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Introduction

In the setting of a stochastic epidemic, there are many contexts where we
are interested in a probability distribution pg on the non-negative integers.

m P, might represent the probability an infected individual will infect £
individuals — the offspring distribution.

m P, might represent the probability an outbreak infects exactly k
individuals — the final size distribution.

m pi(g) or pr(t) might represent the probability of & infected individuals
in generation g or time ¢ — the intermediate size distribution
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Introduction

Consider a probability distribution on the non-negative integers, with py
giving the probability of k.
Then

fl@)=> pa?
k=0

is the Probability Generating Function for the distribution.
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Introduction

Consider a probability distribution on the non-negative integers, with py
giving the probability of k.
Then

fl@)=> pa?
k=0

is the Probability Generating Function for the distribution.
We can “visualize” the PGF as:
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Introduction

The PGFs of many common distributions have compact analytic forms.
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Introduction

The PGFs of many common distributions have compact analytic forms.
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Introduction

The PGFs of many common distributions have compact analytic forms.
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m Geometric distribution: p, = (1 —r)rk, 0<r <1
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Introduction

m po = > pr0F = £(0). (important if interested in extinction of a
disease).

Y4 D2 b3 D4
Po= py + | + /N + /|\ + N+
0 0 0 0,0 0g0
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Introduction

m po = > pr0F = £(0). (important if interested in extinction of a
disease).

Y4 D2 b3 D4
Po= py + | + /N + /|\ + N+
0 0 0 0,0 0g0

m > kpr = kppl*1 = f/(1) is the expected value of the distribution
(this could give Ry).

Ip1 2po 3ps3 4dpy
(K) = Opg T+ | + s\t /|\ + //\\
1 1 1 11 14 11
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Introduction

The PGF for the sum of two distributions is the product of their PGFs.
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Po | /\ /|\
T

q1 q1Po
x x
q2

/\
r x

a3

/ \\
! x

x

In particular, if we choose k& numbers from a distribution with PGF f(z),
their sum has PGF [f(2)]* (the grandchild distribution, conditional on k).
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Introduction

If we choose k from a distribution with PGF &(z) = 3 pra® and then
choose k numbers a1, ..., a; from another distribution with PGF
h(z) =" q,x® Then the sum aj + - -- + a; has PGF

p1 D2 p3
f@= po + | + /N + N+
h(z) h(z) h(z) h(a;'g(;j(w)
= ¢{(h(z))

[If the “offspring distribution” has PGF u(x), the number after g
generations has PGF pl9(z) = pu(u(- - p(z) )]

Function composition corresponds to looking at later generations.
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Introduction

m If we know the analytic form of p(z), we can numerically calculate
f(2) = pl9(2) for any value of z without knowing f(z)'s expansion a
priori.
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Introduction

m If we know the analytic form of p(z), we can numerically calculate
f(2) = pl9(2) for any value of z without knowing f(z)'s expansion a
priori.

m Then we can find the coefficients of f by
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Introduction

m If we know the analytic form of p(z), we can numerically calculate
f(2) = pl9(2) for any value of z without knowing f(z)'s expansion a
priori.

m Then we can find the coefficients of f by

== z2=—
. 211 |z|=1 Zk+1 2 0

o i f <62m'm/M> o~ 2kmim/M
M=

1 f(z) 1o f <e27ri0> o—ik0 4g

m We just evaluate f at the M locations once, and then we can do the
summation for many values of k. It is very accurate if M > k, and
reasonably accurate up to k = M — 1.
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Introduction

PGFs have many applications:

m Calculating the probability an outbreak goes extinct in a large
population.

m Determining the size distribution of an outbreak after a short time
period.

m Predicting the final size distribution in a population (even if not
small).

m Deterministic SIR dynamics in random networks.
m Deterministic SIR dynamics in well-mixed populations.

m and more!
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Introduction

We assume:
m A single introduced infection.
m Discrete time: the offspring distribution has PGF u(z).
We can quickly conclude that
s Ro= p/(1).
m The PGF for the number of infections in generation g is 19 (x).
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Extinction

Given that the offspring PGF is pu(y):
m It is reasonably well-known that the extinction probability «: solves
y = u(y)-
m 1= p(1) is always a solution, but when Ry > 1, there is another
solution in [0, 1).
m We can find the other solution through iteration.
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Extinction

w19 (y) = p(p(--- ply)---)) is the PGF for the number of infections
in generation g.

= Then o, = pl9(0) is the probability the outbreak is extinct by
generation g.

m How does this prediction compare with stochastic simulation?
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in generation g.
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Extinction

w9 (y) = p(u(--- pu(y)--)) is the PGF for the number of infections
in generation g.

= Then o, = pl9(0) is the probability the outbreak is extinct by
generation g.

m How does this prediction compare with stochastic simulation?

N =100
N = 1000

Generation

Poisson distribution, u(y) = 21, Ry = 2.
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Extinction

w9 (y) = pu(u(--- pu(y)---)) is the PGF for the number of infections
in generation g.

= Then o, = pl9(0) is the probability the outbreak is extinct by
generation g.

m How does this prediction compare with stochastic simulation?

N =100
%
y = pu(x) . N = 1000

G 3 T
Generation

Bimodal distribution, pu(y) = (1 +2y3)/3, Ro = 2.
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Size distribution

Given a single introduced infection in an infinite population and an
offspring distribution with PGF u(y) = - pry/*:

m The number of active infections in generation g + 1 has PGF
Og11(y) = p(Py(y)), with ®o(y) =y = 4(y) = ull(y).

p1 D2 D3
Por1(y)= po + | + /N o+ /N A+
D, (y) Dy (y) Dy(y) B 20

® The number of completed infections has PGF Qg11(z) = 21(Q4(2))
with Qo(z) =20 = 1:

p1 P2 p3
Qgra(z) =2 po + [ + /v + /N Ao
Qg(z) Qg(z) Qg(z) ﬂg(zs))g(;;y(l)
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Size distribution

m The joint distribution of completed infections and active infections
has PGF 1,11 (y, 2) = zpu(I14(y, 2)) with y(y, 2) = y.
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Size distribution

m The joint distribution of completed infections and active infections
has PGF I1g41(y, 2) = zu(Il4(y, 2)) with IIy(y, z) = y.

