Sobol' Indices for Sensitivity Analysis with Dependent Inputs

$\mathsf{Joey}\;\mathsf{Hart}^1$

with Pierre Gremaud¹

¹North Carolina State University

April 16, 2018

Funding provided by NSF grants DMS-1522765 and DMS-1127914.

1 Sobol' Indices with Independent Variables

2 Sobol' Indices with Dependent Variables

3 Summary and Some Questions

1 Sobol' Indices with Independent Variables

2 Sobol' Indices with Dependent Variables

3 Summary and Some Questions

Formulation

Consider a function,

$$f: \mathbb{R}^p \to \mathbb{R}$$
$$\mathbf{x} \mapsto f(\mathbf{x})$$

Assume,

- $\mathbf{x} = (x_1, x_2, \dots, x_p)$ has some known probability distribution
- $f(\mathbf{x})$ is square integrable

Objective: determine the sensitivity of f to \mathbf{x}

Hierarchical Decomposition of f

 $f: \mathbb{R}^p \to \mathbb{R}$ may be decomposed as

$$f(\mathbf{x}) = f_0 + \sum_{i=1}^p f_i(x_i) + \sum_{1 \le i < j \le p} f_{i,j}(x_i, x_j) + \dots + f_{1,2,\dots,p}(x_1, x_2, \dots, x_p)$$

Hierarchical Decomposition of f

 $f: \mathbb{R}^p \to \mathbb{R}$ may be decomposed as

$$f(\mathbf{x}) = f_0 + \sum_{i=1}^{p} f_i(x_i) + \sum_{1 \le i < j \le p} f_{i,j}(x_i, x_j) + \dots + f_{1,2,\dots,p}(x_1, x_2, \dots, x_p)$$

= $f_0 + \sum_{k=1}^{p} \sum_{|u|=k} f_u(\mathbf{x}_u)$

Hierarchical Decomposition of f

 $f: \mathbb{R}^p \to \mathbb{R}$ may be decomposed as

$$f(\mathbf{x}) = f_0 + \sum_{i=1}^p f_i(x_i) + \sum_{1 \le i < j \le p} f_{i,j}(x_i, x_j) + \dots + f_{1,2,\dots,p}(x_1, x_2, \dots, x_p)$$

= $f_0 + \sum_{k=1}^p \sum_{|u|=k} f_u(\mathbf{x}_u)$

where

:

$$f_0 = \mathbb{E}[f(\mathbf{x})]$$

$$f_i(x_i) = \mathbb{E}[f(\mathbf{x})|x_i] - f_0$$

$$f_{i,j}(x_i, x_j) = \mathbb{E}[f(\mathbf{x})|x_i, x_j] - f_i(x_i) - f_j(x_j) - f_0$$

NCSU

ANOVA (Analysis of Variance) Decomposition

$$f(\mathbf{x}) = f_0 + \sum_{k=1}^p \sum_{|u|=k} f_u(\mathbf{x}_u)$$

• this hierarchical decomposition exists $\forall f$ such that $f(\mathbf{x}) \in L^2$

¹Sensitivity estimates for non linear mathematical models. Sobol'. 1993

Joey Hart

ANOVA (Analysis of Variance) Decomposition

$$f(\mathbf{x}) = f_0 + \sum_{k=1}^p \sum_{|u|=k} f_u(\mathbf{x}_u)$$

- this hierarchical decomposition exists $\forall f$ such that $f(\mathbf{x}) \in L^2$
- if x_1, x_2, \ldots, x_p are statistically independent then ¹

$$\mathbb{E}[f_u(\mathbf{x}_u)f_v(\mathbf{x}_v)] = 0 \quad u \neq v$$
$$\implies \operatorname{Var}(f(\mathbf{x})) = \sum_{k=1}^p \sum_{|u|=k} \operatorname{Var}(f_u(\mathbf{x}_u))$$

¹Sensitivity estimates for non linear mathematical models. Sobol'. 1993

Joey Hart

Sobol' Indices with Independent Variables

Using the decomposition of variance

$$\operatorname{Var}(f(\mathbf{x})) = \sum_{k=1}^{p} \sum_{|u|=k} \operatorname{Var}(f_{u}(\mathbf{x}_{u})),$$

define the Sobol' indices as $^{\rm 2}$

$$S_u = rac{\operatorname{Var}(f_u(\mathbf{x}_u))}{\operatorname{Var}(f(\mathbf{x}))}.$$

