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Finite differences with regular grids, irregular boundaries
with jump conditions at the bdry or interface
Re = O(1), viscosity improves errors
immersed interface method rather than

immersed boundary method (sorry Charlie!)
Estimates in maximum norm for several equations
(1) Discrete Poisson equation, gain in regularity
(2) Discrete diffusion equation, gain with implicit time step
(3) Error estimates for Navier-Stokes with a moving interface,

velocity and pressure, neglecting the error in interface position
validating the general approach in a simple setting



The Problem and the Result

Navier-Stokes eq’ns in R2 or R3

periodic boundary conditions
interface Γ(t), a closed surface
force f on Γ acts on fluid
Re = O(1)
Charlie’s prototype problem

−

+

Ω
Ω Γ

∂u

∂t
+ u · ∇u = −∇p + µ∆u + fδΓ

∇ · u = 0

The interfacial force f amounts to jumps in ∇u and p.

Result. We assume Γ(t) known; f , ∇tanf known to O(h2).
With one scheme based on the immersed interface method,
with truncation error O(h) at Γ and O(h2) elsewhere,
the error in velocity and pressure is uniformly about O(h2).



Estimates in maximum norm for finite difference versions
of equations such as

∆u = f , ut = ∆u + f

on a rectangular grid in Rd , any dimension d
Estimates in L2 are the most natural.
For problems with limited smoothness, e.g. with interfaces,

largest error is typically on a small set
L∞ is a more meaningful measure of error than L2

methods are designed to control maximum truncation error

We get estimates of the form ∆hu
h = f h → ‖uh‖ ≤ C |f h|

Equations are linear, so that estimates apply to errors:
If ∆hu

h = f h and ∆hu
exact = f h + εh, εh = truncation error,

we subtract to get ∆h(uh − uexact) = −εh and

‖uh − uexact‖ ≤ C |εh|



Discrete Laplacian (d = 2) with spacing h:

∆hu(ih, jh) = (ui+1,j + ui−1,j + ui ,j+1 + ui ,j−1 − 4ui ,j) /h
2

∆hu = D+
1 D−1 u + D+

2 D−2 u

D+
1 u = (ui+1,j − ui ,j) /h , D−1 u = (ui ,j − ui−1,j) /h

For smooth u, ∆hu = ∆u + O(h2) from Taylor expansion
Does inverting ∆h gain differences?

For the exact problem ∆u = f , periodic, average zero
we have sharp Lp estimates, 1 < p <∞

‖Dku‖Lp ≤ Cp‖f ‖Lp , k ≤ 2

There are also “sharp” estimates in Hölder norms C k+λ

(Schauder estimates) but not L∞



Estimate for the Discrete Laplacian. Suppose uh and fh are
periodic grid functions on Rd with average zero
and ∆huh = fh. Then in maximum norms

‖uh‖+ ‖Dhuh‖ ≤ C‖fh‖ ,

‖D2
huh‖ ≤ C | log h|‖fh‖

with C independent of h, Dh = any first difference.
The log factor cannot be improved.

E.g., u(x , y) = (x2 − y2) log r

This can be proved using estimates for a discrete Green’s function.
J.T.B. and A. Layton, CAMCoS (2006)

The discrete maximum principle estimates uh, but not differences.
V. Thomée proved discrete Schauder estimates (1968).
Estimates for finite element spaces are better known.



Poisson problem with an interface

∆u− = f− in Ω− , ∆u+ = f+ in Ω+ ,

[u] = g0 on Γ , [∂nu] = g1 on Γ



Poisson problem with an interface

∆u− = f− in Ω− , ∆u+ = f+ in Ω+ ,

[u] = g0 on Γ , [∂nu] = g1 on Γ

−

+

Ω
Ω Γ

∆hu(ih)−∆u(ih) = O(h2)
at regular points,
away from Γ

∆hu(ih)−∆u(ih) is large
at irregular points,
where ∆h crosses Γ

If we improve the truncation error to O(h) at the irreg. pts.
using the Immersed Interface Method, then

the error in u is uniformly O(h2), and
the error in Dhu is uniformly O(h2| log h|)



Immersed Interface Method, R. LeVeque, Z. Li; A. Mayo

Poisson problem with interface:

∆u− = f− in Ω− , ∆u+ = f+ in Ω+ ,

[u] = g0 on Γ , [∂nu] = g1 on Γ

Find Ch so that ∆hu
exact − f exact = Ch + O(h). Solve

∆huh = fh + Ch

Ch = 0 at regular grid points; truncation error O(h2)
Ch 6= 0 at irregular grid points near Γ, e.g.
If xj ∈ Ω−, xj+1 ∈ Ω+, h+ = xj+1 − x∗

vxx(xj) =
vj−1 − 2vj + vj+1

h2
− 1

h2

(
[v ] + h+[Dv ] +

h2
+

2
[D2v ]

)
+O(h)

Zhilin Li & K. Ito, The Immersed Interface Method..., SIAM, 2006



With corrections, ∆h(uh − u) = O(h) at the irregular points
since the Ch’s cancel. It is O(h2) at the regular points.

