

The Mathematics of Verbal Autopsy how to track the leading causes of death globally

Abraham D Flaxman July 11, 2016

THE LANCET

Subscribe | Register | Login

Search for	in All Fields	• GO	Advanced Search

Home | Journals | Specialties | Clinical | Global Health | Multimedia | Conferences | Information for | Healthcare Jobs

Global Burden of Disease Study 2010

Published Dec 13, 2012

Executive summary

The Global Burden of Disease Study 2010 (GBD 2010) is the largest ever systematic effort to describe the global distribution and causes of a wid array of major diseases, injuries, and health risk factors. The results

call infection of iseas of material and one illness, and mainutrition in call fewer withs an iess illness have here did twenty yours and As result fewer confronce dying evaluear, so more yours and middle advantation of a second size ring from wease and many, as well communited as evaluations are compared to chase. So not the dominant cause

death and disability worldwide. Since 1970, men and women worldwide gained slightly more than ten years of life expectancy overall, but they more years living with injury and illness.

GBD 2010 consists of seven Articles, each containing a wealth of data on different aspects of the study (including data for different countries and world regions, men and women, and different age groups), while accompanying Comments include reactions to the study's publication from WHO Director-General Margaret Chan and World Bank President Jim Yong Kim. The study is described by *Lancet* Editor-in-Chief Dr Richard Horton as "a critical contribution to our understanding of present and future health priorities for countries and the global community."

MP3 Audio (1):

= 00:00/00:00 · ·····

Global Burden of Diseases

Richard Horton with a background and overview of GBD 2010. Download this audio (8.10Mb)

Interactive graphs and figures interpret the GBD 2010 data

Click on the image below to view the interactive graphs and

Comments

Outline of minitutorial

Overview of Disease Burden Measurement

Deep Dive into Cause-of-Death Estimation

The Challenges to Come

- Gaussian Process Regression with Uncertainty
- Vital Registration Complete

^{*}Hollow points indicate data excluded from the analysis

- Gaussian Process Regression with Uncertainty
- Vital Registration DDM Adjusted

^{*}Hollow points indicate data excluded from the analysis

Adult mortality rate: Iraq, males

- Gaussian Process Regression with Uncertainty
- Vital Registration DDM Adjusted

- Iraq Family Health Survey Sibling History
- Demographic Sample Survey Unadjusted

^{*}Hollow points indicate data excluded from the analysis

Adult mortality rate: Iraq, males

- Gaussian Process Regression with Uncertainty
- Vital Registration DDM Adjusted

- Iraq Family Health Survey Sibling History
- Demographic Sample Survey Unadjusted

^{*}Hollow points indicate data excluded from the analysis

PBF: Application Process

To apply:

You can apply to the Post-Bachelor Fellowship using our online application.

Deadline: January 10, 2016

INTERNATIONAL FORM OF MEDICAL CERTIFICATE OF CAUSE OF DEATH

call the second solution of the second s	Ruse of death	Approximate interval between onset and death
Disease or condition directly leading to death*	(a) Pulmonary embolism	hours
	due to (or as a consequence of)	out the second
Antecedent causes Morbid conditions, if any,	(b) Pathological fracture of Femur	2 days
giving rise to the above cause,	due to (or as a consequence of)	unitediti dagi nyelise
stating the underlying condition last	(c) Secondary malignant neoplasm (femur) due to (or as a consequence of) Malignant neoplasm of	2 months
	(d) · breast (nipple) ······	<u>1 year</u>
II Other significant conditions	Essential hypertension	5 years
not related to the disease or condition causing it	Obesity	10 years
*This does not mean the mode of dyin It means the disease, injury, or compl	ng, e.g. heart failure, respiratory failure. ication that caused death.	nolišni Ševe Mabile – s
"This does not mean the mode of dyil It means the disease, Injury, or compl	ng, e.g. heart failure, respiratory failure. Ication that caused death.	Caspile
condition causing it		
III Other significant conditions contributing to the death, but not related to the disease or	Skoud gerrij og gegligt	15 P 46

Percent of "Garbage" Death Certificates

Death Registration Coverage

How would you fill in these blanks?

