Robust Camera Location Estimation by Convex Programming

Onur Özyeşil[†] and Amit Singer[‡]

 $^\dagger \text{INTECH}$ Investment Management LLC 1 $^\ddagger \text{PACM}$ and Department of Mathematics, Princeton University

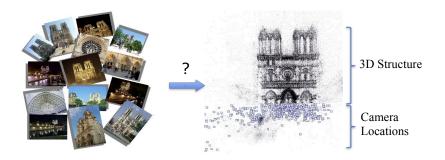
SIAM IS 2016 05/24/2016, Albuquerque NM

Table of contents

- Structure from Motion (SfM) Problem
- The Abstract Problem
- 3 Well-posedness of the Location Estimation Problem
- Robust Location Estimation from Pairwise Directions
- Sobust Pairwise Direction Estimation
- **6** Experimental Results

Structure from Motion (SfM) Problem

Given a collection of 2D photos of a 3D object, recover the 3D structure by estimating the camera motion, i.e. camera locations and orientations



⇒ We are primarily interested in the camera location estimation part

Structure from Motion

Classical Approach

- Find corresponding points between images, estimate relative poses
- Estimate camera orientations and locations, i.e. camera motion
- Estimate the 3D structure (e.g., by reprojection error minimization)

Structure from Motion

Classical Approach

- Find corresponding points between images, estimate relative poses
- Estimate camera orientations and locations, i.e. camera motion
- Estimate the 3D structure (e.g., by reprojection error minimization)

Previous Methods

- Incremental methods: Incorporate images one by one (or in small groups) to maintain efficiency ⇒ prone to accumulation of errors
- Joint structure and motion estimation: Computationally hard, usually non-convex methods, no guarantees of convergence to global optima
- Orientation estimation methods: Relatively stable and efficient solvers

Structure from Motion

Classical Approach

- Find corresponding points between images, estimate relative poses
- Estimate camera orientations and locations, i.e. camera motion
- Estimate the 3D structure (e.g., by reprojection error minimization)

Previous Methods

- Incremental methods: Incorporate images one by one (or in small groups) to maintain efficiency ⇒ prone to accumulation of errors
- Joint structure and motion estimation: Computationally hard, usually non-convex methods, no guarantees of convergence to global optima
- Orientation estimation methods: Relatively stable and efficient solvers

Global Location Estimation

- III-conditioned problem (because of undetermined relative scales)
- Current methods: Usually not well-formulated, not stable, inefficient

• Estimate the locations $\mathbf{t}_1, \mathbf{t}_2, \dots, \mathbf{t}_n \in \mathbb{R}^d$, for arbitrary $d \geq 2$, from a subset of (noisy) measurements of the pairwise directions, where the direction between \mathbf{t}_i and \mathbf{t}_j is given by the unit norm vector γ_{ij} :

$$\gamma_{ij} = \frac{\mathbf{t}_i - \mathbf{t}_j}{\|\mathbf{t}_i - \mathbf{t}_j\|}$$

Pairwise Directions $\begin{array}{c} \textbf{Locations} \\ \textbf{t}_1 \\ \hline \gamma_{13} \\ \gamma_{12} \\ \hline \gamma_{15} \\ \hline \gamma_{25} \\ \hline \gamma_{36} \\ \hline \gamma_{45} \\ \hline \end{array}$

A (noiseless) instance in \mathbb{R}^3 , with n=6 locations and m=8 pairwise directions.

• We represent the total pairwise information using a graph $G_t = (V_t, E_t)$ and endow each edge (i, j) with the direction measurement γ_{ij}

ullet We represent the total pairwise information using a graph $G_t=(V_t,E_t)$ and endow each edge (i,j) with the direction measurement γ_{ij}

Fundamental Questions

• Is the problem well-posed, i.e. do we have enough information to estimate the locations $\{t_i\}_{i\in V_t}$ stably (or, exactly in the noiseless case) ?

ullet We represent the total pairwise information using a graph $G_t=(V_t,E_t)$ and endow each edge (i,j) with the direction measurement γ_{ij}

