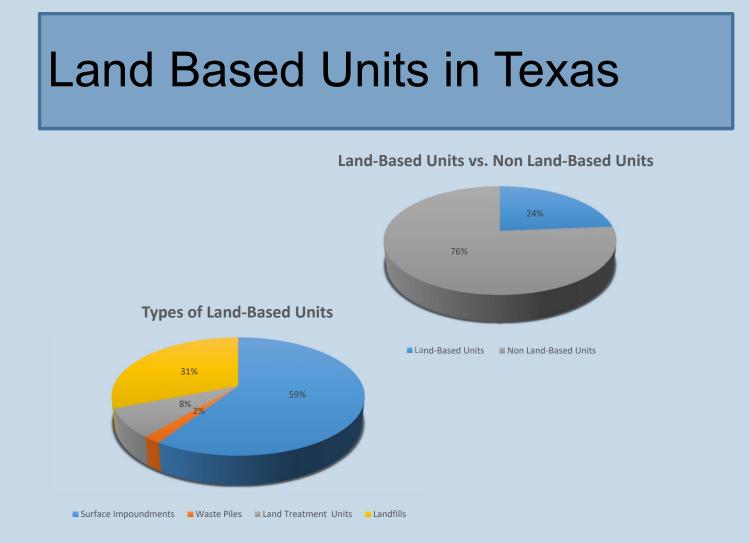

RCRA Requirements for Land-Based Units

Charles Brown, P.G. Michael Pimentel, P.E. Industrial and Hazardous Waste Permits Section May 15, 2018

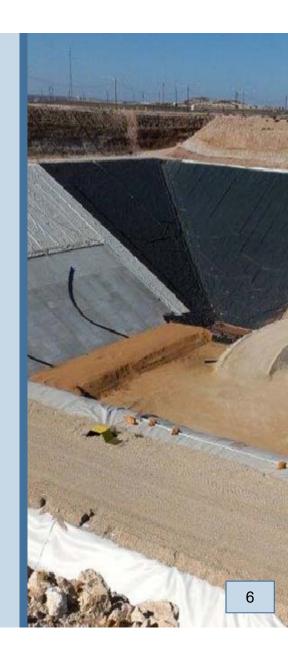
Outline

- Land Disposal Restrictions (LDR's)
- Types of Land-Based Units (LBUs)
- RCRA and State Requirements



Types of Land-Based Units

- Surface Impoundments
- Waste Piles
- Land Treatment Units
- Landfills
- Corrective Action Management Units (CAMU)


Requirements and Standards

- 40 CFR Part 264 and 30 TAC Chapter 335
- Location Standards
- Design Standards
- Operation Standards
- Closure Standards
- Post-Closure Care Standards

RCRA Requirements

- 40 CFR Part 264
 - Subpart B General Facility Requirements
 - Subpart K Surface Impoundments
 - Subpart L Waste Piles
 - Subpart M Land Treatment Units
 - Subpart N Landfills
 - Subpart S Special Provisions for Clean-up

Land Disposal Restrictions (LDRs)

- 40 CFR 268
- Apply to waste that is land disposed
 - Surface Impoundments
 - Waste Piles
 - Landfills
 - Land treatment units
 - NOT APPLICABLE to CAMU's
- All waste must meet LDRs prior to disposal

Location Standards (40 CFR Part 268)

- Seismic Considerations
 - Not within 200ft of a fault with displacement in the Holocene
- Floodplains
 - Must be designed to prevent washout from 100-year flood
- Salt Formations
 - Liquids prohibited

- Unsuitable Site Characteristics
 - With 100-yr floodplains
 - Wetlands
 - Recharge zone of sole-source aquifer
 - Edwards Aquifer in Texas
 - Landfills may not overlie a regional aquifer unless
 - Evaporation exceeds precipitation by >40 inches
 - depth to groundwater is >100 feet
 - 10 feet of low permeability material beneath landfill containment structure and regional aquifer

- LBUs may not be located:
 - Where soil units within 5ft of the containment structure have a Unified Soil Classification of GW, GP, GM, GC, SW, SP, or SM, or a permeability greater than 10⁻⁵ cm/sec
 - Exceptions:
 - Evaporation exceeds rainfall by more than 40 inches
 - The soil unit does not provide a pathway for waste migration.

