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Paralle! data analysis consists of decompasing a probiem into blocks,
operating on them, and communicating between them.
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Moving from Postprocessing to

Run-Time Scientfic Data
Analysis in HPC
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* Big science => big data. big
machines
* Most analysis algorithms are not
up to speed
» Either serial, or
» Qverheads kill scalability
» Solutions
* Process dat closer to the
source

* Write scalable analysis
algonthms
* Parallelize in various forms

Question: What is the best abstraction
to express parallelism?



Abstractions Matter: Think Blocks, not Tasks

* Block = unit of decomposition
* Block size, shape can be configured
* From coarse to fine
* Regular, adapuve, KD-tree
Block placement is flexible, dynamic
* Blocks per task
* Tasks per block
* Memory / storage hierarchy
Dana is first-class ctizen
* Separate operations per block
* Thread safety

Parallel data analysis consists of decompasing a problem into blocks, operating
on them, and communicating between them.



The What and Why of a Block-Based Approach




called blocks, and
live in the same blocks.
Blocks don’t have to be
“blocky.” Any
subdivision of data (eg., a
set of graph nodes, a
group of particles, etc.) is
a block.



Create Multiple Decompositions

Uses:

Organize input
(upper right)

Second
decomposition
suited for
parucular analysis
(lower right)

Comparing
muiltiple unrefated
data domains (not
shown)

Original daca
Arbitrary decomposition Kd-tree decomposition
- - a L ]
¥ e 2 it > o E
. - o a . ®
- L @ I 0
& " . '] —p - » . @
- L ] »
- . L]
. 2 . o T . -
g .
. ® a ° »
- ¢ - | »

4 new blocks spatnily contiguous
and load balanced by number of
objects in each

4 biocks indicated by color
No spanal locafity assumed

Original biock decomposition Slab or pencl decomposition for FFT
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6 blocks, 3 procs indicated by color MNeed not be same number of blocks




All data movement aoperations are per block: blocks exchange information with
each other using regular communication patterns. Runtime manages and opumizes
exchange between processes based on the process assignment. This allows for
flexible process assignment as well as easy debugging



Handle Time RSN ————
-Usually do not need all ume steps at once
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3D Spatial Extent ID Temporal Extent

4D

(not drawn)

3D Spatal Nesghborhood

Hybrid 3D/4D nme-—spﬁ:e decompaosition. T ime-space is represented by 4D blocks that
can aiso be decomposed such that ume blocking s handled separately.




Group Blocks into Neighborhoods

-Limited-range communication
-Allow arbitrary groupings

-Distributed. local data structure and
knowledge of other blocks (not master-
slave global knowledge)

Two examples of 3 out of a total of 25 neighborhoods



Communicate Locally and Globally Between Blocks
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Different Neighborhood Communication Patterns
Provide point to point and different vaneties of collectives wathin a neighborhood by

How to enqueue items
for neighbor exchange

* Send to a parucular

neighbor or neighbors,
send to all nearby
neighbors, send to all
neighbors

Support for periodic
boundary conditions
involves tagging which
neighbors are periodic
and calling user-defined
transform on objects
being sent to them

enqueing and subsequently exchanging items (2 steps).
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lime (seconds)

Migrate Blocks for Load Balancing (for Stream Surfaces)
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Lu et al . Scalable Computation of Steam Surfaces on Large Scaie Vector Feids, SC14
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Easily Write OOC and Muiltithreaded Algorithms
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One Example in Greater Detail



Parallel Tessellation

We developed a prototype library for computing in situ Voronoi and Delaunay
tessellations from particle data and applied it to cosmology, molecular dynamics,
and plasma fusion.

Key ldeas

* Mesh tessellations convert sparse point
data into continuous dense field data.

* Meshing output of simulations is data-
intensive and requires supercomputing
resources

* No large-scale data-parallel tessellation
tools exist.

» We developed such a library, tess.

* We achieved good parallel
performance and scalability.

* Widespread GIS applicability in addition
to the datasets we tested.
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Applications in Cosmology
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Strong scaling (excluding I
O tume) using CGAL for
three ome steps of HACC
dama of 1024 partides.At
later ume steps, partcies
cluster intc extremely
dense and sparse regions,
affecung locad balance and
reducing efficency from
Thatt=68 o 4% att =
499

Temporal soructure
dynamics:As ume
progresses. the range
of cell volume and
density expands.
kurtosis and
skewness ncreases,
consistent with the

governing physics.







Recap

Block abstraction for parallelizing data analysis allows one to:

* Decompose data into blocks

* Assign blocks to processing elements

* Have several decompositions at once

* Overload blocks, migrate blocks between processing elements
* Communicate between blocks

* Migrate blocks in and out of core

» Thread blocks with finer-grained processing elements

All made possible by choosing blocks as the parallel abstraction

Think Blocks!



Further Reading

DIy
* Peterka. T, Ross, R.. Kendall, W., Gyulassy. A.. Pascucci. V., Shen, H.-W. Lee. T-Y,
Chaudhur, A.: Scalable Parallel Building Blocks for Custom Data Analysis. Proceedings of
Large Data Analysis and Visualization Symposium (LDAV'| |), |[EEE Visualization
Conference, Providence RI, 201 |.
* Peterka, T, Ross. R.:Versatile Communication Algorithms for Data Analysis. 2012
EuroMP! Special Session on Improving MPl User and Developer Interacton IMUDI'I2,
Vienna, AT.

DIY applications
* Peterka. T, Kwan, |., Pope.A_, Finkel, H., Heitmann, K_, Habib, S, Wang, |., Zagaris. G.:
Meshing the Universe: Integrating Analysis in Cosmological Simulations. Proceedings of
the SCI2 Ultrascale Visualization Warkshop, Salt Lake Cicy, UT.
* Chaudhuri A, Lee-T.-Y, Zhou, B.Wang, C_, Xu.T,, Shen, H.-W,, Peterka, T., Chiang, Y.-}.:
Scalable Computaton of Distributions from Large Scale Data Sets. Proceedings of 2012
Symposium on Large Data Analysis and Visualization, LDAV'| 2, Seattle, WA
* Peterka. T Morozov, D.. Phillips, C_: High-Performance Computation of Distributed-
Memory Parallel 3D Voronoi and Delaunay Tessellation. Proceedings of SC14. New
Orieans. LA 2014
* Lu, K., Shen, H.-W, Peterka, T.: Scalable Computation of Stream Surfaces on Large Scale
Vecror Fields. Proceedings of SC14. New Orieans, LA, 2014.



e purpose of computing is insight, not numbers.”
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