Fundamental Questions

- Is the problem well-posed, i.e. do we have enough information to estimate the locations $\{t_i\}_{i\in V_t}$ stably (or, exactly in the noiseless case) ?
- What does well-posedness depend on, is it a (generic) property of G_t ?

ullet We represent the total pairwise information using a graph $G_t=(V_t,E_t)$ and endow each edge (i,j) with the direction measurement γ_{ij}

Fundamental Questions

- Is the problem well-posed, i.e. do we have enough information to estimate the locations $\{t_i\}_{i\in V_t}$ stably (or, exactly in the noiseless case) ?
- What does well-posedness depend on, is it a (generic) property of G_t ?
- Can it be decided efficiently?

ullet We represent the total pairwise information using a graph $G_t=(V_t,E_t)$ and endow each edge (i,j) with the direction measurement γ_{ij}

Fundamental Questions

- Is the problem well-posed, i.e. do we have enough information to estimate the locations $\{t_i\}_{i\in V_t}$ stably (or, exactly in the noiseless case) ?
- What does well-posedness depend on, is it a (generic) property of G_t ?
- Can it be decided efficiently?
- What can we do if an instance is not well-posed?

ullet We represent the total pairwise information using a graph $G_t=(V_t,E_t)$ and endow each edge (i,j) with the direction measurement γ_{ij}

Fundamental Questions

- Is the problem well-posed, i.e. do we have enough information to estimate the locations $\{t_i\}_{i\in V_t}$ stably (or, exactly in the noiseless case) ?
- What does well-posedness depend on, is it a (generic) property of G_t ?
- Can it be decided efficiently?
- What can we do if an instance is not well-posed?

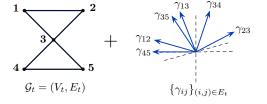
• We represent the total pairwise information using a graph $G_t = (V_t, E_t)$ and endow each edge (i, j) with the direction measurement γ_{ij}

Fundamental Questions

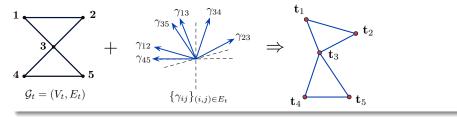
- Is the problem well-posed, i.e. do we have enough information to estimate the locations $\{t_i\}_{i\in V_t}$ stably (or, exactly in the noiseless case) ?
- What does well-posedness depend on, is it a (generic) property of G_t ?
- Can it be decided efficiently?
- What can we do if an instance is not well-posed?

⇒ Well-posedness was previously studied in various contexts, under the general title of **parallel rigidity theory**.

Consider the following noiseless instance:



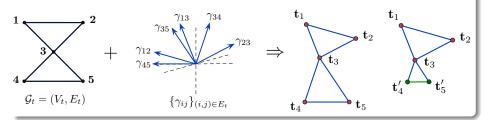
Consider the following noiseless instance:



Consider the following noiseless instance:



Consider the following noiseless instance:



Well-posedness depends on the dimension:

Unique Realization of Locations

Unique solution exists if and only if the formation is parallel rigid.

Unique Realization of Locations

Unique solution exists if and only if the formation is parallel rigid.

Rigidity is Generic

Parallel rigidity is a generic property, i.e. it is a function of G_t only.

Unique Realization of Locations

Unique solution exists if and only if the formation is parallel rigid.

Rigidity is Generic

Parallel rigidity is a generic property, i.e. it is a function of G_t only.

Theorem (Efficient Decidability, Whiteley, 1987)

For a graph G=(V,E), let (d-1)E denote the set consisting of (d-1) copies of each edge in E. Then, G is generically parallel rigid in \mathbb{R}^d if and only if there exists a nonempty set $D\subseteq (d-1)E$, with |D|=d|V|-(d+1), such that for all subsets D' of D,

$$|D'| \le d|V(D')| - (d+1)$$
,

where $V(D^\prime)$ denotes the vertex set of the edges in D^\prime .

Unique Realization of Locations

Unique solution exists if and only if the formation is parallel rigid.

