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Inverse wave scattering problem

Generic setup: A collection (array) of sensors probes a medium
with signals (pulses, chirps) that generate waves which are scat-
tered by inhomogeneities. The sensors collect the scattered
waves and the goal of the inversion is to estimate the medium.

Numerous applications: medical ultrasound, nondestructive aval-
uation of structures, radar imaging, oil exploration, etc.




Inverse problem for wave equations

e Sound waves: pressure p(t,£) and velocity v(t, ) satisfy
o (&)

(&)

op(t, @) + o(B)c(B)V - 6(t,&) =0, t>0, &eR3.

80 (t, &) + Vp(t, &) = F(t,Z)

Medium modeled by acoustic impedance o (&) & wave speed c(&).

e Electromagnetics: electric field E(¢, &) satisfies
1
c2(%)
for constant magnetic permeability and wave speed c(x).

V xV x E(ta2) + O?E(t,&) = F(t,&), t>0, & € R3,

e F(t, &) models the excitation (localized at support of sensors)
for ¢t > 0. Homogeneous initial conditions.

Inversion data are measurements of p(¢, &) or E(t, &) at the
locations &, of the receiving sensors.




Inverse problem

e Inversion model uses separation of scales:
1 . 1
c?(Z) c5(x)

co() = smooth, determines kinematics of waves (travel times).

[1 4+ p(Z) + p(E)]

p(x) = rough part, is the reflectivity that we wish to determine.

n(x€) models small variations at small scale (clutter), that may
have a cumulative scattering effect on the wave.

e VWWhat can we estimate?

- Smooth ¢,(x) (velocity analysis) with travel time tomography
(many applied papers, theory of Uhlmann, Stefanov, Vasy) or
using differential semblance optimization (Symes).

- Reflectivity p (imaging problem).

- Clutter cannot be estimated ~» random model of uncertain pu.




Basic imaging uses single scattering approximation

Dt @r, @) ~ [ g p(§)o(@s, 5,31t — 7(Fs, §, 3]

for smooth a(Zs,y, Zr) (geometrical spread), = = travel time.
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Scattered wave* by point reflector plotted vs. time on abscissa
and receiver location on ordinate. Center sensor emits pulse f(t).
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Multiply scattered echos among point reflectors are ignored.

*Numerical simulations by Chrysoula Tsogka. 5



Image formation - Reverse time (Kirchhoff) migration

e [ he imaging function

() = z z D(7(&s, §, &r), Tr, Es)
r=1s=1
is expected to peak at points ¢y in support of the reflectivity.

e Resolution in direction of propagation (range) depends on sup-
port of pulse (which is inverse proportional to the bandwdith).

e Resolution in cross-range is determined by typical wavelength,
the aperture of the array and the distance (range) of scatterers.




Superresolution and uncertainty

e Improved resolution can be achieved by

- Use very broadand signals, like narrow pulses modulated at high
frequency, as well as large (possibly synthetic) apertures.

- If image is ‘“sparse” use optimization methods like ¢1 (Candes,
Tao; Donoho, Elad; Fannjiang; Papanicolaou, Mo0sco0so...) or
subspace projection methods like MUSIC (Devaney and many
engineering refs.). These are typically for single frequency waves.

e Uncertainty impedes imaging:.
- Additive noise (easiest to mitigate).

- Multiple scattering (nonlinear) effects, specially those due to
numerous inhomogeneities (clutter) are harder to deal with (e.g.,
atmosphere effects on X-band radar systems).




Noise vs. clutter effects in migration imaging*
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time

averaged out by summation (over large aperture).

*Simulations by Chrysoula Tsogka.



Super-resolution with time harmonic waves?

