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WARNING!

This talk presents the “forward” explicit
derivation (i.e. lots of little steps)

rather than the implicit “backwards”
derivation (i.e. big intuitive leaps)
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PageRank: The initial condition

My dissertation
Models & Algorithms for PageRank Sensitivity

The essence of PageRank
 chain P, PageRank
PageRank  chain with great “utility”

beyond nary distribution

ance (| —aP)x=(1 — a)v
the Web oo @ x= o
arXiv:1407.5107 y
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PageRank: The initial condition

My dissertation
Models & AIOH‘\.‘ »
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Be careful about what you
discuss after a talk...

| gave a talk
at the Univ. of Chicago and visited Lek-heng Lim

He told me about a new idea
INn Markov chains analysis and tensor eigenvalues
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Approximate stationary distributions
of higher-order Markov chains

Due to Michael Ng and collaborators

A higher order Markov chain
depends on the |ast few states.

P(Xi1 =i | history) = P(X1 =1 | Xi =, Xi—1 = k)

These become Markov chains on the product state space.
But that’s usually too large for stationary distributions.

PIX =[i. ) = X,

The approximation

IS that we form a rank-1 approximation of that stationary
distribution object.

P(X = [i,]]) = xix
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We want to analyze
higher-order relationships
and multi-way data and ...

Things like

« Enron emails
« Regular hypergraphs

And there's three+ indices!
Soits a
higher-order Markov chain
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Approximate stationary distributions
of higher-order Markov chains

Due to Michael Ng and collaborators

The new problem
of computing an approx. stationary dist. is a tensor eigenvector

Xj = Z P,'ij/'Xk or X= EX2
ik

The new problem’

« existence is guaranteed under mild conditions
e unigueness ... require heroic algebra

« convergence ... (and are hard to check)
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Some small quick notes

A stochastic matrix M is a Markov chain

A stochastic hypermatrix / tensor / probability P table
IS a higher-order Markov chain
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One nagging question ...

Is there a stochastic process that
underlies this approximation??
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We tried many
« apriori good and
« retrospectively bad

Ideas for the second eigenvector
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Austin and | were talking one day ...



EUREKA!
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The spacey random walk

Consider a higher-order Markov chain.
P(Xts1 =1 | history) = P(Xi1 =1 | Xi = J, Xi—1 = k)

If we were perfect, we'd figure out the stationary
distribution of that. Buf we are spacey!

 On arriving at state /, we promptly
“space out” and forget we came from k.

« But we still believe we are “higher-order”

« SO we invent a state k by drawing a random
state from our history.
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The spacey random walk

Let Ce(k) = (1 + 3.5 Ind{Xs = k})

P(Xis1 = 1| Xt = J and the right filtration on history)
=Y PuykCe(t)/(t+n)
k

= How often we've visited
state k In the past

This is a vertex-reinforced random walk!
e.g. Polya’s urn.

Pemantle, 1992: Benaim, 1997; Pemantle 2007
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Stationary distributions of vertex
reinforced random walks

A vertex-reinforced random walk at time t transitions
according to a Markov matrix M given the observed
frequencies.

P(Xi1 =i | X; = J and the right filtration on history)
= [M(8)];,
- M(c(t))]
This has a stationary distribution, iff the dynamical system

ax
— = w[M(X)] — x 7[M] is a map to the stat. dist.

at

CONVerges.
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A vertex-reinforced random walk at time t transitions
according to a Markov matrix M given the observed
frequencies.

P(Xi.1 = 1| X; = j and the right filtration on history)
= [M(t)]i,j
= [M(c(?))];,

This has a stationary distribution, iff the dynamical system

ax
I = w[M(x)] — X 7w[M] is a2 map to the stat. dist.
converges.
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The Markov matrix for
Spacey Random Walks



We have all sorts of cool results on spacey
random walks... e.g.

Suppose you have a Polya Urn with memory...
Then it always has a stationary distribution!
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Back to Multilinear PageRank

The Multilinear PageRank problem is what we call a
spacey random surfer model.

« This is a spacey random walk
We add random jumps with probability (1-alpha)
It's also a vertex-reinforced random walk.

Thus, it has a stationary probability if

ax M(x)=ao >, P(;,:, K)xk

F b ot F(1—a

converges. Which occurs when alpha < 1l/order
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The Multiinear PageRank problem is what we call a
spacey random surfer model.

« This is a spacey random walk
« We add random jumps with probability (1-alpha)
It's also a vertex-reinforced random walk.

Thus, it has a stationary probability if

ax M(x)=a), P(:, k)X

= = w[M(x)] — x +(1 —a)v

converges. Which occurs when alpha < l/order !
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Some interesting notes about vertex
reinforced random walks



Meanwhile ...
Spectral clustering of tensors

SIAM Data Mining 2015, arXiv:1502.05058

Austin Benson (a colleague) asked
if there were any interesting method to “cluster” tensors.

“Conjecture” spectral clustering on tensors
graph/tensor — higher-order random walk

— second eigenvector M(x)"y = \oy

t
Use the asymptotic
Markov matrix!

—» sweep cut partition
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Problem current methods
only consider edges

In transcription networks, the feedforward loop™ motif represents
biological function. Thus, we want to look for clusters of this structure.
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An example with a layered flow network

C
£ y
(2 )—K1) 9 = The network “flows” downwara
. RN » Use directed 3-cycles to model flow
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= Tensor spectral clustenng: {0,1,2,3}, {4,5,6,7}, {8,9,10,11}
s Standard spectral: {0,1,2,3,4,5,6,7}, {8,10,11}, {9}
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“Hy WAW2015

URANDOM —Eindhoven — Netherlands

Workshop on Algorithms and Models for the Web Graph
(but it’s grown to be all types of network analysis)
December 10-11

Winter School on Complex Network and Graph Models
December 7-8

Submissions Due July 25!
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Winter School on Complex Network and Graph Models
December 7-8

Submissions Due July 25!
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Time for Lots of Questions!

Manuscripts

Li, Ng. On the limiting probability distribution of a transition
probability tensor. Linear & Multilinear Algebra 2013.

Gleich. PageRank beyond the Web. (accepted at SIAM Review)

Gleich, Lim, Yu. Multiinear PageRank. (under review.. .)