Rigidity is Generic

Parallel rigidity is a generic property, i.e. it is a function of G_t only.

Theorem (Efficient Decidability, Whiteley, 1987)

For a graph G=(V,E), let (d-1)E denote the set consisting of (d-1) copies of each edge in E. Then, G is generically parallel rigid in \mathbb{R}^d if and only if there exists a nonempty set $D\subseteq (d-1)E$, with |D|=d|V|-(d+1), such that for all subsets D' of D,

$$|D'| \le d|V(D')| - (d+1)$$
,

where V(D') denotes the vertex set of the edges in D'.

Maximally Parallel Rigid Components

If G_t is not parallel rigid, we can efficiently find maximally parallel rigid subgraphs.

4 □ > 4 □ > 4 □ > 4 □ >

Objective

Minimize the effects of direction measurements with large errors, i.e. **outlier directions**, in location estimation, by maintaining **computational efficiency**

Objective

Minimize the effects of direction measurements with large errors, i.e. **outlier directions**, in location estimation, by maintaining **computational efficiency**

Recipe

Formulation based on a robust cost function, approximate by convex programming

Objective

Minimize the effects of direction measurements with large errors, i.e. **outlier directions**, in location estimation, by maintaining **computational efficiency**

Recipe

Formulation based on a robust cost function, approximate by convex programming

Linearization of Pairwise Directions

$$\left[\gamma_{ij} = \frac{\mathbf{t}_i - \mathbf{t}_j}{\|\mathbf{t}_i - \mathbf{t}_j\|} + \epsilon_{ij}^{\gamma} \iff \epsilon_{ij}^{\mathbf{t}} = \mathbf{t}_i - \mathbf{t}_j - d_{ij}\gamma_{ij}\right]$$

where
$$d_{ij} = \|\mathbf{t}_i - \mathbf{t}_j\|$$
 and $\epsilon_{ij}^{\mathbf{t}} = \|\mathbf{t}_i - \mathbf{t}_j\|\epsilon_{ij}^{\gamma}$

Objective

Minimize the effects of direction measurements with large errors, i.e. **outlier directions**, in location estimation, by maintaining **computational efficiency**

Recipe

Formulation based on a robust cost function, approximate by convex programming

Linearization of Pairwise Directions

$$\left[\gamma_{ij} = \frac{\mathbf{t}_i - \mathbf{t}_j}{\|\mathbf{t}_i - \mathbf{t}_j\|} + \epsilon_{ij}^{\gamma} \iff \epsilon_{ij}^{\mathbf{t}} = \mathbf{t}_i - \mathbf{t}_j - d_{ij}\gamma_{ij}\right]$$

where $d_{ij} = \|\mathbf{t}_i - \mathbf{t}_j\|$ and $\epsilon_{ij}^{\mathbf{t}} = \|\mathbf{t}_i - \mathbf{t}_j\|\epsilon_{ij}^{\gamma}$

Idea

Large ϵ_{ij}^{γ} induces large $\epsilon_{ij}^{\mathbf{t}}$ \implies exchange robustness to ϵ_{ij}^{γ} with robustness to $\epsilon_{ij}^{\mathbf{t}}$

Least Unsquared Deviations (LUD) formulation

Relax the non-convex constraint $d_{ij} = \|\mathbf{t}_i - \mathbf{t}_j\|$ to obtain:

$$\begin{aligned} & \underset{\{\boldsymbol{t}_i\}_{i \in V_t} \subseteq \mathbb{R}^d}{\min \text{minimize}} & \sum_{(i,j) \in E_t} \| \mathbf{t}_i - \mathbf{t}_j - d_{ij} \gamma_{ij} \| \\ & \text{subject to} & \sum_{i \in V_t} \mathbf{t}_i = \mathbf{0} \; ; \; d_{ij} \geq c, \; \forall (i,j) \in E_t \end{aligned}$$

- Inspired by convex programs developed for robust signal recovery in the presence of outliers, exact signal recovery from partially corrupted data
- Prevents collapsing solutions via the constraint $d_{ij} \geq c$