- An LBU may not be located in areas of active geologic processes.
 - unless designed, constructed and operated to prevent adverse effects

- In areas protected by a barrier island or peninsula
- Within 1,000 ft. of an area subject to active coastal shoreline erosion.
 - unless designed, constructed and operated to prevent adverse effects resulting from storm surges or scouring.

- An LBU may not be located near a fault
 - Within 30 feet of the upthrown side
 - Within 50 feet of the downthrown side
 - Actual or inferred surface expression
 - Demonstrated displacement of shallow Quaternary sediments or man-made structures
 - unless designed, constructed and operated to prevent adverse effects resulting from fault motion

- Design and Operational Requirement's
 - 40 CFR Subpart K and 335.168
- Liner Systems (after July 29, 1992)
 - Top Liner (geomembrane)
 - Leachate Collection System (LCS)/Leak Detection System (LDS)
 - k = 10⁻¹ cm/sec
 - Typically sand/gravel or geonet

- Liner Systems (after July 29, 1992)
 - Composite bottom liner
 - Upper component geomembrane
 - Lower component compacted clay
 - 3 feet thickness
 - k less than/equal to 10-7 cm/sec

Action Leakage Rate

- Maximum design flow rate that LDS can remove without the fluid head on the bottom liner thickness of drainage media.
 - Average daily flow rate for each sump (gallons per acre per day)
 - Calculated weekly during active life and closure period, monthly during post-closure care

- Alternative Designs
 - Must be at least as effective as composite liner system
 - Must include a LDS
 - GCL is common

- Monitoring and Inspection Requirements
 - Weekly and after storms
 - Freeboard (2')
 - Deterioration
 - Malfunctions
 - Severe Erosion
 - Leaks
 - Presence of Leachate in Sumps

- Perimeter Dikes
 - Structural Integrity Certified by P.E.
 - Able to withstand pressure exerted by waste placement
 - Will not fail due to scouring or piping

Closure

- Remove and decontaminate all waste and containment system components
- Unit may be closed as a Landfill if:
 - Eliminate free liquids, stabilize remaining wastes (Meets LDR)
 - Final cover surface impoundment
 - Provide long term minimization of migration of liquids
 - Function with minimum maintenance
 - k less than or = k of bottom liner

- Post-closure care
 - For units closed as a Landfill
 - Maintain Final Cover
 - Maintain and monitor leak detection system
 - Maintain groundwater monitoring system

- If Minimum Technology Requirements (MTR) not meet
 - Facilities constructed prior to 1992
 - Removal of Waste
 - Decontamination of containment system components
 - Contingency Plan to address waste left in place
 - Final Cover System, groundwater monitoring

Waste Piles

- Design and Operating Requirements
 - 40 CFR Subpart L and 30 TAC 335.170
- Liner system
 - Top liner (geomembrane)
 - Composite bottom liner
 - Upper component geomembrane
 - Lower component compacted clay liner
 - 3 feet thick
 - k less than/equal to 10⁻⁷ cm/sec

Waste Piles

- Leachate Collection System/Leak Detection system
 - k is 10⁻² cm/s and 12" thickness; or
 - geonet where k is 10⁻⁵ cm/s or greater

Waste Piles

Closure

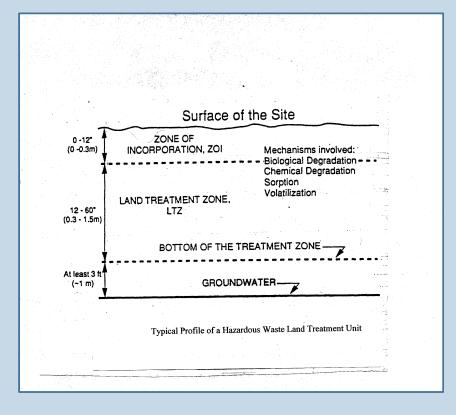
- Must remove waste
- Decontaminate all containment system components
- If contaminated soils can't be removed, must close to landfill requirements
 - Post-closure plan

Waste Piles In Texas

- Approximately 6 initially permitted
- All closed or undergoing closure

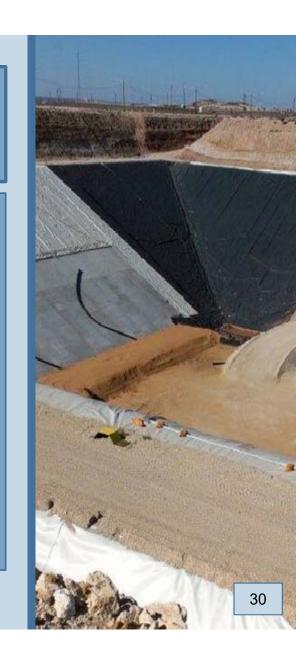
Land Treatment Units (LTU)

