Optimization on flag manifolds

Ke Ye

Department of Statistics, UChicago

$$
\text { July 10, } 2017
$$

work in progress with Lek-Heng Lim and Ken Sze-Wai Wong

outline

(1) introduction

(2) optimization framework on flag manifolds

motivation: data analysis

- objects: butterfly wings, movies, websites
- features:
- butterfly wings: color, texture, shape, enviroment, etc.
- movies: ratings, box office, cast, profit, etc.
- websites: content relavence, updating frequency, metadata, click rates, etc.
- object: described by n features \rightsquigarrow column vector $a \in \mathbb{R}^{n}$
- data set: k objects
- $a_{1}, \ldots, a_{k} \in \mathbb{R}^{n} \rightsquigarrow A=\left[a_{1}, \ldots, a_{k}\right] \in \mathbb{R}^{n \times k}$
- naive idea: analyze data sets on $\mathbb{R}^{n \times k}$
- bad news: A depends on choice of coordinates :(

motivation: data analysis

- good news: can use geometry !
- \mathbb{A} : span of $a_{1}, \ldots, a_{k} \in \mathbb{R}^{n \times k} \rightsquigarrow \mathbb{A} \in \operatorname{Gr}(k, n)$

- new idea: optimization on $\operatorname{Gr}(k, n)$ (Absil-Mahony-Sepulchre)

optimization algorithms on manifolds

- (M, g): Riemannian manifold
- $F: M \rightarrow \mathbb{R}$ smooth
- goal: a critical point $x \in M$ of F, i.e., $\nabla F(x)=0$
- Newton's method on manifolds
- input: initial value x_{0}
- step 1: for $k=0,1, \ldots$ solve for $Y_{k} \in T_{x_{k}} M$

$$
H(F)_{x_{k}}\left(Y_{k}, Y_{k}\right)=-\nabla F\left(x_{k}\right)
$$

- step 2: minimize F along the geodesic $\gamma\left(x_{k}, Y_{k}\right)(t)$
- step 3: set $x_{k+1}=\gamma\left(x_{k}, Y_{k}\right)(t)$

optimization on manifolds

- (M, g): Riemannian manifold
- ingredients: tangent spaces, geodesics, parallel transport, gradient and Hessian
- general M : no explicit formula!
- special M : homogeneous spaces G / H
- examples:
- Stiefel: $V_{k}\left(\mathbb{R}^{n}\right)=O(n) / O(k)$
- Grassmannian: $\operatorname{Gr}(k, n)=\mathrm{O}(n) /(\mathrm{O}(k) \times \mathrm{O}(n-k))$
- flags: $\operatorname{Flag}_{n_{1}, \ldots, n_{d}}=\mathrm{O}(n) /\left(\mathrm{O}\left(n_{1}\right) \times \cdots \times \mathrm{O}\left(n_{d}\right)\right), n_{1}+\cdots+n_{d}=n$
- fixed rank psd: $S_{+}(n, k)=G L_{+}(n) / \operatorname{Stab}_{E}$
- shape: $\left(\mathbb{R}^{k \times n} \backslash\{0\}\right) / O(n)$
- this talk: flag manifolds Flag $_{n_{1}, \ldots, n_{d}}$

real world applications

- Stiefel: computer vision, principal component analysis and independent component analysis
- Grassmannian: data comparison, dimension reduction
- flags: quantum information, nested data analysis
- fixed rank psd: low rank approximation
- shape: shape analysis
- nested data analysis