IRLS for LUD

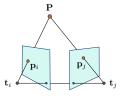
Initialize: $w_{ij}^0 = 1, \forall (i,j) \in E_t$

for r = 0, 1, ... do

$$\begin{array}{|c|c|c|} \bullet & \text{Compute } \{\hat{\mathbf{t}}_i^{r+1}\}, \{\hat{d}_{ij}^{r+1}\} \text{ by solving the QP:} \\ & \underset{\left\{\sum \mathbf{t}_i = \mathbf{0}, \atop d_{ij} \geq 1} \sum_{(i,j) \in E_t} w_{ij}^r \left\| \mathbf{t}_i - \mathbf{t}_j - d_{ij} \gamma_{ij} \right\|^2 \\ \bullet & w_{ij}^{r+1} \leftarrow \left(\left\| \hat{\mathbf{t}}_i^{r+1} - \hat{\mathbf{t}}_j^{r+1} - \hat{d}_{ij}^{r+1} \gamma_{ij} \right\|^2 + \delta \right)^{-1/2} \end{array}$$

Robust Pairwise Direction Estimation

Pinhole Camera Model



For a camera $C_i = (R_i, \mathbf{t}_i, f_i)$ and $\mathbf{P} \in \mathbb{R}^3$:

• Represent **P** in *i*'th coordinate system:

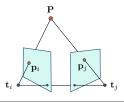
$$\mathbf{P}_i = R_i^T (\mathbf{P} - \mathbf{t}_i) = (P_i^x, P_i^y, P_i^z)^T$$

ullet Project onto i'th image plane:

$$\mathbf{q}_i = (f_i/P_i^z)(P_i^x, P_i^y)^T \in \mathbb{R}^2$$

Robust Pairwise Direction Estimation

Pinhole Camera Model



For a camera $C_i = (R_i, \mathbf{t}_i, f_i)$ and $\mathbf{P} \in \mathbb{R}^3$:

ullet Represent ${f P}$ in i'th coordinate system:

$$\mathbf{P}_i = R_i^T (\mathbf{P} - \mathbf{t}_i) = (P_i^x, P_i^y, P_i^z)^T$$

ullet Project onto i'th image plane:

$$\mathbf{q}_i = (f_i/P_i^z)(P_i^x, P_i^y)^T \in \mathbb{R}^2$$

Pairwise Directions from Epipolar Constraints

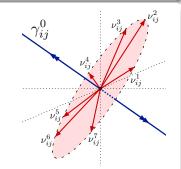
For a pair (C_i,C_j) with given (R_i,R_j) , (f_i,f_j) and a set $\{(\mathbf{q}_i^k,\mathbf{q}_j^k)\}_{k=1}^{m_{ij}}$ of corresponding points:

ullet Fact: $\mathbf{P},\mathbf{t}_i,\mathbf{t}_j$ are **coplanar** (equiv. to epipolar constraint)

$$[(\mathbf{P} - \mathbf{t}_i) \times (\mathbf{P} - \mathbf{t}_j)]^T (\mathbf{t}_i - \mathbf{t}_j) = 0$$

$$\Leftrightarrow (R_i \eta_i^k \times R_j \eta_j^k)^T (\mathbf{t}_i - \mathbf{t}_j) = 0 \quad (\text{for } \eta_i^k := \left\lceil \frac{\mathbf{q}_i^k / f_i}{1} \right\rceil)$$

$$\Leftrightarrow \boxed{(\nu_{ij}^k)^T(\mathbf{t}_i - \mathbf{t}_j) = 0, \quad (\text{for } \nu_{ij}^k \coloneqq \frac{R_i \eta_i^k \times R_j \eta_j^k}{\|R_i \eta_i^k \times R_j \eta_j^k\|)}}$$



Robust Directions from Noisy 2D Subspace Samples

ullet Given noisy R_i 's, f_i 's and \mathbf{q}_i^k 's, we essentially obtain **noisy samples** $\hat{\nu}_{ij}^k$'s from the 2D subspace orthogonal to $\mathbf{t}_i - \mathbf{t}_j$

