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Outline

Looking for simpler ways to address longstanding problems:

1 Recovering the Camera Point Spread Function

2 Removing Camera Shake via Fourier Burst Accumulation

3 Boosting Stochastic Renderers by Auto-similarity Filtering



Act one

Recovering the Camera Point Spread Function

Joint work with: A. Almansa1, P. Musé2 and J.-M. Morel3

1Telecom Paristech, 2UdelaR, 3ENS-Cachan



Blur Sources

Image blur can be a consequence of

• Camera misusing or scene configuration (Extrinsic):

• Wrongly setting the camera focus
• Only an specific interval of depths in focus
• Camera shake, scene motion
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Blur Sources

Image blur can be a consequence of

• Physical camera phenomena (Intrinsic):

• Light diffraction
• Sensor averaging
• Lens aberration
• Optical anti-aliasing filter

3 / 53



Our Goal

Accurately estimate a function, called Point Spread Function (PSF),
that models the blur due to intrinsic camera phenomena.

Image ideally obtained from a null-area point light source (impulse
response).
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Non-blind estimation: use a calibration pattern

• How do we choose the calibration pattern?

• Local, accurate, subpixel PSF estimation - is it possible?

“knife-edge”

Joshi, et al. ’08

“Bernoulli pattern”

Delbracio, et al. ’12
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Problem statement
Image Formation Model

Perspective
Projection

Aperture

- diffraction
- aberrations

Sensor
Integration

- averaging

Lens 
Distortion

OLPF
- anti-aliasing

+

- Model is local: h may change all over the image.
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Problem statement (cont.)
Discrete Image Formation Model

• h is band-limited in supp(ĥ) = [−sπ, sπ]2, e.g., s = 3− 4

• Take samples at rate at least s× to correctly sample the PSF

Continuous model can be replaced by a s× oversampled discrete
model,

v = Ss (u ∗ h) + n

• u : samples at s× of the low-pass filtered
distorted pattern image.

• Ss : s−subsampling operator (Ssu)(x) = u(sx)

high resolution lattice

camera lattice
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Mathematical Formulation

Solve an inverse problem based on prior
information about the small spatial support
of the PSF.

N = r x r  

h̃ = argmin
h∈RN

∥∥∥SsC[u]h− v
∥∥∥2

• v: observation

• u: s× resolution rasterized distorted pattern

• C[u]: convolution with u in matrix form

• Ss: s−sub-sampling operator in matrix form
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Mathematical Formulation (cont.)

Solution to the inverse problem

h̃ = (SsC[u])
†v.

The mean square error is given by

MSE(h̃) =
∥∥(SsC[u])

†∥∥2
F︸ ︷︷ ︸

γ

σ2︸︷︷︸
noise level

To minimize the error, one has to minimize

γ(SsC[u]) := ‖(SsC[u])
†‖2F =

N∑
i=1

σ−2
i ,

where {σ1, σ2, . . . , σN} are the singular values of SsC[u].

• γ controls the noise amplification,
• should be as low as possible.
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Proposition (Lower bound for optimal patterns)

min
a≤uij≤b

γ(SsC[u]) ≥
1

MN

(
1

b2
+

4(N− 1)2

(b− a)2

)
,

• M = m× n is the observation window size

• N = r× r is the kernel size

• Constraints a ≤ uij ≤ b are linked to the physical realization
and dynamic range of the sensors.
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Comparing calibration patterns

Slant-edge pattern - Joshi et al. [2008]

Bernoulli pattern - Delbracio et al. [2012]
11 / 53



Optimality of the Bernoulli pattern
Why this i.i.d Bernoulli(0.5) random noise pattern?

Singular values of SsC[u]

Slant-edge pattern - Joshi et al. [2008]

Bernoulli pattern - Delbracio et al. [2012]

γ value:
9× 9 17× 17 25× 25 33× 33

Theoretical bound 0.10 0.35 0.70 1.15
Bernoulli pattern 0.19 0.69 1.54 2.98
Joshi et al. [2008] 99.44 1133.05 6445.87 58419.08
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Experiments
Real camera examples

Canon EOS 400D - Tamron AF 17-50mm F/2.8 XR Di-II lens, 50mm, Green channel 1.