Theorem. With truncation error O(h2) at regular points
and O(h) truncation error at irregular points,

|uh(jh)− u(jh)| ≤ C0h
2 ,

|Dhuh(jh)− Dhu(jh)| ≤ C1h
2| log h| .

Brief summary of proof (J.T.B. and A. Layton, CAMCoS ’06):
The O(h) truncation error at irregular points has the form

F0 + D
(1)
h F1 + · · ·+ D

(d)
h Fd , Fi = O(h2)

Then ∆h(uh − u) = Freg + F0 +∇h · (F1, . . . ,Fd)
The estimate for uh − u, has a gain of one deriv
for Dh(uh − u), gain of two derivs, log factor



Lemma. Suppose f irr is a grid function on Ω such that
f irr 6= 0 only at irregular points (near the interface).
Then there are periodic grid functions Fk so that
f irr = F0 +

∑d
k=1 D

−
k Fk and

‖Fk‖max ≤ Ch‖f irr‖max .

Key example in one dimension:
F (ih) = 0 for i ≤ 0; F (ih) = 1 for i > 0
Set D+

h F (ih) = [F ((i + 1)h)− F (ih)]/h
Then D+

h F (ih) = 1/h for i = 0; D+
h F (ih) = 0 for i 6= 0

D+
h F → F gains a factor of h in maximum norm.

To prove in dimension d , write f irr locally
as the difference of its sum in a direction
transverse to Γ; use partition of unity

Similar lemmas in L2: Hackbusch ’81, Stevenson ’91



Gain in Regularity for Parabolic Difference Equations

Suppose we approximate (using backward Euler)

ut = ∆u + f , u(·, 0) = 0

by un+1 − un = τ∆hu
n+1 + τ f n+1

or un+1 = (I − τ∆h)−1
(
un + τ f n+1

)
with tn = nτ , τ = time step = ch
Then

‖un‖+ ‖Dhu
n‖ ≤ C1 sup

t≤T
‖f (·, t)‖

‖D2
hu

n‖ ≤ C2 (1 + | log h|) sup
t≤T
‖f (·, t)‖

Similar statements hold for a class of time-stepping methods...
Interpretation: ucomputed − uexact and differences

are bounded by maximum truncation error.
J.T.B. “Smoothing properties...”, SINUM 2009.



Gain in Regularity for Diffusive Difference Equations

Discretize ut = ∆u in Rd × [0,T ]
grid spacing h, time step τ
use implicit time stepping, τ = O(h)
for a single step method, un+1 = Sun and un = Snu0

e.g., Crank-Nicolson method (second-order accurate):
un+1 − un = (τ/2)(∆hu

n+1 + ∆hu
n) ,

S = s(τ∆h) = (1 + τ
2 ∆h)(1− τ

2 ∆h)−1

The best results are for L-stable methods.
CN is A-stable, but not L-stable; s(∞) 6= 0.
A-stable means |s(z)| ≤ 1 for Re z ≤ 0
L-stable means A-stable and s(z)→ 0 as z →∞
Examples: backward Euler, TGA (an improvement of CN);
one SDIRK2 (Runge-Kutta); BDF2 (but multi-step)



Main Result. For an L-stable, single step method, or BDF2
with operator norm on L∞(Rd

h),

‖Sn‖ ≤ C0

‖DhS
n‖ ≤ C1(nτ)−1/2

‖D2
hS

n‖ ≤ C2(nτ)−1

for nτ ≤ T , with constants indep’t of h, τ .
For CN we get more limited estimates: ‖Sn‖ ≤ C0 and

‖DhRS
n‖ ≤ C1(nτ)−1/2 , R = (1− τ

2 ∆h)−1

J.T.B., “Smoothing Properties...”, SINUM, 2009

Related work: Aronson (’63), Widlund (’66) for τ = O(h2);
Ashyralyev & Sobolevskii; Thomée et al. for finite elements
Michael Pruitt, Numer. Math. (’14) generalization to

parabolic operators with variable coefficients



Discretizing the Navier-Stokes equations

For exact solutions with periodic boundary conditions

ut + u · ∇u +∇p = ∆u + F , ∇ · u = 0

Use P , the L2-projection on divergence-free vector fields

ut + P(u · ∇u) = ∆u + PF

where Pw = w −∇∆−1∇ · w
To discretize in space, use centered diff’s for ∇, e.g.