- 40 CFR 264 Subpart M and 30 TAC 335.171
- Program to ensure
 - Degradation;
 - transformation or;
 - immobilization
 - Of all hazardous constituents



LTU Treatment Program

- Treatment demonstration
 - · Wastes that are capable of being treated
 - Field tests, laboratory analysis, operating data
- Operated in a manner to maximize degradation, transformation and immobilization
- Unsaturated (Vadose) Zone Monitoring


LTU Profile

LTU Treatment Demonstration (LTD)

- Field tests, laboratory analysis, operating data
- Must simulate operating conditions
 - Wastes
 - Climate
 - Topography
 - Soil characteristics
 - Operating practices

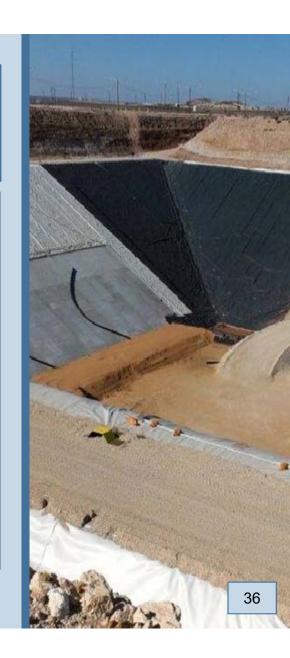
- Design and Operation Requirements
 - Must continue to maximize degradation, transformation and immobilization of wastes
 - Use same conditions as LTD
 - Rate and Method of Waste Application
 - Measures to control soil pH
 - Measures to enhance microbial activity
 - Measures to control moisture

- Design and Operation Requirements
 - Maintain run-on control system from 25-year storm
 - Manage run-off from 24-hour, 25-year event
 - Inspect LTU weekly and after storms
 - Deterioration
 - Malfunctions

- Unsaturated Zone Monitoring
 - Monitor soil and soil-pore liquid beneath treatment zone
 - Obtain background soil core and soil-pore liquid concentrations
 - Sample for principal hazardous constituents
 - Site specific locations and frequency
 - Statistical analysis allowed

• Closure

- · Cease receipt of new waste
- Continue operation
 - Maximum Degradation, Treatment, and Immobilization
- Maintain
 - Aeration
 - Moisture
 - pH
 - Nutrients
- Unsaturated Zone Monitoring
 - Soil-pore monitoring may be terminated after 90 days
 - If documented SSI continue until no migration demonstrated


• Closure (cont.)

- Minimize run-off of hazardous constituents
- Maintain run-on/off control systems
- Continue Groundwater monitoring
- Closure Activities
 - 180 day completion
 - Longer period may be approved
 - Period Dependent on :
 - Waste loading rate at closure
 - Waste degradation rate
 - Typically can be completed in 90 to 360 days

Post-Closure Care

- Begins once Unsaturated Zone Monitoring Data shows equilibrium or background
- Active Management may continue
 - Tilling
 - Soil Amendments
 - Vegetative Cover
- No post-closure release of hazardous constituents

Land Treatment Units

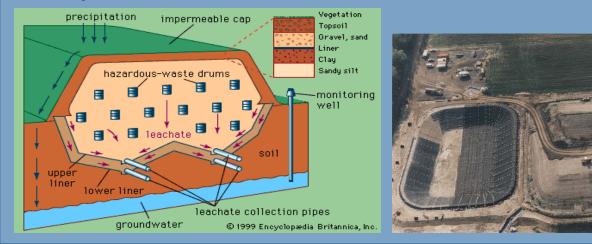
- Groundwater Monitoring during Post-Closure
 - Required unless
 - Hazardous Constituents do not exceed background
 - No SSIs in Unsaturated Zone during active life

Releases

- PHCs migrated beyond treatment zone are above MCL or Background
 - Removal of Contaminated Soil
 - Placement of impermeable cap
 - Continued management and monitoring

Land Treatment Units in Texas

- Approx. 24 Units are permitted in 1980s
 - 11 undergoing closure or post-closure care
 - 1 never constructed