B., Josselin Garnier: Imaging P scatterers of diameter a\, a K 1:

e Ammari: Electric field at £, due to point dipole source at s,
with current €4, for 1 <r,s < N and 1 <q < 3,

P
Ey(@r; 3s) = Y. G(&r, Gp)ppG (G, Ts)€g + O(a*).
p=1

Scatterers at g, with polarization tensors p, € C3*3, P < N,

k= 2n/\ and G(&,7) = (I 1 V,jf)

eZk|£_g‘

4r|E—yl|’

e Noisy data model Dyw =D + W,

P . T, . G(ilvy—)p) 3N 3
D=3} 6@)pd (¥,), 9@, = = € C>7

Complex Gaussian noise W with mean zero, independent entries
with std &. (Noise with known correlation can be handled.)




MUSIC imaging with noisy data

P
e The 3N x 3N matrix D = Y G(4,)p,G" (§,) has generically
p=1
rank 3P < 3N, with left singular vectors uq,...,u3p.

e MUSIC imaging: Leading left singular vector hi1(y) of 3N x 3
matrix G(vy) satisfies

h1(y) € range D = span{u,...,uzp} iff y € {y1,...,yp}.

e Noisy data matrix Dy, has r significant singular values 6; > 26
and left singular vectors ﬂj, where & can be estimated.

2
Random matrix theory asymptotic results™: ‘ﬂ;uq‘ ~ 0jg cos? 0,

S\? 1
2, _ Ul -2 2
cos“ 6, =1— <—) , O R 5[0'] —|—\/0'j — (26) ]

Tj

*Benaych-Georges, Guionnet, Maida 10



MUSIC imaging with noisy data

e Scatterer locations are estimated by peaks of

~ —1
. ruth, (9]

7=1

e Once we know the locations, can also estimate the reflectivity
(polarization) tensors p,,.

e Smaller size of the array aperture relative to range of scatterers
and incomplete measurements lower effective rank: r < 3P ~
worse resolution and p,, estimates.
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Numerical simulations

Images with planar square array of aperture 10 wavelengths and
N = 441 antennas. Noise is stronger than signal (SNR = 0.03).
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Imaging of three scatterers
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Conclusion: noise can be mitigated.
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Clutter viewed as a realization of random process (&)

receiver location

time

e Due to cumulative scattering neither p(t, ) nor its expectation
E[p(t,€)] are close to the model po(¢, £) that neglects the clutter.

e The coherent field E[p(t,Z)] decays with the distance of prop-
agation in the medium ~ random fluctuations gain strength.

e Coherent Interferometric Imaging (CINT) (B., Garnier, Papani-
colaou and Tsogka) uses cross-correlations of the measurements
to mitigate random effects. It images with energy resolved over
direction and time of arrival (Wigner transform).

14



Illustration: Sonar with random geometrical optics model

e For weak inhomogeneities and wavelengths < correlation length
in random medium < distance of propagation,

D(t, Zr, s) = ZG Wt F(w) Z pp G(w, Zr, Y,) G(w, Yp, Ts)
p=1
. ~ R iw[T(Z,yp)+7(Z,yp)]
with G(w, &, yp) = € 4#%—gp| :

e Random travel times 67(&,yp) are Gaussian distributed, with
large std ~ E[D(t, €, €s)] ~ 0.

e In cross-correlations for nearby receivers and sources

/dt’D(t', ., Lyg)DA —t,Tr, Ts) = o © WtD(w,a:r/,:I:S/)D(w,wr,ws)

random phases are reduced ~» coherence enhancement.

e Superposition of cross-correlations evaluated at the proper
travel time ~» robust CINT image with respect to realization
of random medium. But clutter manifests in blurrier images.

15



Super-resolution in random media?

B. and Ilker Kocyigit: Deblur CINT image:

For sufficiently large planar aperture a and bandwidth B,

2

2
Yp+vy Zn+2z
|y_ > q‘ ‘Z_ pT*q

P _

Z(Y) = Y pppg WY, ¥, Y,) e 2k 2z g = (y,=z).
p,q—=1

e CINT resolution R = A\oL/ X, ;and R, = ¢,/S2,4 in terms of decor-
relation length X; < a and frequency 2; < B of waves at array.

o M(Y, Yp, Yg) decays very rapidly in ||y, — yy|| ~ basically a diag-
onal (convolution) kernel.