∂u

∂x1
≈

ui+1,j − ui−1,j

2h

We use the usual discrete Laplacian and get an
“approximate projection”.

(A staggered grid (MAC) would avoid this.)



Use centered differences for grad and div, ∇ ≈ ∇h

Suppose we define ∆wu = ∇h · ∇hu,
then ∆w is the “the wide Laplacian”, in 2D

∆wu =
ui+2,j + ui−2,j + ui ,j+2 + ui ,j−2

4h2

P0 = I −∇h∆−1
w ∇h· is a projection,

i.e. P2
0 = P0, “the exact discrete projection”

but it is preferable to use the usual discrete Laplacian,

∆hu =
ui+1,j + ui−1,j + ui ,j+1 + ui ,j−1

h2

Then we get an “approximate projection”

P̃ = I −∇h∆−1
h ∇h· , P̃2 6= P̃

Cf. Almgren, Bell, Crutchfield, 2000.



P̃ = I −∇h∆−1
h ∇h· = “approx projection”

P0 = I −∇h∆−1
w ∇h· = “exact discrete projection”

With periodic boundary conditions,
∆h = 0 on constants, invertible on fcns of mean value zero
∆w has a null space with dim 2d , = 0 on constants and (−1)j .

On L2, ‖P̃‖ ≤ 1, from checking eigenvalues (L2 stability)
On L∞, ‖P̃‖ ≤ C | log h|, using the elliptic estimate.
Similarly for P0...

Often with interfaces a MAC (staggered) grid is used
so that the approx proj’n is an exact proj’n.



Navier-Stokes with a moving interface

periodic bdry cond’ns on box
interface Γ, depending on t
force f on Γ acts on fluid
force on Γ amounts to jumps

in p and ∇u (here in 2D)

−

+

Ω
Ω Γ

∂u

∂t
+ u · ∇u = −∇p + µ∆u + f δΓ

∇ · u = 0

[p] = f · n,
[
∂p

∂n

]
=

∂

∂s
(f · tan) ,

[u] = 0, µ

[
∂u

∂n

]
= − (f · tan) tan.



The Scheme for Navier-Stokes
time step τ = O(h), viscosity = 1

un+1−un = −τ(u ·∇u)n+1/2−τ∇pn+1/2 +τ∆un+1/2 +τC1 +τC7

C1 corrects u
n+1/2
t ≈ (un+1 − un)/τ if crossing Γ

(u · ∇u)n+1/2 = 3
2u

n · ∇hu
n − 1

2u
n−1 · ∇hu

n−1 + C2

∆un+1/2 = 1
2

(
∆hu

n+1 + ∆hu
n
)

+ C3

C2 and C3 correct differences using jumps in Du, D2u

∆hp
n+1/2 = −

(
∇h · (u · ∇u)n+1/2 + C4

)
+ C5 −m

C5 uses jumps in p, ∂p/∂n, u · ∇u
m is a constant so RHS has mean value zero

∇pn+1/2 = ∇hp
n+1/2 + C6



This scheme is similar to ones that have been developed:

Z. Li, M.-C. Lai, JCP 2001
L. Lee, R. LeVeque, SISC 2003
D. Le, B. Khoo, J. Peraire, JCP 2006
S. Xu, Z. J. Wang, JCP 2006

We assume periodic boundary conditions in the computational box.
With a solid boundary, the bdry cond’n must be discretized.
Discretizing at the boundary and at the interface

should be separate issues?
Often a MAC grid is used; the analysis should apply.

Xu & Wang use explicit time stepping, larger Re.
truncation error O(h2) at the interface
needed for O(h2) solution error



Error Estimates, Statement of Result

Theorem. Assume the exact solution is good for 0 ≤ t ≤ T .
Neglect errors in the location of Γ.
Assume f and ∇tanf are known to O(h2).
Choose time step τ with τ/h fixed. Then for tn = nτ ≤ T

max
j ,n

∣∣∣ucomputed(xj , tn)− uexact(xj , tn)
∣∣∣ ≤ KTh

2| log h|2

Similarly the pressure error is bounded by h2| log h|3
except for an indefinite constant.