Robust Directions from Noisy 2D Subspace Samples

- ullet Given noisy R_i 's, f_i 's and \mathbf{q}_i^k 's, we essentially obtain **noisy samples** $\hat{\nu}_{ij}^k$'s from the 2D subspace orthogonal to $\mathbf{t}_i \mathbf{t}_j$
- ullet To maintain **robustness to outliers** among $\hat{\nu}_{ij}^k$'s, we estimate the lines γ_{ij}^0 using the non-convex problem (solved via a heuristic IRLS method):

$$\begin{array}{ll} \underset{\gamma_{ij}^0 \in \mathbb{R}^3}{\text{minimize}} & \sum_{k=1}^{m_{ij}} |\langle \gamma_{ij}^0, \hat{\nu}_{ij}^k \rangle| \\ \\ \text{subject to} & \|\gamma_{ij}^0\| = 1 \end{array}$$

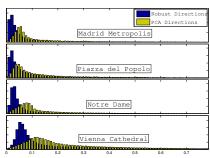
Robust Directions from Noisy 2D Subspace Samples

- ullet Given noisy R_i 's, f_i 's and \mathbf{q}_i^k 's, we essentially obtain **noisy samples** $\hat{\nu}_{ij}^k$'s from the 2D subspace orthogonal to $\mathbf{t}_i \mathbf{t}_j$
- ullet To maintain **robustness to outliers** among $\hat{\nu}_{ij}^{k'}$ s, we estimate the lines γ_{ij}^0 using the non-convex problem (solved via a heuristic IRLS method):

$$\begin{array}{l} \underset{\gamma_{ij}^0 \in \mathbb{R}^3}{\text{minimize}} \quad \sum_{k=1}^{m_{ij}} |\langle \gamma_{ij}^0, \hat{\nu}_{ij}^k \rangle| \\ \\ \text{subject to} \quad \|\gamma_{ij}^0\| = 1 \end{array}$$

- The heuristic IRLS method is not guaranteed to converge (because of non-convexity)
- However, we empirically observed **high** quality line estimates
- Computationally much more efficient (relative to previous methods with similar accuracy)
- Pairwise directions are computed from the lines using the fact that the 3D points should lie in front of the cameras.

[WS14] K. Wilson and N. Snavely, Robust global translations with 1DSfM, ECCV 2014.



Histogram plots of direction errors as compared to simpler PCA method (for datasets from [WS14])

Syncthetic Data Experiments

Measurement Model

- Measurement graphs $G_t = (V_t, E_t)$ are random graphs drawn from Erdös-Rényi model, i.e. each (i,j) is in the edge set E_t with probability q, independently of all other edges.
- Noise model: Given a set of locations $\{\mathbf{t}_i\}_{i=1}^n \subseteq \mathbb{R}^d$ and $G_t = (V_t, E_t)$, for each $(i,j) \in E_t$, we let $\gamma_{ij} = \tilde{\gamma}_{ij} / \|\tilde{\gamma}_{ij}\|$, where

$$\tilde{\gamma}_{ij} = \begin{cases} \gamma_{ij}^{U} &, & \text{w.p. } p \\ (\mathbf{t}_{i} - \mathbf{t}_{j}) / \|\mathbf{t}_{i} - \mathbf{t}_{j}\| + \sigma \gamma_{ij}^{G} & \text{w.p. } 1 - p \end{cases}$$

Here, $\{\gamma_{ij}^U\}_{(i,j)\in E_t}$ are i.i.d. $\mathsf{Unif}(S^{d-1})$, $\{\gamma_{ij}^G\}_{(i,j)\in E_t}$ and \mathbf{t}_i 's are i.i.d. $\mathcal{N}(\mathbf{0},I_3)$.

