PGFs have many applications:

Calculating the probability an outbreak goes extinct in a large
population.

Determining the size distribution of an outbreak after a short time
period.

Predicting the final size distribution in a population (even if not
small).

Deterministic SIR dynamics in random networks.

Deterministic SIR dynamics in well-mixed populations.

and more!
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Introduction

Basic Disease assumptions

We assume:

A single introduced infection.

Discrete time: the offspring distribution has PGF µ(x).

We can quickly conclude that

R0 = µ′(1).

The PGF for the number of infections in generation g is µ[g](x).
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Extinction

Extinction

Given that the offspring PGF is µ(y):

It is reasonably well-known that the extinction probability α solves
y = µ(y).

1 = µ(1) is always a solution, but when R0 > 1, there is another
solution in [0, 1).

We can find the other solution through iteration.
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Extinction

Extinction and Cobweb diagrams

µ[g](y) = µ(µ(· · ·µ(y) · · · )) is the PGF for the number of infections
in generation g.

Then αg = µ[g](0) is the probability the outbreak is extinct by
generation g.

How does this prediction compare with stochastic simulation?
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Size distribution

Intermediate Size

Given a single introduced infection in an infinite population and an
offspring distribution with PGF µ(y) =

∑
pky

k:

The number of active infections in generation g + 1 has PGF
Φg+1(y) = µ(Φg(y)), with Φ0(y) = y ⇒ Φg(y) = µ[g](y).

Φg+1(y) = p0 +

p1

Φg(y)

+
p2

Φg(y)Φg(y)

+
p3

Φg(y)
Φg(y)

Φg(y)

+ · · ·

The number of completed infections has PGF Ωg+1(z) = zµ(Ωg(z))
with Ω0(z) = z0 = 1:

Ωg+1(z) = z

 p0 +

p1

Ωg(z)

+
p2

Ωg(z) Ωg(z)

+
p3

Ωg(z)
Ωg(z)

Ωg(z)

+ · · ·


J. C. Miller (La Trobe & IDM) PGFs and Infectious disease 19 May 2019



Size distribution

Intermediate size

The joint distribution of completed infections and active infections
has PGF Πg+1(y, z) = zµ(Πg(y, z)) with Π0(y, z) = y.

Generation 3, 5× 105 simulations N = 1000 vs predictions
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Size distribution

Intermediate size
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Size distribution

Final size distribution

In an infinite population, the final size distribution is given by
Ω(z) = limg→∞Ωg(z) and is a solution to

Ω(z) = zµ(Ω(z))

There is a theorem:

Given an offspring distribution with PGF µ(y), the probability of
exactly j <∞ infections is the coefficient of yj−1 in [µ(y)]j .

0 2 4 6 8 10 12 14

Final Size

0.0

0.1

0.2

0.3

0.4

0.5

P
ro

b
ab

ili
ty

Simulated, N = 100

Simulated, N = 1000

jth coeff of Ω∞(z)
1
j × (j − 1th coeff of [µ(y)]j)

Poisson, R0 = 0.75

0 2 4 6 8 10 12 14

Final Size

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P
ro

b
ab

ili
ty

Simulated, N = 100

Simulated, N = 1000

jth coeff of Ω∞(z)
1
j × (j − 1th coeff of [µ(y)]j)

Bimodal, R0 = 0.75

J. C. Miller (La Trobe & IDM) PGFs and Infectious disease 19 May 2019



Size distribution

Final size distribution

In an infinite population, the final size distribution is given by
Ω(z) = limg→∞Ωg(z) and is a solution to

Ω(z) = zµ(Ω(z))

There is a theorem:

Given an offspring distribution with PGF µ(y), the probability of
exactly j <∞ infections is the coefficient of yj−1 in [µ(y)]j .

0 2 4 6 8 10 12 14

Final Size

0.0

0.1

0.2

0.3

0.4

0.5

P
ro

b
ab

ili
ty

Simulated, N = 100

Simulated, N = 1000

jth coeff of Ω∞(z)
1
j × (j − 1th coeff of [µ(y)]j)

Poisson, R0 = 0.75

0 2 4 6 8 10 12 14

Final Size

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P
ro

b
ab

ili
ty

Simulated, N = 100

Simulated, N = 1000

jth coeff of Ω∞(z)
1
j × (j − 1th coeff of [µ(y)]j)

Bimodal, R0 = 0.75
J. C. Miller (La Trobe & IDM) PGFs and Infectious disease 19 May 2019



Size distribution
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Size distribution

Final size distribution

In a finite population of size N , the probability qM of exactly M infections
occurring given that number of transmissions an individual causes has PGF
µ(x) is found by solving

C~q = ~1

where the lower triangular matrix C has

c`,M =

0 ` > M[
µ
(
M−1
N−1

)]−`∏`−1
j=1

M−`
N−` ` ≤M

Unpublished work in progress
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Deterministic dynamics of SIR disease

Basic deterministic SIR model

We now consider deterministic SIR models:

Ṡ = −βIS
İ = βIS − γI
Ṙ = γI

with S + I +R = 1.
Use an integrating factor θ−1 = eβ

∫
Idt on the Ṡ equation:

Ṡ + βIS = 0 ⇒ S = S(0)θ

where θ̇ = −βIθ and θ(0) = 1
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Basic deterministic SIR model

With some more work we have

θ̇ = −βθI
S = S(0)θ

I = 1− S(0)θ −R(0)− γ

β
ln θ

R = R(0) +
γ

β
ln θ

A single ODE!
We can derive this directly by treating θ as the probability a susceptible
person hasn’t received any transmissions.

This also works for models with multiple subpopulations
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Heterogeneous susceptibility

Assuming that the susceptible individuals each have a k such that they
become infected as a Poisson process with rate kβI/ 〈K〉, we have

S = S(0)ψ(θ)

I =

(
1− S(0)ψ(θ) +

γ 〈K〉
β

ln θ

)
R = −γ 〈K〉

β
ln θ

where ψ(x) =
∑

k P (k)xk and the system is governed by a single ODE

θ̇ =
−βθ

(
1− S(0)ψ(θ) + γ〈K〉

β ln θ
)

〈K〉
and initial condition

θ(0) = 1 .
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Discussion

Probability Generating Functions have many applications to infectious
disease modeling.

They provide efficient ways to calculate:

Epidemic probability
Outbreak size distribution
Deterministic SIR Epidemics

J. C. Miller (La Trobe & IDM) PGFs and Infectious disease 19 May 2019



Acknowledgments

Acknowledgments

Thanks to many people at the Institute for Disease Modeling, including

Mike Famulare

Edward Wenger

Hao Hu

J. C. Miller (La Trobe & IDM) PGFs and Infectious disease 19 May 2019


	Introduction
	Extinction
	Size distribution
	Deterministic dynamics of SIR disease