5×5
10×10

50×50
100×100

- quantum information
- simulate quantum systems
- density matrix: state of a quantum system
- orbit of a density matrix: all states of a quantum system
- orbital optimization: complex flag manifold

review: flag manifolds

- \mathbb{V} : n-dimensional real vector space
- $d \leq n$
- flag of type $\left(n_{1}, \ldots, n_{d}\right):\{0\} \subsetneq \mathbb{V}_{1} \subsetneq \ldots \subsetneq \mathbb{V}_{d}=\mathbb{V}$
- $\operatorname{dim} \mathbb{V}_{j}=\sum_{s=1}^{j} n_{s}$
- Flag $_{n_{1}, \ldots, n_{d}}=$ set of all flags of type $\left(n_{1}, \ldots, n_{d}\right)$
- Flag $_{n_{1}, \ldots, n_{d}}$ is a smooth manifold
- Flag n_{1}, \ldots, n_{d} is a homogeneous space: $O(n) /\left(O\left(n_{1}\right) \times \cdots \times O\left(n_{d}\right)\right)$
- $d=2: \operatorname{Gr}\left(n_{1}, n\right)$
- over \mathbb{C} : complex flag manifolds $U(n) /\left(U\left(n_{1}\right) \times \cdots \times U\left(n_{d}\right)\right)$

ingredients for optimization: tangent spaces

- Flag $_{n_{1}, n_{2}, n_{3}}=O(n) /\left(O\left(n_{1}\right) \times O\left(n_{2}\right) \times O\left(n_{3}\right)\right)$
- $\mathbb{V}_{1} \subsetneq \mathbb{V}_{2} \subsetneq \mathbb{V}_{3}=\mathbb{V} \longleftrightarrow[Q]=Q \cdot\left(O\left(n_{1}\right) \times O\left(n_{2}\right) \times O\left(n_{3}\right)\right)$
- $Q=\left[Q_{1}, Q_{2}, Q_{3}\right] \in O(n): Q_{i} \in \mathbb{R}^{n \times n_{i}}, Q_{i}^{\top} Q_{i}=I_{n_{i}}, i=1,2,3$
- $T_{l_{n}} \operatorname{Flag}_{n_{1}, n_{2}, n_{3}}=\mathfrak{s o}(n) /\left(\mathfrak{s o}\left(n_{1}\right) \times \mathfrak{s o}\left(n_{2}\right) \times \mathfrak{s o}\left(n_{3}\right)\right)$
- $\mathfrak{s o}(n)=n \times n$ skew-symmetric matrices

ingredients for optimization: tangent spaces

- $T_{\left[I_{l}\right]} \operatorname{Flag}_{n_{1}, n_{2}, n_{3}}=\left\{\left[\begin{array}{ccc}0 & B_{12} & B_{13} \\ -B_{12}^{\top} & 0 & B_{23} \\ -B_{13}^{\top} & -B_{23}^{\top} & 0\end{array}\right]: B_{i j} \in \mathbb{R}^{n_{i} \times n_{j}}, 1 \leq i \neq j \leq 3\right\}$
- $T_{[Q]} \operatorname{Flag}_{n_{1}, n_{2}, n_{3}}=\left\{Q\left[\begin{array}{ccc}0 & B_{12} & B_{13} \\ -B_{12}^{\top} & 0 & B_{23} \\ -B_{13}^{\top} & -B_{23}^{\top} & 0\end{array}\right]: B_{i j} \in \mathbb{R}^{n_{i} \times n_{j}}, 1 \leq i \neq j \leq 3\right\}$
ingredients for optimization: Riemannian metric and geodesics
- metric \tilde{g} on $O(n): \tilde{g}\left(Q_{1}, Q_{2}\right)=\operatorname{tr}\left(Q_{1}^{\top} Q_{2}\right)$
- geodesics in $O(n)$ through $Q \in O(n): Q \exp (t X), X \in \mathfrak{s o}(n)$
- \tilde{g} induces a metric g on $\operatorname{Flag}_{n_{1}, n_{2}, n_{3}}$
- why g ?
- $\operatorname{Gr}\left(n_{1}, n\right)$: symmetric space
- Flag $_{n_{1}, n_{2}, n_{3}}$: not symmetric
- ($\operatorname{Flag}_{n_{1}, n_{2}, n_{3}}, g$) is a GO-space: every geodesic is obtained by a geodesic in $O(n)$
- geodesics in Flag $n_{n_{1}, n_{2}, n_{3}}: Q \exp (t X) \cdot\left(O\left(n_{1}\right) \times O\left(n_{2}\right) \times O\left(n_{3}\right)\right)$