Error Estimate for NSE

u, p computed quantities; v , q exact

vn+1−vn = −τ(v ·∇v)n+1/2−τ∇qn+1/2+τ∆vn+1/2+τC1+τC7−τεn

Here qn+1/2 solves a Poisson problem like pn+1/2, v in place of u
For example, the error in ∆vn+1/2 is

O(h2) at regular points, O(h) at irregular points
It has the form O(h2) + DO(h2) = (I + D)O(h2) by the Lemma
We show the truncation error is

εn = (I + D)O(h2| log h|), ε0 = O(h| log h|)
Let w = u − v = velocity error; subtract equations, cancel C ’s !
Set gn+1/2 ≡ (u · ∇hu)n+1/2 − (v · ∇hv)n+1/2. Then

∇hp
n+1/2 −∇hq

n+1/2 = −∇h∆−1
h ∇h · gn+1/2 = −(I − P̃)gn+1/2

wn+1 − wn = −τ P̃gn+1/2 + (τ/2)(∆hw
n+1 + ∆hw

n) + τεn



Error Estimate for NSE, page 2 of 4

w = u− v = velocity error; P̃ = approx proj’n, P0 = exact proj’n

wn+1 − wn = −τ P̃gn+1/2 + (τ/2)(∆hw
n+1 + ∆hw

n) + τεn

R = (I − τ
2 ∆h)−1 , S = (I + τ

2 ∆h)(I − τ
2 ∆h)−1

wn+1 = Swn − τRP̃gn+1/2 + τRεn

Since ‖P̃‖ ∼ | log h|, a direct stability estimate doesn’t work?
Define yn = P0w

n and zn = (I − P0)wn, and estimate separately.
‖wn‖ ≤ ‖yn‖+ ‖zn‖ but not the reverse!

yn+1 = Syn − τRP0g
n+1/2 + τP0Rε

n

zn+1 = Szn − τRA(I − P0)gn+1/2 + τ(I − P0)Rεn

where A = (∆h −∆w )∆−1
h is bounded indep’t of h

(proof uses the Fourier multiplier)



Error Estimate for NSE, page 3 of 4

yn+1 = Syn − τRP0g
n+1/2 + τP0Rε

n

yn = P0w
n ; gn+1/2 = (u · ∇hu)n+1/2 − (v · ∇hv)n+1/2

We know g is bounded like ‖Dhy‖+ ‖Dhz‖.
We need to know the same for P0g = g −∇h∆−1

w (∇h · g).
How to avoid the log h from P0?

g = v · ∇hw + · · · = v · ∇hy + v · ∇hz + . . .
For exact equations, ∇ · (v · ∇v) = Σvj ,ivi ,j since ∇ · v = 0.
Here yn = P0w

n, ∇h · yn = 0, and the same works.

zn = (I − P0)wn is a discrete gradient, Dhizj = Dhjzi and
(I−P0)(v ·∇hz) = ∇h∆−1

w ∆w (vjzj)+DhB(z) = ∇h(vjzj)+DhB(z)

All together P0g
n+1/2 = Φn

0 + DhΦn
1 + (same (n − 1))

where ‖Φn
k‖ ≤ K (‖yn‖+ ‖zn‖), k = 0 or 1

It is important that v is continuous so that Dv is bounded!



Error Estimate for NSE, concluded
yn+1 = Syn − τRP0g

n+1/2 + τP0Rε
n

yn+1 = −τ
n∑
`=1

Sn−`RP0g
`+1/2 + τ

n∑
`=0

Sn−`RP0ε
`

We use ‖Sn−`RDh‖ ∼ ((n − `)τ))−1/2, P0g ∼ Dy + Dz
Define δn = max (‖ym‖+ ‖zm‖) , m ≤ n

|first sum| ∼
n−1∑
`=1

((n − `)τ))−1/2δ`τ + τ−1/2δnτ

Similarly for the second sum, with ε` ∼ (I + D)O(h2| log h|2).
Add a similar estimate for zn to get

δn+1 ≤ K1

n−1∑
`=1

((n − `)τ))−1/2δ`τ + K1τ
−1/2δnτ + K2h

2(log h)2

and finally, with Hölder and Grönwall,

δn+1 ≤ Kh2(log h)2



J.T.B., “Uniform error estimates for Navier-Stokes flow with an
exact moving boundary using the immersed interface method”
SIAM J. Numer. Anal. 53 (2015), 2097-2111.
also available at arXiv.org
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Another project:

JTB, W. Ying, and J. R. Wilson, ”A simple method for computing
singular or nearly singular integrals on closed surfaces”,
to appear in Comm. Comput. Phys.; also available at arXiv.org

W. Ying and JTB, ”A fast accurate boundary integral method for
potentials on closely packed cells,” CiCP 14 (2013)

S. Tlupova and JTB, ”Nearly singular integrals in 3D stokes flow,”
CiCP 14 (2013)

JTB, ”A grid-based boundary integral method for elliptic problems
in three dimensions”, SINUM 42 (2004)

JTB and M.-C. Lai, ”A method for computing nearly singular
integrals”, SINUM 38 (2001)


