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Introduction
Future machine Learning
• Strategic applications, with strong societal impacts : HPDA, Predictive medicine, geoscience, human 

brain, virtual body, social sciences, genetics, smart cities, …. and applications we don’t imagine yet!
• Have to use the faster available supercomputers and datacenters

Exascale Machine Learning
• Extreme Computing : Exascale machine (202X and Y Mwatts?) and beyond

– What is exascale : 64, 32, 16 bits, mixed arithmetic, TOP500, HPCG, Graph500???
– Supercomputers were parallel machines, they become distributed and parallel machines

• Big Data : have to be distributed along large number of disks, clouds, platforms
– Different (cheaper) hardware than HPC, different methods
– Data Centers were mainly distributed platforms, they have to collaborate with parallel 

computational based nodes 
• Machine Learning : what new methods? 

– 32, or 16, bits arithmetic often enough
– Linear Algebra (and 64 bit arithmetic) still important (graph decomposition, regression, 

ranking, …)
Combining extreme computing and Big Data for future machine learning
• We have to define a realistic roadmap and set milestones
• First combining HPC and Big Data, second proposing programming paradigms and methods to 

efficiently use ”exascale” machines adapted for such applications, and then introducing new 
(“exascale”) machine learning methods
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Changing HPC Applications: Examples from 
Gordon Bell Prizes
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Future computing, programming, and applications?

• Simulations would not be the main applications on such platforms

• Hierarchical heterogeneous architectures

• Networks on chip : distributed memory even 

on chips

• Supercomputers combine distributed and 

parallel computing

• New architectures would target first 32 or 16 bits

arithmetic, to minimize energy 

• The data access have to be 

optimized and computational nodes 

have to be include on data centers

• The data ”prefetching” has to be efficiently asynchronously scheduled : a hierarchy of 
memory have to be design from the cores to the data centers

• What programming paradigms, what architectures and what algorithms?

• We have to :
– Develop smart schedulers to optimize data communications and computation 

– Multi-level programming : distributed (large granularity), parallel (nodes), manycores, accelerators, MT,  on 
chip,…

• Graph of Parallel Tasks/Conponents/Containers are serious candidates for such 
programming
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Graph of Tasks/Components/Containers (TCC)

• Each task/component/container may be an existing method/software developed 
for a large part of the cores, but not all of them 

• The computation on each core may use multithread optimizations and runtime 
libraries

• Accelerator programming may be optimized also at this level

• Then we have the following levels of programming and computing:

– Graph of task/components/containers, already developed or new ones,

– Each TCC is run on a large part of the computer, on a large number of cores.  
Using SPMD, PGAS-like, data parallel languages

– On each processor, we may program accelerators,

– On each core, we have a multithread optimisation.

• Data migrations between computing nodes and data storage units/Data Centers
have to be anticipated, with persistence when possible, based on smart scheduling 
algorithms

• We have to allow the users to give expertise to the middleware, runtime system 
and schedulers. Scientific end-users have to be the principal target on co-design 
process. Frameworks and languages have to consider them first.
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Graph (n dimensions) of  TCC
The YML Example

Begin node
End node
Graph node

Dependence

par
compute task1(..);
notify(e1);

//
compute task2(..); migrate matrix(..);
notify(e2);

//
wait(e1 and e2);
Par (i :=1;n) do

par
compute task3(..);

notify(e3(i));
//
if(I < n)then

wait(e3(i+1));
compute task(..);
notify(e4);

endif;
//
compute task5(..); control robot(..);
notify(e5); visualize mesh(…) ;
end par

end do par
//

wait(e3(2:n) and e4 and e5);
compute task6(..);
compute task7(..);

end par

Generic component node
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Multi-Level Parallelism Integration: YML-XMP

<TASK 2> <TASK 3> <TASK 4>

<TASK 5> <TASK 6>

<TASK 1>

<TASK 7>

NODE NODE NODE

NODE NODE NODE

for(i=0;i<n;i++){
for(j=0;j<n;j++){

tmp[i][j]=0.0;
#pragma xmp loop (k) on t(k)

for(k=0;k<n;k++){
tmp[i][j]+=(m1[i][k]*m2[k][j]);

}}}
#pragma xmp reduction (+:tmp)

Each task is a parallel program over several nodes.
XMP language can be used to descript parallel program easily!