- 40 CFR 264 Subpart N
- Design and Operating Requirements
 - Liner System
 - Top liner i.e. geomembrane
 - Leachate Collection System/Leak Detection System
 - 10⁻² cm/sec and 1' thickness or geonet with 10⁻⁵ cm/sec or greater
 - Composite bottom liner
 - Upper component geomembrane
 - Lower component compacted clay liner
 - 3 feet thick
 - k less than/equal to 10⁻⁷ cm/sec


Cover System

- Long-term minimization of liquid migration
- k less than or equal to that of the bottom liner system

- Alternative Designs
 - Must be at least as effective as composite liner system
 - Leak Detection
- Operating Requirements
 - Must prevent run-on from a 25-year storm
 - Must contain a 24-hour, 25-year storm event

- Action Leakage Rate (ALR)
 - Maximum design flow rate that LDS can remove without the fluid head on the bottom liner exceeding thickness of drainage media.
 - Average daily flow rate for each sump (calculated as gallons per acre per day)
 - Calculated weekly during active life and closure period, monthly during post-closure care

- Response Action Plan (RAP) if flow rate exceeds ALR
 - Notify TCEQ within 7 days
 - Submit assessment report within 14 days
 - Determine if waste receipt should cease
 - Within 30 days, report your action taken and action planned

• Closure

- Final cover system
 - Provide long term minimization of migration of liquids
 - Function with minimum maintenance
 - Promote drainage and minimize erosion
 - Accommodate settling and subsidence
 - k less than k of bottom liner
- Components (Bottom to Top)
 - 3ft of compacted clay with k of 10⁻⁷ cm/sec or less.
 - Geomembrane
 - Drainage Layer
 - Soil capable of sustaining native plant growth

Post-closure care

- Maintain final cover
- Continue to operate
 - leachate collection system
 - leak detection system
- Continue GW monitoring
- Prevent run-on and run-off from storm events damaging cover system

Corrective Action Management Units (CAMU)

- 40 CFR 264, Subpart S Special Provisions for Cleanup
- Special Unit for the disposal of waste from on-site clean up.
- Implemented to remove the disincentives to clean-up

Corrective Action Management Units (CAMU)

Design Standards

- Composite Liner
- 2 foot thick clay with k =10⁻⁷ cm/sec
- FML = 30-mil or HDPE = 60-mil
- Leachate Collection System
 - Maintain less than 1' of leachate over liner
- Alternative Designs
 - Must be at least as effective as proscribed liner system
 - Leachate Collection System

Corrective Action Management Units (CAMU)

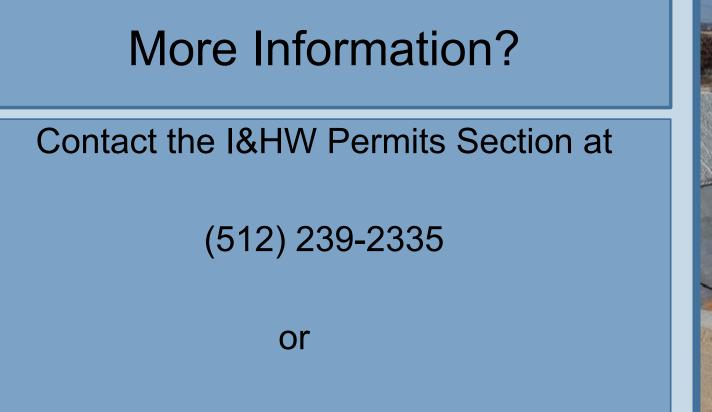
Closure

- Final cover system
 - Provide long term minimization of migration of liquids
 - Function with minimum maintenance
 - Promote drainage and minimize erosion
 - Accommodate settling and subsidence
 - k less than k of bottom liner
- Groundwater Monitoring Required
 - Existing/Suspected releases to from within CAMU
 - Wastes will remain in place after closure of the CAMU

Sign Up for GovDelivery

Receive the I&HW Quarterly update, and notification of IHW forms, rule, guidance, and procedure updates:

http://www.tceq.texas.gov/permitting/ waste_permits/ihw_permits/signupihw



Useful Agency Links:

- TCEQ Home Page: http://www.tceq.texas.gov/
- Has links to 30 TAC Rules and Federal sites
- IHW Permitting Home Page: https://www.tceq.texas.gov/permitting/ waste_permits/ihw_permits/ihw.html

ihwper@tceq.texas.gov

Questions

Charles Brown, P.G. (512)239-6234 Charles.Brown@tceq.texas.gov

Michael Pimentel, P.E. (512)239-6409 <u>Michael.Pimentel@tceq.texas.gov</u>