Generation 3, 5 x 10° simulations N = 1000 vs predictions

\mm ated flu iction l“»m‘]““l“l‘l ity)

-

) n 5 0 5 w1 3
Completed infections Completed infections

Poisson, u(z) = e®™E-1 Ry = 0.75.
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Size distribution

m The joint distribution of completed infections and active infections
has PGF I1g41(y, 2) = zu(Il4(y, 2)) with IIy(y, z) = y.

Generation 3, 5 x 10° simulations N = 1000 vs predictions

\mm ated Prediction log l““l‘ ‘l‘l ity)

_

50 5w 5w 5 0
Completed infections ( umplr te nl infoc tnm\

Bimodal, u(z) = (3 +23%)/4, Ro = 0.75.

J.C. Miller (La Trobe & IDM) PGFs and Infectious disease  19May2019



Size distribution

m The joint distribution of completed infections and active infections
has PGF I1g41(y, 2) = zu(Il4(y, 2)) with IIy(y, z) = y.

Generation 3, 5 x 10° simulations N = 1000 vs predictions

Simulated Prediction logyg(probability)

|

Poisson, u(z) = 21, Ry =2
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Size distribution
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Size distribution

In an infinite population, the final size distribution is given by
Q(z) = limg_,00 24(2) and is a solution to

Q(z) = 2(Q(2))
There is a theorem:

Given an offspring distribution with PGF u(y), the probability of
exactly j < oo infections is the coefficient of y/ =1 in [u(y)]’.
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Size distribution

In an infinite population, the final size distribution is given by
Q(z) = limg_,o 24(2) and is a solution to
Q(z) = zu(2(2))

There is a theorem:
Given an offspring distribution with PGF u(y), the probability of

exactly j < oo infections is the coefficient of 47—t in [u(y)]’.

Simulated, N = 100 07 ﬁ — Simulated, N = 100
‘\ Simulated, N = 1000

Simulated, N = 1000 |
——~ jth coeff of Qu(2)

jth coeff of Q. (2)
% % (j — 1th coeff of [u(y))’)

% X (j — 1th coeff of [u(y))’)

|
i
|
|

Bimodal, Rq = 0.75

Poisson, Rn = 0.75
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Size distribution

In an infinite population, the final size distribution is given by
Q(z) = limg_,o 24(2) and is a solution to

Q(z) = 2u(Q(2))
There is a theorem:

Given an offspring distribution with PGF u(y), the probability of
exactly j < oo infections is the coefficient of y/ =1 in [u(y)]’.

,A\ — Simulated, N = 100 . I Simulated, N = 100
/ Simulated, N' = 1000 Simulated, N = 1000
| ==~ jth coeff of Q. (2) : i Jth coeff of Qx(2)

1

% x (j — 1th coeff of [pu(y))’) 5 % (j — 1th coeff of [(y)])

Poisson, Ry = 2 Bimodal, Rg = 2
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Size distribution

In a finite population of size IV, the probability gjs of exactly M infections
occurring given that number of transmissions an individual causes has PGF

p(x) is found by solving
Ci=1

where the lower triangular matrix C has
0 {>M

ceM = M1\ -1 M—e
[N (m)} Ijsin= ¢=M
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Size distribution

In a finite population of size IV, the probability gjs of exactly M infections
occurring given that number of transmissions an individual causes has PGF

p(x) is found by solving
Ci=1

where the lower triangular matrix C has

0 > M
CoM = [M (%)}_Enﬁ—}w <M

Unpublished work in progress
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Deterministic dynamics of SIR disease

We now consider deterministic SIR models:

S =—pIS
I=pIS—~I
R:qll

with S+ 1+ R=1.
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Deterministic dynamics of SIR disease _

We now consider deterministic SIR models:

S =—pIS
I=pIS—~I
R:q/I

with S+71+ R=1. _
Use an integrating factor 6! = P14t on the S equation:

S+BIS=0 = S=25(0)0

where § = —316 and 0(0) = 1
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Deterministic dynamics of SIR disease

With some more work we have
6 =—p6I
S =.5(0)64
I=1-5(0)§ — R(0) — %me

R:R(O)—I—%lnﬁ

A single ODE!
We can derive this directly by treating 6 as the probability a susceptible
person hasn't received any transmissions.
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Deterministic dynamics of SIR disease

With some more work we have
6 =—p6I
S =.5(0)64
I=1-5(0)§ — R(0) — %me

R:R(O)—I—%lnﬁ

A single ODE!
We can derive this directly by treating 6 as the probability a susceptible
person hasn't received any transmissions.

This also works for models with multiple subpopulations
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Deterministic dynamics of SIR disease _

Assuming that the susceptible individuals each have a k such that they
become infected as a Poisson process with rate k3I/ (K), we have

S = S(0)4(0)

(1 1K) |
I_(l SO)$(6) + 19)
r= -2 g

where ¢(z) = Y, P(k)z* and the system is governed by a single ODE

5 P (1 — 5(0)3(6) + X 1n 0)

and initial condition
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Deterministic dynamics of SIR disease

m Probability Generating Functions have many applications to infectious
disease modeling.
m They provide efficient ways to calculate:
m Epidemic probability
m Outbreak size distribution
m Deterministic SIR Epidemics
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