Synthetic Data: Relatively High Robustness to Outliers

Performance Measure

Normalized root mean square error (NRMSE) of the estimates $\hat{\mathbf{t}}_i$ w.r.t. the original locations \mathbf{t}_i (after the removal of global scale and translation, and for \mathbf{t}_0 denoting the center of \mathbf{t}_i 's.)

$$\mathsf{NRMSE}(\{\hat{\mathbf{t}}_i\}) = \sqrt{\frac{\sum_i \|\hat{\mathbf{t}}_i - \mathbf{t}_i\|^2}{\sum_i \|\mathbf{t}_i - \mathbf{t}_0\|^2}}$$

Synthetic Data: Relatively High Robustness to Outliers

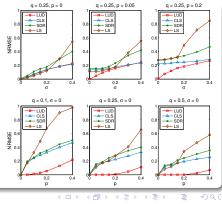
Performance Measure

Normalized root mean square error (NRMSE) of the estimates $\hat{\mathbf{t}}_i$ w.r.t. the original locations \mathbf{t}_i (after the removal of global scale and translation, and for \mathbf{t}_0 denoting the center of \mathbf{t}_i 's.)

$$\mathsf{NRMSE}(\{\hat{\mathbf{t}}_i\}) = \sqrt{\frac{\sum_i \|\hat{\mathbf{t}}_i - \mathbf{t}_i\|^2}{\sum_i \|\mathbf{t}_i - \mathbf{t}_0\|^2}}$$

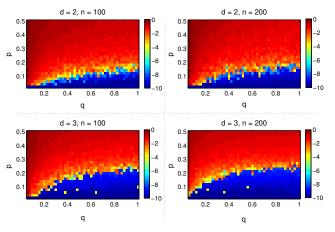
Methods for comparison:

- Least Squares (LS) method [AKK12] M. Arie-Nachimson, S. Kovalsky, I. Kemelmacher-Shlizerman, AS, and R. Basri, Global motion estimation from point matches, 3DimPVT, 2012. [BAT04] M. Brand, M. Antone, and S. Teller, Spectral solution of large-scale extrinsic camera calibration as a graph embedding problem, ECCV, 2004.
- Constrained Least Squares (CLS) method [TV14] R. Tron and R. Vidal, *Distributed 3-D localization of camera sensor networks from 2-D image measurements*, IEEE Trans. on Auto. Cont., 2014.
- Semidefinite Relaxation (SDR) method [OSB15] OÖ, AS, and R. Basri, Stable camera motion estimation using convex programming, SIAM J. Imaging Sci., 8(2):1220-1262, 2015.



Exact Recovery with Partially Corrupted Directions

• Empirical observation: LUD can recover locations exactly with partially corrupted data

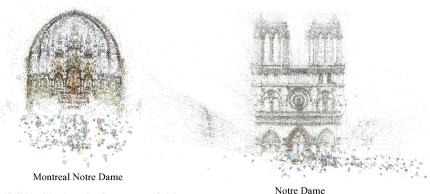


The color intensity of each pixel represents $\log_{10}(\text{NRMSE})$, depending on the edge probability q (x-axis), and the outlier probability p (y-axis). NRMSE values are averaged over 10 trials.

Real Data Experiments: Internet Photo Collections

We tested our methods on internet photo collections from [WS14] and observed that:

- The LUD solver is more robust to outliers as compared to existing methods, and is more efficient as compared to methods with similar accuracy
- The robust direction estimation by IRLS further improves robustness to outliers



Snapshots of selected 3D structures computed using the LUD solver (before bundle adjustment)

Real Datasets: Comparison of Estimation Accuracy and Efficiency

Estimation errors in meters (Bundler sequential SfM [SSS06] is taken as ground truth):