another formula for geodesics

- need more computable formula
- $\gamma(t)=[Q \exp (t X)]:$ geodesic
- $\gamma(0)=[Q], \gamma^{\prime}(t)=Q X$
- $X=V D V^{\top}$: spectral decomposition
- $D=\operatorname{diag}\left\{\left[\begin{array}{cc}0 & \lambda_{1} \\ -\lambda_{1} & 0\end{array}\right], \ldots,\left[\begin{array}{cc}0 & \lambda_{r} \\ -\lambda_{r} & 0\end{array}\right], 0_{n-2 r}\right\}, V \in O(n)$
- $\gamma(t)=\left[U \Sigma(t) V^{\top}\right]$
- $\Sigma(t)=\operatorname{diag}\left\{\left[\begin{array}{cc}\cos t \lambda_{1} & -\sin t \lambda_{1} \\ \sin t \lambda_{1} & \cos t \lambda_{1}\end{array}\right], \ldots,\left[\begin{array}{cc}\cos t \lambda_{r} & -\sin t \lambda_{r} \\ \sin t \lambda_{r} & \cos t \lambda_{r}\end{array}\right], I_{n-2 r}\right\}$
- $U, V \in O(n)$

distance on flag manifolds

- $\left[Q_{1}\right],\left[Q_{2}\right] \in \operatorname{Flag}_{n_{1}, n_{2}, n_{3}}$
- Hopf-Rinow Thm $\Longrightarrow \exists$ geodesic $\gamma(t), \gamma(0)=\left[Q_{1}\right], \gamma(1)=\left[Q_{2}\right]$
- $Q_{1}^{\top} Q_{2}=V \Sigma V^{\top}$
- $\Sigma=\operatorname{diag}\left\{\left[\begin{array}{cc}\cos \lambda_{1} & -\sin \lambda_{1} \\ \sin \lambda_{1} & \cos \lambda_{1}\end{array}\right], \ldots,\left[\begin{array}{cc}\cos \lambda_{r} & -\sin \lambda_{r} \\ \sin \lambda_{r} & \cos \lambda_{r}\end{array}\right], I_{n-2 r}\right\}$
- $d\left(\left[Q_{1}\right],\left[Q_{2}\right]\right)=\sqrt{\sum_{i=1}^{r} \lambda_{i}^{2}}$

ingredients for optimization: parellel transport

- $B, X \in \mathfrak{s o}(n)$
- $\varphi_{B}(X)=\frac{1}{2}[B, X]_{\mathfrak{s o}(n)}=\left[\begin{array}{ccc}x_{23}^{\top} B_{1}^{\top}-B_{22} x_{12}^{\top} & -B_{12} X_{23}^{\top}+X_{12} B_{23}^{\top} & B_{11} X_{23}-x_{11} B_{23} \\ -X_{23}^{1} B_{11}+B_{23} X_{11} & x_{12} B_{11}^{\top}-B_{12} x_{11}^{\top} & -B_{11} x_{12}^{\top}+X_{11} B_{12}^{\top}\end{array}\right]$
- $e^{-\varphi_{B}}=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!} \varphi_{B}^{k}$
- parallel transport of $Q X$ along $[Q \exp (t B)]:\left[Q \exp (t B) e^{-\varphi_{t B}}(X)\right]$
- $\operatorname{Gr}\left(n_{1}, n\right):[Q \exp (t B) X]$ (Absil-Mahony-Sepulchre)

another description of Flag $_{n_{1}, n_{2}, n_{3}}$

- as projections:
$\operatorname{Flag}_{n_{1}, n_{2}, n_{3}} \simeq\left\{\left(P_{1}, P_{2}, P_{3}\right): P_{i} \in \mathbb{R}^{n \times n}, P_{i}^{2}=P_{i}, P_{i}^{\top}=P_{i}\right.$,

$$
\left.\operatorname{tr}\left(P_{i}\right)=\sum_{s=1}^{i} n_{s}, P_{j} P_{i}=P_{i}, 1 \leq i<j \leq 3\right\}
$$