110x110 pixels

IPOL: Image Processing Online – ipol.im

Detailed Description + Online Demo + Source Code
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Experiments
Real camera examples

Estimation at 4× the sensor resolution for the Green channel 1.

Canon EOS 400D - Tamron AF 17-50mm F/2.8 XR Di-II lens, f/5.6, Green channel 1.

14 / 53



Experiments
Different color channels

4× PSF estimation for the four Bayer pattern channels (RAW output).

red blue green1 green2

• Red PSF larger than green and blue ones (diffraction)

• Blue and green are symmetric (sensor active area L-shaped)

R G1

G1 B

R G1

G1 B

R G1

G1 B

R G1

G1 B
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Comparison of several methods

• Joshi et al. [2008] very sensitive to regularization +λ‖∇h‖2

MTF horizontal profile

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Bernoulli pattern

Joshi et al. [2008], λ 0

Joshi et al. [2008], λ≈

Joshi et al. [2008], λ≫

imatest

16 / 53



Can we avoid the calibration pattern?

Yes! Take two parallel photos (same scene) different distances

Farthest photograph v2 Closest photograph v1

• If acquired sufficiently far from each other: the PSF can be
estimated from the relative blur between the two images
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Relative blur between two images

• v1, v2 two fronto-parallel views (same scene), zooms λ1 < λ2.

Definition (inter-image kernel)

Any k satisfying
v2 = Hλv1 ∗ k, λ := λ2/λ1.

Proposition

Under (mild assumptions), there is a unique inter-image kernel k,

Hλh ∗ k = h,

and h can be obtained from k as:

h = lim
n→∞

Hλn−1k ∗ . . . ∗Hλk ∗ k.
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Results: A running example

farthest image

4× Inter-image kernel

closest image

4× PSF

IPOL: Image Processing Online – ipol.im

Detailed Description + Online Demo + Source Code
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Bernoulli pattern vs. Two-scaled photographs

0
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Difference

• Estimations at 4× the camera resolution
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Recap

• Avoid regularization: Chose the right calibration pattern

• Subpixel, accurate PSF estimation is well-posed if
calibration pattern carefully chosen

• Bernoulli random pattern near optimal

• Calibration pattern can be “avoided” by taking two
images of the same scene

21 / 53



Act two

Removing Camera Shake Blur
via Fourier Burst Accumulation

Joint work with: G. Sapiro

Duke University



Deblurring



Deblurring



Shift-invariant blurring model

= * +

blurry capture

motion
 kernel

sharp image noise

v= k∗u+n
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Standard Deblurring: Blind Deconvolution

1 Get a blurry image v

Is it possible to avoid explicit inversion?
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But...

• Who actually cares about the motion kernel?

• Even if the kernel is perfectly known the inversion is
ill-posed

Is it possible to avoid explicit inversion?

24 / 53



Burst photography

• In 2016... we can take a burst of 6-12 images

k

v

1 2 3 4 5 6 7 8 9 10

• Hand shake/tremor is random:

• Different images → Different blur (in general)
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A basic principle

Claim (Blurring kernels do not amplify the spectrum)

sharp blury Fourier spectrum (vertical)

-300 -200 -100 0 100 200 300
-4

-2

0

2

4

6

8

10

Blury

Sharp
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A basic principle

Claim (Blurring kernels do not amplify the spectrum)

Let k(x) ≥ 0 and
∫
k(x) = 1. Then, |k̂(ζ)| ≤ 1,∀ζ .

Proof.

∣∣∣k̂(ζ)∣∣∣ = ∣∣∣∣∫ k(x)eix·ζdx

∣∣∣∣ ≤ ∫ |k(x)|dx =

∫
k(x)dx = 1.
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Deblurring by Fourier Burst Accumulation

The basic Fourier Burst Accumulation algorithm:

1 Take a burst

2 Align the images (with respect to the center one)

3 Combine the images in the Fourier domain (FBA)

4 Inverse Fourier

5 Unsharp masking (Optional)

Fourier Burst Accumulation (FBA)

ū(x) = F−1

(
M∑
i=1

wi(ζ) · v̂i(ζ)

)
(x), wi(ζ) =

|v̂i(ζ)|p∑M
j=1 |v̂j(ζ)|p

,
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Deblurring by Fourier Burst Accumulation (cont.)