- S_u measures the relative contribution of \mathbf{x}_u to $Var(f(\mathbf{x}))$
- there are 2^p − 1 Sobol' indices

²Sensitivity estimates for non linear mathematical models. Sobol'. 1993

First Order and Total Sobol' Indices

Define the total Sobol' index as

$$T_u = \sum_{v \cap u \neq \emptyset} S_v$$

In practice one frequently considers the indices

$$\{S_k, T_k\}_{k=1}^p$$

and refers to them as the first order and total Sobol' indices.

Interpretation of First Order and Total Sobol' Indices

$$\{S_k, T_k\}_{k=1}^p$$

- $S_k, T_k \in [0,1]$ measure the importance of x_k
- S_k only measures contribution of x_k
- T_k measures the contribution of all interactions involving x_k
- $S_k \leq T_k \ \forall k \in \{1, 2, \dots, p\}$

•
$$T_u \leq \sum_{k \in u} T_k \ \forall u \subset \{1, 2, \dots, p\}$$

1 Sobol' Indices with Independent Variables

2 Sobol' Indices with Dependent Variables

3 Summary and Some Questions

$$f(\mathbf{x}) = f_0 + \sum_{k=1}^p \sum_{|u|=k} f_u(\mathbf{x}_u)$$

Taking the covariance of $f(\mathbf{x})$ with each side of

$$f(\mathbf{x}) = f_0 + \sum_{k=1}^p \sum_{|u|=k} f_u(\mathbf{x}_u)$$

yields

$$Var(f(\mathbf{x})) = \sum_{k=1}^{p} \sum_{|u|=k} Cov(f_u(\mathbf{x}_u), f(\mathbf{x}))$$

and gives Sobol' indices³

$$S_u = rac{\mathsf{Cov}(f_u(\mathbf{x}_u), f(\mathbf{x}))}{\mathsf{Var}(f(\mathbf{x}))}$$

 $^3 {\rm Global}$ sensitivity analysis for systems with independent and/or correlated inputs. Rabitz et al. 2010

Joey Hart

$$S_u = rac{\mathsf{Cov}(f_u(\mathbf{x}_u), f(\mathbf{x}))}{\mathsf{Var}(f(\mathbf{x}))}$$

The total Sobol' indices may also be generalized,

$$T_u = \sum_{v \cap u \neq \emptyset} S_v$$

Pros

- decomposes $Var(f(\mathbf{x}))$ as in the case with independence
- relates to the function decomposition

Cons

- S_u may take negative values and is no longer clear to interpret

-
$$S_k \not\leq T_k$$
 in general

-
$$T_u \not\leq \sum_{k \in u} T_k$$

$$S_u = rac{\mathsf{Cov}(f_u(\mathbf{x}_u), f(\mathbf{x}))}{\mathsf{Var}(f(\mathbf{x}))}$$

The total Sobol' indices may also be generalized,

$$T_u = \sum_{v \cap u \neq \emptyset} S_v$$

There are other alternative perspectives, see ^{4 5}

⁴Estimation of global sensitivity indices for models with dependent variables. Kucherenko et al. 2012.

⁵Non-parametric methods for global sensitivity analysis of model output with dependent inputs. Mara et al. 2015.

Joey Hart

A Simple Example to Illustrate

$$f(\mathbf{x}) = 20x_1 + 16x_2 + 12x_3 + 4x_4$$
$$\mathbf{x} \sim \mathcal{N}\left(\begin{bmatrix} 0\\0\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} 1 & .5 & .5 & .8\\.5 & 1 & 0 & 0\\.5 & 0 & 1 & .3\\.8 & 0 & .3 & 1 \end{bmatrix} \right)$$
$$\begin{array}{c} S_1 & S_{1,2} & S_{1,3} & S_{1,4} & S_{1,2,3} & S_{1,2,4} & S_{1,3,4} & S_{1,2,3,4} & T_1\\.903 & -.393 & -.333 & -.295 & .030 & -.047 & .154 & -.010 & .009 \end{array}$$
Table: Sobol' indices involving variable x₁.