YML provides a workflow programming 
environment  and high level graph description 
language called YvetteML

OpenMP
GPGPU

etc... 

N dimension graphs
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Combining HPC and Data Science

Combining HPC and Big Data is the first step to use efficiently new and future 
supercomputers

(Exascale)-Extreme
scale (BIG) DATA science

• Two different worlds with different hardware, organization,..
• They both have to use tasks, or component, or containers to encapsulate more 

local parallel/multi-level computations 
• Distributed and multilevel programming, asking for smart scheduling and 

optimized data migrations

Existing example : Map-Reduce use to compute sparse matrix computation on the 
data “world”. Others parts of the algorithm are distributed on the  “HPC” world, 
Ranking (PageRank,…..)
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Others  

Existing Big Data world
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DAG of containers
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Adapted from Laurent Bobelin’s slides

DAG of containers to use TEZ
Multilevel programming



YML/TEZ backend for Big Data
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Graph of TCC using YML : use to generate the DAG for TEZ

Graph

DAG
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OmniRPC

OmniRP
backend

MPI

XtremWEB
P2P

RPC, P2P, Grids, Clouds

Others YML back-ends
SUPERCOMPUTERS

Others middleware

Convergence between HPC and Big Data
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OmniRPC

OmniRP

backend YML

OmniRPC

-TEZ

backend

Computational” 

part”

Data, “Big Data” 

part : HDFS_like

Data 

Manager

Data movement optimization :

• Data persistence

• Anticipation of data migration

• On the fly restructuration and analyze

• On the fly ontology analyze

• ….
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OmniRPC

OmniRP
backendOmniRPC

-TEZ
backend

Computational” 
part”

Data, “Big Data” 
part : HDFS_like

Data 
Manager

Data Prefetching using the YML Graph :work done 
with DDN, support by TOTAL (M. Hugues and H. calandra) 
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Another Possibility:
Separating Data Management from Data Analyses

For each operation P Do
Develop P’s :
- Data management
- Expression execution
- Other components:

parallel, 
communication
cache,
etc. 

End For

Redundant
Diverse

Customized Solutions

✗

✗Redundant

Scientific data analyses typically 
are custom programs

✗

UDF API                      
- Data management
- Generic exec. engine
- Other components: 

parallel, comm., 
cache, etc. 

Diverse

Single 
shared 
system

Operation expression 1

User-defined Functions (UDF)

Big Data systems separate data 
management from data analyses

Example: Scientific Data Services with array data model and ArrayUDF
https://bitbucket.org/arrayudf/arrayudf



Comparison with Spark –
Common Scientific Data Analysis Tasks

Spark experiences 
out-of-memory: 
- large data size     
- more local cells
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We observed 
ArrayUDF is 2070X 
faster
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New applications for HPC-Big Data

Using :

• Stochastic processes
• Bayesian statistic 
• Graphs (decomposition, 

analysis,..)
• Game theory 
• Classification
• Regression
• Others “classical Machine 

Learning algorithms
• AI 

• Linear algebra for those news 
machines and applications

• Applied mathematics
• “new algebras” (CERFACS, TOTAL,..

Simulation versus observation :

Formula to results 
versus 

Data to formula

A lot of scientific applications may 
have an “optimization” specification
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Combining HPC and “Big Data”

• HPC and Big Data are now on distributed and parallel environments
• These environments may not be (completely) integrated for economic and 

applications criteria : even if architectures would be sometime interleaved. 
• How to program :

• Graphs of task/components/containers (large granularity) : YML, 
Legion, Swift, Tensorflow…..

• Each “task” may be a parallel encapsulate program 
• Data parallelism on each (cluster of) processor (Global array, PGAS, 

XMP)
• Mixing distributed and parallel programming
• Data migration (anticipation and persistence)
• A smart scheduler may optimize  ”HPC computation”, “Big Data”, and data 

migrations inside and between the two worlds, with respect of existing and 
future architectures. 

• Then ,we must first combine HPC and “Big Data” to open the road to future 
new applications and “extreme” machine learning.
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Questions?

Contact information:
John Wu John.Wu@nersc.gov

SDM group
http://crd.lbl.gov/sdm/