Fourier Burst Accumulation (FBA)

ū(x) = F−1

(
M∑
i=1

wi(ζ) · v̂i(ζ)

)
(x), wi(ζ) =

|v̂i(ζ)|p∑M
j=1 |v̂j(ζ)|p

,

• (vi): M input aligned images, v̂i = F(vi) – Fourier Transform

• The larger |v̂i(ζ)|, the more v̂i(ζ) contributes to ū

• p controls the aggregation procedure (soft-max):

• If p = 0 : arithmetic average
• If p = ∞ : max
• 0 < p < ∞ : Balance Max/Mean
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Fourier Burst Accumulation: An example

Input Burst

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Fourier Burst Accumulation
p = 0

p = 3 p = 11 p = 25
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Anatomy of the Fourier Aggregation
v̄ i

w
i

v i

input 1 input 2 input 3 input 4 input 5 input 6 input 7 input 8 input 9 FBA

1 2 3 4 5 6 7 8 9

ū(x) =
M∑
i=1

F−1
(
wi(ζ) · v̂i(ζ)

)
(x)︸ ︷︷ ︸

v̄i(x)

, wi(ζ) =
|v̂i(ζ)|p∑M
j=1 |v̂j(ζ)|p

, p = 11.
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Align images

• Can use gyroscope and
accelerometer (Work in
progress...)

• Current efficient approach
• SIFT + Ransac

(Homography)
• Optical Flow (in low

resolution)
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More Results



Woods 1/12



Woods 2/12



Woods 3/12



Woods 4/12
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Woods 8/12



Woods 9/12



Woods 10/12



Woods 11/12



Woods 12/12



Woods Align & Average (p = 0)



Woods FBA p = 11



Cabo Polonio 1/14
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Cabo Polonio 9/14



Cabo Polonio 10/14



Cabo Polonio 11/14



Cabo Polonio 12/14



Cabo Polonio 13/14



Cabo Polonio 14/14



Cabo Polonio Align & Average (p = 0)



Cabo Polonio FBA p = 11



Cabo Polonio 5/14 (Best Frame)



More Results

Typical Shot Best Shot Align and average Šroubek &
Milanfar [2012]

Zhang et al.
[2013]

FBA
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Extension to videos



Recap

• Fourier weighted average to remove camera shake blur

• No (explicit) inversion, no kernel estimation, no
deconvolution

• Not universal (blurs in the burst need to be different)
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Act three

Boosting Stochastic Renderers by
Auto-similarity Filtering

Joint work with: P. Musé1, T. Buades2, J. Chauvier3, N. Phelps3, J.-M. Morel4

1UdelaR, 2UiB, 3Eon-Software, 4ENS-Cachan



Realistic Image Synthesis

Goal: Generate images from a 3D virtual scene

38 / 53



Realistic Image Synthesis
Monte Carlo Rendering

• Ray-tracing: popular technique for resolving the equilibrium of
light in a scene (rendering equation [Kajiya 1986]).

• Pixel color = average of values along light paths

• cast from image pixel, through camera aperture, bouncing in the scene
and reaching a light source.

camera

light source

ligh path i

= ...+ + + + + +

Color Samples

(light paths)
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Realistic Image Synthesis
Monte Carlo Rendering

Unfortunately...

• Only a finite number of rays can be cast

• To avoid artifacts, rays are cast randomly

• Equivalent to solving the light equilibrium through a
Monte Carlo integration procedure

• Variance converges linearly with number of samples
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Realistic Image Synthesis
Monte Carlo Rendering Noise

32 samples per pixel (spp) [8s]
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Realistic Image Synthesis
Monte Carlo Rendering Noise

64 samples per pixel (spp) [16s]
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Realistic Image Synthesis
Monte Carlo Rendering Noise

128 samples per pixel (spp) [32s]
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Realistic Image Synthesis
Monte Carlo Rendering Noise

256 samples per pixel (spp) [64s]
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Realistic Image Synthesis
Monte Carlo Rendering Noise

512 samples per pixel (spp) [128s]
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Realistic Image Synthesis
Monte Carlo Rendering Noise

65536 samples per pixel (spp) [16384s]
41 / 53



A General Principle: Auto-similarity

“Similar pixels must be denoised jointly,
being different samples of the same model.”