- I'm about to tell you how I do, but my solution is not as good as I would like. So I'll give you a minute to think about how you would do it.
- For real, go ahead.
- Then we will "pair and share". This whole bit of *active learning* will take about 7 minutes.
- If you have something good, tweet it to me: @healthyalgo #SIAMAN16 (or email <u>abie@uw.edu</u>)

Verbal Autopsy

SECTION 5 <u>MODULE 1. GENERAL ILLNESS LEADING TO DEATH</u> SPECIFIC QUESTIONS TO ELICIT SYMPTOMS AND SIGNS OF THE LAST ILLNESS

	NO.	QUESTIONS AND FILTERS	CODING CATEGORIES				
!	5 0 1	Did(NAME) have fever during her last illness?	YES1				
			NO2	502			
			DON'T KNOW8	502			
(501A	How many days/months before her death did the fever start and end?	START				
	SECTION 4. DESCRIPTIVE REPORT OF ILLNESS AND EVENTS THAT LED TO THE DEATH						

401. Explain to the respondent that we would like to hear the details about everything that happened during the last illness before ______ death starting from the beginning of the ilness and also about what happened during the final hours of the woman's death.

Verbatim:

		MILD2
		DON'T KNOW/UNSURE
501C	Was the fever continuous or on and off?	CONTINUOUS1
		AFTER EVERY 1 - 2 DAYS2
		AT NIGHT ONLY

Book length version of this half of the mini-tutorial:

"Jeremy Smith's engaging story of a man obsessed with the numbers, and the mortal dramas they tell, reads like a novel and is better than any textbook or survey of this planet's health." ---Paul Farmer

Outline of minitutorial

Overview of Disease Burden Measurement

Deep Dive into Cause-of-Death Estimation

The Challenges to Come

Outline for this half of minitutorial

Verbal autopsy

Machine learning for predicting cause of death

Tools of the trade: python, sklearn, github, binder, software carpentry, ...

Example VA response (this data is real)

Deceased was 53 Year Old Male, with:

- Asthma
- Heart Disease
- Hypertension
- Ankle Swelling
- Puffiness of the Face, All Over His Body

Underlying Cause: COPD

- Used Tobacco
- Drank Low Amount of Alcohol
- Free Text: Asthma, Breath, Heart, Lung, Swell, Water

PHMRC VA Validation Dataset (GC-13)

Population Health Metrics Research Consortium (PHMRC) study was part of the Bill & Melinda Gates Foundation Grand Challenges in Global Health (GC-13, to be specific).

28

Deaths with CoD known and VA collected

	Adult		Child		Neonate		
Site	Level 1	Level 2	Level 1	Level 2	Level 1	Level 2	Total
AP	1,285	269	385	66	376	1	2,382
Bohol	998	262	234	30	374	0	1,898
Dar	1,556	162	366	106	1,047	2	3,239
Mexico	1,373	215	124	4	313	2	2,031
Pemba	266	31	156	105	261	3	822
UP	1,277	142	412	87	251	1	2,170
Total	6,755	1,081	1,677	398	2,622	9	12,542

► IHME W UNIVERSITY of WASHINGTON

Labeled data from GC-13

Population Health M ×		
← → C ghdx.healthmetricsandevaluation.org/	record/population-ł	health-metrics-research-consc ☆ 🚇
Iome > Survey Population Health Metrics Research Consortium Gold Standard Verbal Autopsy Data 2005-2011 General Info Citation Files (11)		 Resources Contact Us Data Sites We Love IHME Data Visualizations
File	Size 21.45	
PHMRC VA child data, CSV format	MB 3.35 MB	
PHMRC VA neonate data, CSV format	4.74 MB	
PHMRC Data, codebook	53.72 KB	
README	2.85 KB	

Outline for this half of minitutorial

Verbal autopsy

Machine learning for predicting cause of death

Tools of the trade: python, sklearn, github, binder, software carpentry, ...

Institute for Health Metrics and Evaluation

31

Live Coding (with a net)

Find it on GitHub – <u>t.co/9ARJpW2XVC</u>

Use it on Binder – <u>mybinder.org</u> (cf. <u>cloud.sagemath.com</u>)

Want to learn more/skill-up students?

Our Workshops > Find or host a workshop.

Our Lessons > Have a look at what we teach.

Get Involved > Help us help researchers.

"hello, world" of Scientific Python

Jupyter (IPython) Notebook Matplotlib Numpy Pandas Scikit-Learn

An aside on REPRODUCIBLE RESEARCH

For more, attend this invited talk:

Victoria Stodden

Implementing reproducibility in computational science

Thursday, 2 PM

Outline for this half of minitutorial

Verbal autopsy

Machine learning for predicting cause of death

Tools of the trade: python, sklearn, github, binder, software carpentry, ...

Institute for Health Metrics and Evaluation

36

What is "machine learning"?

For my purposes, ML means something very specific:

Although the **framework** for mapping from VA interviews to cause-of-death **is fixed**, the **details** are **learned from data**.