A Simple Example to Illustrate

$$f(\mathbf{x}) = 20x_1 + 16x_2 + 12x_3 + 4x_4$$
$$\mathbf{x} \sim \mathcal{N}\left(\begin{bmatrix} 0\\0\\0\\0\end{bmatrix}, \begin{bmatrix} 1 & .5 & .5 & .8\\.5 & 1 & 0 & 0\\.5 & 0 & 1 & .3\\.8 & 0 & .3 & 1 \end{bmatrix}\right)$$
$$T_1 \quad T_2 \quad T_{1,2}$$
$$.009 \quad .021 \quad .450$$
Table: Total Sobol' indices.
$$T_{1,2} \nleq T_1 + T_2$$

Joey Hart

Approximation Theoretic Perspective

- let $f_0 = \mathbb{E}[f(\mathbf{x})]$
- let $u \subset \{1, 2, \dots, p\}$ and $\sim u = \{1, 2, \dots, p\} \setminus u$
- let *P*_{∼u}*f* be the optimal *L*² approximation of *f* − *f*₀ in the space of functions which do not depend on **x**_u

Theorem:
$$T_u = \frac{||(f-f_0) - \mathcal{P}_{\sim u}f||_2^2}{||f-f_0||_2^2}$$

Interpretation: $T_u \in [0, 1]$ measures the squared relative error of approximating $f - f_0$ by a function which does not depend on \mathbf{x}_u .

Uses of Global Sensitivity Analysis

Global sensitivity analysis may be used to:

- prioritize data acquisition and/or model development
- determine unimportant variables for dimension reduction
 - guide the construction of surrogate models
 - "freezing" variables
- determine and mitigate risk
- gain insight into underlying phenomenon

Uses of Global Sensitivity Analysis

Global sensitivity analysis may be used to:

- prioritize data acquisition and/or model development
- determine unimportant variables for dimension reduction
 - guide the construction of surrogate models
 - "freezing" variables
- determine and mitigate risk
- gain insight into underlying phenomenon

The remainder of this talk will focus on "freezing" (replacing) unimportant variables to reduce dimensions.

GSA for Dimension Reduction

- If T_u is small and I freeze \mathbf{x}_u , how much error do I incur?
- Results exist when the variables are independent. ⁶
- Dependencies among the variables help.
- Replacing \mathbf{x}_u with $g(\mathbf{x}_{\sim u})$ is superior to freezing.
- T_u is the error when $f(\mathbf{x})$ is projected.
- The approximation theoretic perspective also helps analyze the error from replacing **x**_u.

⁶Estimating the approximation error when fixing unessential factors in global sensitivity analysis. Sobol' et al. 2007.

Replacing Unimportant Variables

$$f(\mathbf{x}) = f_0 + \mathcal{P}_{\sim u}f(\mathbf{x}_{\sim u}) + \mathcal{P}_{\sim u}^{\perp}f(\mathbf{x})$$

$$T_{u} = \frac{||\mathcal{P}_{\sim u}^{\perp}f(\mathbf{x})||_{2}^{2}}{||f(\mathbf{x}) - f_{0}||_{2}^{2}}$$

$$\delta_u = \frac{||f(\mathbf{x}) - f(g(\mathbf{x}_{\sim u}), \mathbf{x}_{\sim u})||_2^2}{||f(\mathbf{x}) - f_0||_2^2}$$

$$=\frac{||\mathcal{P}_{\sim u}^{\perp}f(\mathbf{x})-\mathcal{P}_{\sim u}^{\perp}f(g(\mathbf{x}_{\sim u}),\mathbf{x}_{\sim u})||_{2}^{2}}{||f(\mathbf{x})-f_{0}||_{2}^{2}}$$