Unknown |pp|? and can be extracted with convex optimization*.

*Candes, Fernandez-Granda; Castro, Gamboa; Demanet; Peyré, ... 16



Numerical results. Typical cross-range localization.
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Filters of multiple scattering effects

e For imaging small reflectors in strong random media (B., Cueto,
Papanicolaou, Tsogka; Aubry, Derode) using signal processing,
computational harmonic analysis and random matrix theory.

e Reverberations between sought reflectors may also be strong*®

c(a) Migration image
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B. and Druskin, Mamonov, Zaslavsky: use data-driven reduced
order models to transform the measurements to those corre-

sponding to single scattering.

*Results by Druskin, Mamonov, Zaslavsky. 18



Setup for data-driven reduced order model

e Assume known c¢,. Unknown is acoustic impedance o(&).

Explanation in 1-D for z € (0, .X). Sound hard boundary at z =0
i.e., v(¢t,0) = 0 and sound soft at z = X i.e., p(t,X) = 0.

e After some manipulations and for pulse f(t) with non-negative
Fourier transform, can restate acoustic wave system as

Oy (5&3) = (ﬁOqT _()Eq) (5%22), t>0, 0<z<X,

where
P(t,x) = p(t,x)/\/o(x), V(t,x) = —\/o(x)v(t,x).

e Excitation in initial condition P(0,z) = b(x), V(0,z) = 0, with
b(z) supported on sensor at x = 07.

e Operator* L, = —coO0r + R0zq(x) is linear in g(x) = Ino(x).
q 2

*Discretization on very fine grid with N points, £, is bidiagonal matrix. 19



Data-driven reduced order model (ROM)

e Pressure field at time* jr

P; = cos (jﬂ /ﬁqﬁg)b = T;(P)b, P =cos (7\/£q£?;>,

where T, = Chebyshev polynomial of first kind.
. _ 1.7 _ 1T
e Data are: D; =b' P; = b'T;(P)b.

e ROM n x n matrix P satisfying

ST T " 1/2
D; =bTT;(P)b, j=0,...,2n—1, b=D}?e;,

is the projection of P on span{Py,...,P,_1},
P=Q"?PQ,  P=(P,...,P,_1)=QR.

*Time sampling consistent with Nyquist rate.

20



Causal construction: P = (Pg,...,

P, 1) =QR

Causality ~ @ is concentrated near the diagonal and is almost

independent of q. Moreover, P is tridiagonal.
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From data to ROM

e Start with P = (Pg,...,P,_1) = QR and use P; =T;(P)b

(P1P) 1, = b' Tj(P)T(P)b

= %bT [Tj+k(3’) + T|j—k|(:]))]b

1 .
- E(Dg‘+k +Djj_y) = (R"R)jn, 0<jk<n-1.

Thus, R can be computed by Cholesky decomposition.
e ROM P = Q1rQ = R—T(PT?P)R—l can be computed from

<PT TP) = bI'T,(P)PT;L(P)b

1

B Z(Dj+k+1 t Djjt1] + Djpj-1 + Diij-1])

7,k

22



Propagator factorization

e \We show that
P =QTPQ = Q" cos (1\/LoL])Q = In—— L, LY,  L,=QTL4Q,

where QV IS the projection matrix on space spanned by the ve-
locity snapshots V} for j=0,...,n— 1.

e P is n x n tridiagonal, so Cholesky factor Zq IS bidiagonal. It
is the projection of N x N matrix L4 = fine grid discretization of

e Projection matrices Q and @, are approx. independent of gq.

~ Lq is approximately linear in g.

23



Data to Born (single scattering) mapping

e The single scattering (Born) approximation applies to small
q¢ = €q, where e < 1.

e Because Zq IS approximately linear in g, we can calculate
Lo = Lo+ G(Zq - ZO))
and obtain the transformed data
DS =b'T;(P)b, j=0,...,2n—1,

where

e Everything generalizes to higher dimensions, where the basic
difference is that we work with block tridiagonal P.

24



Numerical results in 1-D
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Numerical results in 2-D
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