Machine learning methods

RESEARCH

Open Access

Performance of the Tariff Method: validation of a RESEARCH Open Access

Simplified Symptom Pattern Method for verbal RESEARCH Open Access

Random forests for verbal autopsy analysis: multisite validation study using clinical diagnostic gold standards

Abraham D Flaxman^{1*}, Alireza Vahdatpour¹, Sean Green², Spencer L James¹ and Christopher JL Murray¹ for the Population Health Metrics Research Consortium (PHMRC)

"Horserace" paper

Murray et al. BMC Medicine 2014, **12**:5 <u>http://www.biomedcentral.com/1741-7015/12/5</u> doi:10.1186/1741-7015-12-5

► IHME W UNIVERSITY of WASHINGTON

Applied Machine Learning for SIAM

Let us now do something hands-on again, **make predictions** of cause-of-death from VA interviews, **using sklearn** for machine learning methods

Out-of-Sample Predictive Validity

Standard Approach 10x 10-fold C-V

Example in Binder

Very cool recent alternative: **reusable hold-out** approach developed by differential privacy crowd, perhaps mentioned in Cythia Dwork's invited talk this morning.

Question remains: what to optimize?

Quantity we have been calculating is "accuracy", which is not really what I am interested in.

Back to active learning

On what metric of prediction quality should I be focused?

Write, pair, share (time permitting).

If you have something good, tweet it to me: @healthyalgo #SIAMAN16 (or email <u>abie@uw.edu</u>)

Two metrics for prediction quality

Individual-level performance: Chance-corrected concordance (CCC)

Population-level performance: Cause-specific mortality fraction (CSMF) accuracy

Population-level quality

It's too much to really implement it.

Let's just spend a minute to try to make it work, with a pretty secure scaffold.

[If time permits, followed by a word on **Testdriven Development** (TDD)]

Out-of-sample validation

Resample test set to have random CSMFs

Chance-corrected CSMF Accuracy

Flaxman *et al. Population Health Metrics* (2015) 13:28 DOI 10.1186/s12963-015-0061-1

RESEARCH

POPULATION HEALTH METRICS

Measuring causes of death in populations: a new metric that corrects cause-specific mortality fractions for chance

Abraham D. Flaxman^{1*}, Peter T. Serina¹, Bernardo Hernandez¹, Christopher J. L. Murray¹, Ian Riley² and Alan D. Lopez³

Outline for this half of minitutorial

Verbal autopsy

Machine learning for predicting cause of death

Tools of the trade: python, sklearn, github, binder, software carpentry, ...

Outline of Minitutorial

Overview of Disease Burden Measurement

Deep Dive into Cause-of-Death Estimation

The Challenges to Come

- Explaining why
- Item reduction
- Quality Assurance for Translation

Explaining why

Important for understanding errors, building trust

	В	С	D	E	F	G
1	cause_of_deatl_	symptom_	symptom_str 🛛 🖈	tariff 🖵	endorsement_rate-	n_subj 🕞
122	Stroke	s110	Paralyzed upper part of body	25.5	2.5%	630
262	Stroke	s107	Paralyzed on one side (arm and leg)	8.5	37.3%	630
292	Stroke	s105	Was [name] in any way paralyzed?	7.5	51.1%	630
326	Stroke	s8	Did Decedent Have Epilepsy?	6.5	15.4%	630
381	Stroke	s12	Did Decedent Have Stroke?	5.5	25.9%	630
383	Stroke	s116	Paralyzed other	5.5	5.7%	630
567	Stroke	s95	Sudden loss of consciousness	3.5	50.8%	630
			For how long before death did [name]			
568	Stroke	s106	have paralysis? [days]	3.5	16.3%	630
570	Stroke	s152	Decedent suffered fall	3.5	8.9%	630
571	Stroke	s112	Paralyzed one arm only	3.5	1.9%	630
656	Stroke	s97	Did it continue until death?	3	60.3%	630
657	Stroke	s113	Paralyzed whole body	3	5.4%	630
767	Stroke	s140	Type of tobacco used: pipe	2.5	3.8%	630
			Did [name] experience a period of loss of			
768	Stroke	s94	consciousness?	2.5	66.7%	630
772	Stroke	s10	Did Decedent Have Hypertension?	2.5	68.6%	630
			For how long did the period of loss of			

Data-driven Item Reduction

Quality Assurance for VA Translation

Figure to follow up on possibility of mistaking copd and asthma for tb:

Quite possible that majority of predicted COPD predicted Asthma deaths were actually caused by TB.

Conclusion of Minitutorial

Overview of Disease Burden Measurement

Deep Dive into Cause-of-Death Estimation

The Challenges to Come

- Explaining why
- Item reduction
- Quality Assurance for Translation

Thank You!