Lemma

For any
$$u \subset \{1, 2, \dots, p\}$$
 and any g, $\delta_u \geq T_u$

Joey Hart

Replacing Unimportant Variables

$$f(\mathbf{x}) = f_0 + \mathcal{P}_{\sim u}f(\mathbf{x}_{\sim u}) + \mathcal{P}_{\sim u}^{\perp}f(\mathbf{x})$$

$$T_{u} = \frac{||\mathcal{P}_{\sim u}^{\perp} f(\mathbf{x})||_{2}^{2}}{||f(\mathbf{x}) - f_{0}||_{2}^{2}}$$

$$\delta_{u} = \frac{||\mathcal{P}_{\sim u}^{\perp}f(\mathbf{x}) - \mathcal{P}_{\sim u}^{\perp}f(g(\mathbf{x}_{\sim u}), \mathbf{x}_{\sim u})||_{2}^{2}}{||f(\mathbf{x}) - f_{0}||_{2}^{2}}$$

- $\delta_u \geq T_u$
- Would like to have an upper bound on δ_u
- Difficult to bound tightly in general

Replacing Unimportant Variables

$$f(\mathbf{x}) = f_0 + \mathcal{P}_{\sim u}f(\mathbf{x}_{\sim u}) + \mathcal{P}_{\sim u}^{\perp}f(\mathbf{x})$$

$$T_{u} = \frac{||\mathcal{P}_{\sim u}^{\perp} f(\mathbf{x})||_{2}^{2}}{||f(\mathbf{x}) - f_{0}||_{2}^{2}}$$

$$\delta_u = \frac{||\mathcal{P}_{\sim u}^{\perp} f(\mathbf{x}) - \mathcal{P}_{\sim u}^{\perp} f(g(\mathbf{x}_{\sim u}), \mathbf{x}_{\sim u})||_2^2}{||f(\mathbf{x}) - f_0||_2^2}$$

• δ_u will be small when

$$||\mathcal{P}_{\sim u}^{\perp}f(g(\mathbf{x}_{\sim u}),\mathbf{x}_{\sim u})||_{2} \approx ||\mathcal{P}_{\sim u}^{\perp}f(\mathbf{x})||_{2}$$

• δ_u is small if T_u is robust to changes in the distribution of **x**

The g-function

$$f(\mathbf{x}) = \prod_{k=1}^{10} rac{|4x_k - 2| + a_k}{1 + a_k}$$

where $\mathbf{x} \sim \mathcal{N}(\mu, \Sigma)$, i.e. is normally distributed

$$\mu_{i} = \frac{1}{2} \qquad i = 1, 2, \dots, 10$$

$$\Sigma_{i,i} = \frac{1}{6} \qquad i = 1, 2, \dots, 10$$

$$\Sigma_{i,j} = \frac{\rho}{6|i-j+1|^{\frac{1}{\gamma}}} \qquad i \neq j$$

- larger $\rho \implies$ stronger correlations
- larger $\gamma \implies$ "dense" covariance matrix

Joey Hart

Total Sobol' Indices with $\rho = \frac{1}{2}$ and $\gamma = 6$

Approximation Errors as ρ Varies $(g(\mathbf{x}_{\sim u}) = \mathbb{E}[\mathbf{x}_u | \mathbf{x}_{\sim u}])$

$$\gamma = 1$$
 $\gamma = 6$

• stronger correlations $\implies \delta_u$ decreases

• $\delta_u \rightarrow T_u$ faster when the correlations are "dense"

Summary

- Reinterpreted the total Sobol' index T_u in terms of approximation error instead of variance analysis.
- Gives T_u a clear interpretation in terms of optimal approximation errors.
- Provides a framework to analyze the error when replacing unimportant variables.
- Argue that dependencies can help reduce error.

Some Questions

- Test for the robustness of *T_u* with respect to changes in the distribution of x? Bound δ_u using this?
- Approaches for constructing g(x_{~u}) when x_u and x_{~u} have nonlinear dependencies? How does this relate to robustness of the Sobol' indices?
- Other characterizations of Sobol' indices which are more useful for other applications of global sensitivity analysis? Maybe involving other methods (moment-independent importance measures, Shapley values, derivative-based global sensitivity measures).

Questions?

Joey Hart

North Carolina State University

jlhart3@ncsu.edu

J. Hart and P.A. Gremaud. An approximation theoretic perspective of Sobol' indices with dependent variables. https://arxiv.org/pdf/1801.01359v2.pdf

J. Hart and P.A. Gremaud. Robustness of the Sobol' indices to distributional uncertainty. https://arxiv.org/pdf/1803.11249.pdf