Pixel similarity based on:
- Gaussian filter: spatial proximity

- Sigma/Bilateral filter: pixel color [Lee, et al., ’83], [Tomasi et al., ’98]

- NLmeans/BM3D: patch color [Buades et al. ’05], Dabov et al, ’07]

- LARK, GLIDE: kernels [Takeda, et al. ’07], [Talebi, et al. ’14]

Main difficulty:
Hard to distinguish noise from intrinsic pixel variability (bias)
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Empirical Ray Color Distribution

• During rendering a lot of information is computed

• In particular: RGB color of each ray hitting a given pixel

• Color histograms of rays cast from each pixel

• Use this histogram to define pixel similarity

= ...+ + + + + +

Pixel Color Distribution

Color Samples

(light paths)
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Empirical Ray Color Distribution
Measuring pixel similarity
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Empirical Ray Color Distribution
Measuring pixel similarity

• Pixel similarity measured from the binned
empirical color distributions

• Tri-stimulus color images: 3× 1D
histograms (one per color channel)

pixel x

sample i

empirical color
distribution

Chi-Square 
Distance

pixel px pixel px

Given nb-binned empirical color distributions

(hi(x)) and (hi(y)) of pixels x and y,

the Chi-Square distance is given by

dχ2(px,py) =

nb∑
k=1

(hk(x)− hk(y))
2

hk(x) + hk(y)
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Empirical Ray Color Distribution
Measuring pixel similarity

• Extended to patches for spatial coherence

Chi-Square 
Distance

pixel px pixel px
patch P  x

pixel p  x

patch P  x

pixel p  x

dχ2(Px,Py) =
∑
|t|≤w

dχ2(px+t,py+t)
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Distribution-driven average

• Given a noisy patch, all the patches that are at a distance
less than κ are considered to be similar.

• Replace a patch with the average of the similar ones.

y1

y2

y3

x

+ +=u +
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Input toasters scene 256spp. psnr: 33.7dB
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Filtered toasters scene. psnr: 38.1dB. Gain +14.7dB ≈ 33× more samples.
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mc eq. time nl-means eq. time asr eq. time RHF Reference mc

24.8 db [88.8s] 36.1db [88.9s] 35.7db [88.1s] 38.1db [88.8s]
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Light interaction with participating media rendered through photon mapping
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PM+FG ASR RHF

Results in dragon-fog scene (close-ups).
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Input 256spp san-miguel scene. psnr: 24.1dB.
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Filtered 256spp san-miguel scene. psnr: 29.8dB. Gain +5.7dB ≈ 4× more samples.
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mc noisy input asr eq. time RHF Reference mc

24.1dB [3521s] 26.2dB [4133s] 29.8dB [3952s]
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IPOL: Image Processing Online – ipol.im

Detailed Description + Online Demo + Source Code



I presented three different problems where we found a
different and simpler solution:

1 Instead of adding regularization we “avoid” it by
choosing the best single capture (or pair of captures).

2 Instead of deblurring via deconvolution do a weighted
fusion in the Fourier domain.

3 Instead of casting more rays, re-use them using the
“auto-similarity” principle.
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Thanks.





Experiments
Different locations

Lens aberration is more significant in image borders.

center left top-left right



RHF: Time Complexity

• Complexity of the filtering at each scale is O(N ·w · b · nb)
where N is the number of pixels, b search block size, w patch
size, nb number of bins.

• Computational cost is independent of the number of samples.

• In the case that two scales are used the computational cost
increases by about 25%,

• If ns scales are used the computational cost is bounded from
above by 133% of the filtering time at the finest resolution.



• Pure MC: duplicating spp → +3dB

• RHF slope gain is +2.8dB

• RHF: +15dB ≈ 35× more samples.

32spp 64spp 128spp 256spp 512spp



Multi-scale Extension

MC noise is white: To remove low-frequency noise filter at different
scales and then fuse the filtered images.

noisy input

single-scale denoised

three-scale denoised
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