- as quotient space: $\operatorname{Flag}_{n_{1}, n_{2}, n_{3}} \simeq \operatorname{St}\left(n, n_{3}\right) /\left(O\left(n_{1}\right) \times O\left(n_{2}\right)\right)$
- equivalence class:

$$
\begin{aligned}
& {[A]=\left\{A\left[\begin{array}{ccc}
Q_{1} & 0 & 0 \\
0 & Q_{2} & 0 \\
0 & 0 & Q_{3}
\end{array}\right]: A \in \mathbb{R}^{n \times\left(n_{1}+n_{2}\right)}, A^{\top} A=I_{n_{1}+n_{2}}\right.} \\
& \left.\quad Q_{i} \in O\left(n_{i}\right), i=1,2,3\right\}
\end{aligned}
$$

ingredients for optimization: gradient

- F : Flag $_{n_{1}, n_{2}, n_{3}} \rightarrow \mathbb{R}$ smooth
- gradient: $g(\nabla F, X)=X(F)$
- $[A] \in \operatorname{Flag}_{n_{1}, n_{2}, n_{3}}, A \in \mathbb{R}^{n \times\left(n_{1}+n_{2}\right)}, A^{\top} A=I_{n_{1}+n_{2}}$
- $A=\left[A_{1}, A_{2}\right]$
- $D=\left(\frac{\partial F}{\partial x_{i j}}\right)=\left[D_{1}, D_{2}\right], D_{i} \in \mathbb{R}^{n \times n_{i}}, i=1,2$
- gradient: $\nabla F([A])=\left[\Delta_{1}, \Delta_{2}\right]$
- $\Delta_{i}=D_{i}-\left(A_{i} A_{i}^{\top} D_{i}+A_{j} D_{j}^{\top} A_{i}\right), 1 \leq i \neq j \leq 2$
- $\operatorname{Gr}\left(n_{1}, n\right): D-A A^{\top} D$ (Absil-Mahony-Sepulchre)

ingredients for optimization: Hessian

- $F:$ Flag $_{n_{1}, n_{2}, n_{3}} \rightarrow \mathbb{R}$ smooth
- Hessian $H(F)_{[A]}$:
- symmetric bilinear form on $T_{[A]} \mathrm{Flag}_{n_{1}, n_{2}, n_{3}}$
- $H(F)_{[A]}\left(\gamma^{\prime}(0), \gamma^{\prime}(0)\right)=\left.\frac{d^{2}}{d t^{2}}\right|_{t=0} F(\gamma(t)), \gamma(t)$ geodesic
- $F_{A, A}=\left(\frac{\partial^{2} F}{\partial x_{i j} \partial x_{k l}}\right)$
- Hessian of F :

$$
\begin{aligned}
H(F)_{[A]}(X, Y)= & F_{A, A}(X, Y)+\frac{1}{2}\left(\operatorname{tr}\left(F_{A}^{\top} Q B^{\top} Q^{\top} X\right)\right. \\
& \left.+\operatorname{tr}\left(F_{A}^{\top} Q C^{\top} Q^{\top} Y\right)-\operatorname{tr}\left(F_{A}^{\top} Q(B+C)^{\top} Q^{\top}(X+Y)\right)\right)
\end{aligned}
$$

- $A=Q I_{n, n_{1}+n_{2}}, X=B I_{n, n_{1}+n_{2}}, Y=C I_{n, n_{1}+n_{2}}$
- $Q \in O(n), B, C \in \mathfrak{s o}(n)$

summary

- assemble ingredients: Newton's method on Flag $_{n_{1}, \ldots, n_{d}}$
- numerical experiments: available soon
- numerical properties: convergence, stability?
- other metrics?
- other manifolds?

Thank you for your attention!