Dataset		LUD							CLS [TV14]					SDR [OSB15]					1DSfM [WS14]				LS [G01]		
	Size			In	itial		After BA			Initial		After BA			Initial		After BA		Init.	After BA		After BA			
Name				PCA		Robust		Robust		Robust		Robust		Robust		Robust									
	m	N_c	$ \tilde{e} $	\hat{e}	\tilde{e}	\hat{e}	N_c	$ \tilde{e} $	$ \hat{e} $	$ \tilde{e} $	\hat{e}	N_c	$ \tilde{e} $	$ \hat{e} $	\tilde{e}	\hat{e}	N_c	$ \tilde{e} $	$ \hat{e} $	$ \tilde{e} $	N_c	\tilde{e}	\hat{e}	N_c	$ \tilde{e} $
Piazza del Popolo	60	328	3.0	7	1.5	5	305	1.0	4	3.5	6	305	1.4	5	1.9	8	305	1.3	7	3.1	308	2.2	200	93	16
NYC Library	130	332	4.9	9	2.0	6	320	1.4	7	5.0	8	320	3.9	8	5.0	8	320	4.6	8	2.5	295	0.4	1	271	1.4
Metropolis	200	341	4.3	8	1.6	4	288	1.5	4	6.4	10	288	3.1	7	4.2	8	288	3.1	7	9.9	291	0.5	70	240	18
Yorkminster	150	437	5.4	10	2.7	5	404	1.3	4	6.2	9	404	2.9	8	5.0	10	404	4.0	10	3.4	401	0.1	500	345	6.7
Tower of London	300	572	12	25	4.7	20	425	3.3	10	16	30	425	15	30	20	30	425	17	30	11	414	1.0	40	306	44
Montreal N. D.	30	450	1.4	2	0.5	1	435	0.4	1	1.1	2	435	0.5	1	-	_	_	-	-	2.5	427	0.4	1	357	9.8
Notre Dame	300	553	1.1	2	0.3	0.8	536	0.2	0.7	0.8	2	536	0.3	0.9	-	_	-	-	-	10	507	1.9	7	473	2.1
Alamo	70	577	1.5	3	0.4	2	547	0.3	2	1.3	3	547	0.6	2	-	_	_	-	-	1.1	529	0.3	2e7	422	2.4
Vienna Cathedral	120	836	7.2	12	5.4	10	750	4.4	10	8.8	10	750	8.2	10	-	-	-	-	-	6.6	770	0.4	2e4	652	12

Running times in seconds:

	LUD			CLS [TV14]			SE	R [OSE		1D	SfM [[G01]	[SSS06]						
Dataset	$ T_R $	$ T_G $	$ T_{\gamma} $	$T_{\mathbf{t}}$	$ T_{BA} $	$ T_{tot} $	$T_{\mathbf{t}}$	T_{BA}	$ T_{tot} $	$T_{\mathbf{t}}$	T_{BA}	$ T_{tot} $	T_R	T_{γ}	$ T_{\mathbf{t}} $	T_{BA}	$ T_{tot} $	T_{tot}	T_{tot}
Piazza del Popolo	35	43	18	35	31	162	9	106	211	358	39	493	14	9	35	191	249	138	1287
NYC Library	27	44	18	57	54	200	7	47	143	462	52	603	9	13	54	392	468	220	3807
Metropolis	27	37	13	27	38	142	6	23	106	181	45	303	15	8	20	201	244	139	1315
Yorkminster	19	46	33	51	148	297	10	133	241	648	75	821	11	18	93	777	899	394	3225
Tower of London	24	54	23	41	86	228	8	202	311	352	170	623	9	14	55	606	648	264	1900
Montreal N. D.	68	115	91	112	167	553	21	270	565	_	_	-	17	22	75	1135	1249	424	2710
Notre Dame	135	214	325	247	126	1047	52	504	1230	-	_	- 1	53	42	59	1445	1599	1193	6154
Alamo	103	232	96	186	133	750	40	339	810	_	-	- 1	56	29	73	752	910	1403	1654
Vienna Cathedral	267	472	265	255	208	1467	46	182	1232	-	-	- 1	98	60	144	2837	3139	2273	10276

[SSS06] N. Snavely, S. M. Seitz, and R. Szeliski, *Photo tourism: exploring photo collections in 3D*, SIGGRAPH, 2006. [G01] V. M. Govindu, *Combining two-view constraints for motion estimation*, CVPR, 2001.

Real Data Experiments: 3D Surface Reconstructions

Sample 3D Reconstructions

THANK YOU!!!

Acknowledgements:

