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Spontaneous synchronization has long served as a paradigm for behavioral uniformity that can
emerge from interactions in complex systems. When the interacting entities are identical and their
coupling patterns are also identical, the complete synchronization of the entire network is the state
inheriting the system symmetry. As in other systems subject to symmetry breaking, such sym-
metric states are not always stable. Here we report on the discovery of the converse of symmetry
breaking—the scenario in which complete synchronization is not stable for identically-coupled iden-
tical oscillators but becomes stable when, and only when, the oscillator parameters are judiciously
tuned to nonidentical values, thereby breaking the system symmetry to preserve the state symme-
try. Aside from demonstrating that diversity can facilitate and even be required for uniformity and
consensus, this suggests a mechanism for convergent forms of pattern formation in which initially
asymmetric patterns evolve into symmetric ones.

Symmetry—the property of appearing the same from
di↵erent viewpoints—is so central to physics that
Weyl [1] suggested that “all a priori statements in physics
have their origin in symmetry”; Anderson [2] went fur-
ther to propose that “physics is the study of symmetry.”
In the study of complex networks this tradition was for
many years relegated to a secondary position, for the ex-
cellent reason that real complex systems appeared not
to exhibit symmetries. Recent work has shown, however,
that they not only can exhibit a myriad of symmetries [3]
but also that such symmetries have direct implications
for dynamical behavior (see Ref. [4] for example). Par-
tially motivated by that, significant recent attention has
been dedicated to the extreme, most symmetric case of
uniform networks in which nodes are all identically cou-
pled to the others and have no natural grouping, as in a
ring or all-to-all network. It has been shown that such
systems can exhibit spatiotemporal patterns of coexist-
ing synchronous and non-synchronous behavior [5, 6], for
which elaborated mathematical analysis techniques are
now available [7]. The emergence of these patterns can
be regarded as a form of symmetry breaking, since the
realized state has less symmetry than the system [8].
Here we demonstrate for the first time that the con-
verse of symmetry breaking with the roles of the sys-
tem and its state reversed—which we term asymmetry-

induced symmetry—is also possible. We provide exam-
ples of uniform, rotationally symmetric networks of cou-
pled oscillators for which stable uniform states (thus ro-
tationally symmetric states) do not exist when the nodes
are identical but do exist when the nodes are not identi-
cal.

In a network of coupled oscillators a uniform, symmet-
ric state represents synchronization, in which all units
swing in concert, following the exact same dynamics
as a function of time [9]. Synchronization dynamics is
widespread across fields—ranging from physics and engi-

neering to biology and social sciences—and is intimately
related to the twin processes of consensus dynamics and
convergence to uniform patterns. Consensus dynamics is
a process through which a network of interacting agents
can achieve a common objective or reach agreement. Ex-
amples include decentralized coordination of moving sen-
sors [10, 11] and the dynamics of collective opinion for-
mation in social networks [12, 13]. Convergence to uni-
formity can occur through processes of di↵usion or relax-
ation, in which pairwise interactions in the network tend
to reduce the di↵erence between the states of the nodes.
Examples of such processes include convergence to equi-
librium in chaotic chemical reaction systems [14, 15],
population dispersion in natural systems [16], and relax-
ation in fluid networks [17].
As a model system that can exhibit asymmetry-

induced symmetry, we introduce a network of n two-
dimensional oscillators whose dynamics is governed by

✓̇i = ! + ri � 1� �ri

nX

j=1

sin(✓j � ✓i),

ṙi = biri(1� ri) + "ri

nX

j=1

Aij sin(✓j � ✓i),

(1)

where ✓i and ri are the angle and amplitude variables
for the ith oscillator, respectively, the constants ! and
bi > 0 characterize the dynamics of individual oscillators,
the parameters � > 0 and " > 0 are constants represent-
ing the overall coupling strength, and A = (Aij)1i,jn,
Aij � 0, is the adjacency matrix encoding the structure
of the (possibly weighted and directed) network. Note
that the interaction network of system (1) has two com-
ponents, one representing the uniform, angle-to-angle
coupling between all pairs of nodes, and the other repre-
senting the angle-to-amplitude coupling with the network
structure given by the matrix A. For arbitrary network
structureA, the system (1) has a synchronous state given
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ṙi = biri(1� ri) + "ri

nX

j=1

Aij sin(✓j � ✓i),

(1)

where ✓i and ri are the angle and amplitude variables
for the ith oscillator, respectively, the constants ! and
bi > 0 characterize the dynamics of individual oscillators,
the parameters � > 0 and " > 0 are constants represent-
ing the overall coupling strength, and A = (Aij)1i,jn,
Aij � 0, is the adjacency matrix encoding the structure
of the (possibly weighted and directed) network. Note
that the interaction network of system (1) has two com-
ponents, one representing the uniform, angle-to-angle
coupling between all pairs of nodes, and the other repre-
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Example: Network of n phase-amplitude oscillators
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Example: Network of n phase-amplitude oscillators

Limit cycle
✓i(t) ⌘ ✓0 + !t, ri(t) ⌘ 1
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ing synchronous and non-synchronous behavior [5, 6], for
which elaborated mathematical analysis techniques are
now available [7]. The emergence of these patterns can
be regarded as a form of symmetry breaking, since the
realized state has less symmetry than the system [8].
Here we demonstrate for the first time that the con-
verse of symmetry breaking with the roles of the sys-
tem and its state reversed—which we term asymmetry-

induced symmetry—is also possible. We provide exam-
ples of uniform, rotationally symmetric networks of cou-
pled oscillators for which stable uniform states (thus ro-
tationally symmetric states) do not exist when the nodes
are identical but do exist when the nodes are not identi-
cal.

In a network of coupled oscillators a uniform, symmet-
ric state represents synchronization, in which all units
swing in concert, following the exact same dynamics
as a function of time [9]. Synchronization dynamics is
widespread across fields—ranging from physics and engi-

neering to biology and social sciences—and is intimately
related to the twin processes of consensus dynamics and
convergence to uniform patterns. Consensus dynamics is
a process through which a network of interacting agents
can achieve a common objective or reach agreement. Ex-
amples include decentralized coordination of moving sen-
sors [10, 11] and the dynamics of collective opinion for-
mation in social networks [12, 13]. Convergence to uni-
formity can occur through processes of di↵usion or relax-
ation, in which pairwise interactions in the network tend
to reduce the di↵erence between the states of the nodes.
Examples of such processes include convergence to equi-
librium in chaotic chemical reaction systems [14, 15],
population dispersion in natural systems [16], and relax-
ation in fluid networks [17].
As a model system that can exhibit asymmetry-

induced symmetry, we introduce a network of n two-
dimensional oscillators whose dynamics is governed by
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where ✓i and ri are the angle and amplitude variables
for the ith oscillator, respectively, the constants ! and
bi > 0 characterize the dynamics of individual oscillators,
the parameters � > 0 and " > 0 are constants represent-
ing the overall coupling strength, and A = (Aij)1i,jn,
Aij � 0, is the adjacency matrix encoding the structure
of the (possibly weighted and directed) network. Note
that the interaction network of system (1) has two com-
ponents, one representing the uniform, angle-to-angle
coupling between all pairs of nodes, and the other repre-
senting the angle-to-amplitude coupling with the network
structure given by the matrix A. For arbitrary network
structureA, the system (1) has a synchronous state given
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coupling between all pairs of nodes, and the other repre-
senting the angle-to-amplitude coupling with the network
structure given by the matrix A. For arbitrary network
structureA, the system (1) has a synchronous state given

80 representing the uniform, angle-to-angle coupling between
81 all pairs of nodes, and the other representing the angle-to-
82 amplitude coupling with the network structure given by the
83 matrix A. For arbitrary network structure A, the system (1)
84 has a synchronous state given by

θ1ðtÞ¼ $$ $ ¼ θnðtÞ≡θ0þωt; r1ðtÞ¼ $$ $ ¼ rnðtÞ≡1; ð2Þ

85 inwhich each oscillator follows the limit cycle of the isolated
86 oscillator dynamics [18]. This state is guaranteed to exist
87 because all the coupling terms vanish when θ1 ¼ $ $ $ ¼ θn.
88 We see, from the form of Eq. (1), that the coupling between
89 the angle and amplitude variables tends to stabilize the
90 synchronous state, while the coupling within the angle
91 variables (through all-to-all topology and a negative coupling
92 strength, −γ < 0) tends to destabilize it. The balance
93 between the two effects determines the synchronization
94 stability, which can be quantified by themaximumLyapunov
95 exponentΛ, defined as the exponential rate of convergence to
96 (if Λ < 0) or divergence from (if Λ > 0) the synchronous
97 state (see Supplemental Material [18] for details on the
98 stability analysis).We consider the class of uniformnetworks
99 in which nodes are arranged in a one-dimensional ring and

100each node is identically coupled to the rest of the network.
101Specifically, for a given parameter δ, each node i receives
102input from node i − 1with coupling strength 1 − δ and from
103node iþ 1 with strength 1þ δ (where we have defined the
104indices i ¼ 0 and i ¼ nþ 1 to denote the nodes i ¼ n
105and i ¼ 1, respectively). An example of such a network is
106illustrated in Fig. 1(a) for n ¼ 7. Here, we assumed that the
107average coupling strength is one for the two links pointing to
108each node, but the more general class of networks for which
109this average is arbitrary can be reduced to the class we have
110just defined by factoring out a scalar from Aij and having it
111absorbed into the parameter ε in Eq. (1).Model (1) represents
112a wide range of other systems that can exhibit asymmetry-
113induced symmetry. For example, a general class of networks
114of coupled Stuart-Landau oscillators [22–26] (whose node
115dynamics is based on the normal form for an oscillator near a
116supercritical Hopf bifurcation [27]) can be parametrized in
117such a way that the parametric dependence of synchroniza-
118tion stability is identical to that for model (1) [18].
119Figure 1 shows the dynamics demonstrating asymmetry-
120induced symmetry for the example system. For identical
121values of bi, which make the oscillators identical, the
122synchronous state is unstable, even when the common

F1:1 FIG. 1. Oscillator heterogeneity stabilizes the homogeneous synchronous state in the homogeneous network. (a) Homogeneous
F1:2 network of n ¼ 7 nodes. The red (top) and blue (bottom) numbers are the oscillators’ bi values used for t < 75 and t ≥ 75, respectively,
F1:3 in our simulation of Eq. (1) for ε ¼ 2 and δ ¼ 0.3. (b)–(e) Oscillator state trajectory showing desynchronization with homogeneous
F1:4 bi ¼ b& when t < 75, followed by spontaneous synchronization with heterogeneous bi when t ≥ 75. (b) phase angle θi (relative to
F1:5 their average hθii) vs t. (c) amplitude ri vs t. (d),(e) ri vs θi − hθii for t < 75 (d) and t ≥ 75 (e). The synchronous state corresponds
F1:6 to θi − hθii ¼ 0, ri ¼ 1. (f) Order parameters Rθ and Rr quantifying the degree of synchronization. They are defined by
F1:7 Rθ :¼ j

P
i expðiθiÞ and Rr :¼ expð−σiÞ , respectively, where i :¼

ffiffiffiffiffiffi−1p
is the imaginary unit and the standard deviation σr is

F1:8 computed as σ2r :¼
P

i ðri − hriiÞ2=ðn − 1Þ. See Supplemental Material [18] for details and an animation of the dynamics.
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Spontaneous synchronization has long served as a paradigm for behavioral uniformity that can
emerge from interactions in complex systems. When the interacting entities are identical and their
coupling patterns are also identical, the complete synchronization of the entire network is the state
inheriting the system symmetry. As in other systems subject to symmetry breaking, such sym-
metric states are not always stable. Here we report on the discovery of the converse of symmetry
breaking—the scenario in which complete synchronization is not stable for identically-coupled iden-
tical oscillators but becomes stable when, and only when, the oscillator parameters are judiciously
tuned to nonidentical values, thereby breaking the system symmetry to preserve the state symme-
try. Aside from demonstrating that diversity can facilitate and even be required for uniformity and
consensus, this suggests a mechanism for convergent forms of pattern formation in which initially
asymmetric patterns evolve into symmetric ones.

Symmetry—the property of appearing the same from
di↵erent viewpoints—is so central to physics that
Weyl [1] suggested that “all a priori statements in physics
have their origin in symmetry”; Anderson [2] went fur-
ther to propose that “physics is the study of symmetry.”
In the study of complex networks this tradition was for
many years relegated to a secondary position, for the ex-
cellent reason that real complex systems appeared not
to exhibit symmetries. Recent work has shown, however,
that they not only can exhibit a myriad of symmetries [3]
but also that such symmetries have direct implications
for dynamical behavior (see Ref. [4] for example). Par-
tially motivated by that, significant recent attention has
been dedicated to the extreme, most symmetric case of
uniform networks in which nodes are all identically cou-
pled to the others and have no natural grouping, as in a
ring or all-to-all network. It has been shown that such
systems can exhibit spatiotemporal patterns of coexist-
ing synchronous and non-synchronous behavior [5, 6], for
which elaborated mathematical analysis techniques are
now available [7]. The emergence of these patterns can
be regarded as a form of symmetry breaking, since the
realized state has less symmetry than the system [8].
Here we demonstrate for the first time that the con-
verse of symmetry breaking with the roles of the sys-
tem and its state reversed—which we term asymmetry-

induced symmetry—is also possible. We provide exam-
ples of uniform, rotationally symmetric networks of cou-
pled oscillators for which stable uniform states (thus ro-
tationally symmetric states) do not exist when the nodes
are identical but do exist when the nodes are not identi-
cal.

In a network of coupled oscillators a uniform, symmet-
ric state represents synchronization, in which all units
swing in concert, following the exact same dynamics
as a function of time [9]. Synchronization dynamics is
widespread across fields—ranging from physics and engi-

neering to biology and social sciences—and is intimately
related to the twin processes of consensus dynamics and
convergence to uniform patterns. Consensus dynamics is
a process through which a network of interacting agents
can achieve a common objective or reach agreement. Ex-
amples include decentralized coordination of moving sen-
sors [10, 11] and the dynamics of collective opinion for-
mation in social networks [12, 13]. Convergence to uni-
formity can occur through processes of di↵usion or relax-
ation, in which pairwise interactions in the network tend
to reduce the di↵erence between the states of the nodes.
Examples of such processes include convergence to equi-
librium in chaotic chemical reaction systems [14, 15],
population dispersion in natural systems [16], and relax-
ation in fluid networks [17].
As a model system that can exhibit asymmetry-

induced symmetry, we introduce a network of n two-
dimensional oscillators whose dynamics is governed by

✓̇i = ! + ri � 1� �ri

nX

j=1

sin(✓j � ✓i),

ṙi = biri(1� ri) + "ri

nX

j=1

Aij sin(✓j � ✓i),

(1)

where ✓i and ri are the angle and amplitude variables
for the ith oscillator, respectively, the constants ! and
bi > 0 characterize the dynamics of individual oscillators,
the parameters � > 0 and " > 0 are constants represent-
ing the overall coupling strength, and A = (Aij)1i,jn,
Aij � 0, is the adjacency matrix encoding the structure
of the (possibly weighted and directed) network. Note
that the interaction network of system (1) has two com-
ponents, one representing the uniform, angle-to-angle
coupling between all pairs of nodes, and the other repre-
senting the angle-to-amplitude coupling with the network
structure given by the matrix A. For arbitrary network
structureA, the system (1) has a synchronous state given

To appear in Phys. Rev. Lett.

Symmetric States Requiring System Asymmetry

Takashi Nishikawa⇤ and Adilson E. Motter
Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208, USA and
Northwestern Institute on Complex Systems, Northwestern University, Evanston, IL 60208, USA

Spontaneous synchronization has long served as a paradigm for behavioral uniformity that can
emerge from interactions in complex systems. When the interacting entities are identical and their
coupling patterns are also identical, the complete synchronization of the entire network is the state
inheriting the system symmetry. As in other systems subject to symmetry breaking, such sym-
metric states are not always stable. Here we report on the discovery of the converse of symmetry
breaking—the scenario in which complete synchronization is not stable for identically-coupled iden-
tical oscillators but becomes stable when, and only when, the oscillator parameters are judiciously
tuned to nonidentical values, thereby breaking the system symmetry to preserve the state symme-
try. Aside from demonstrating that diversity can facilitate and even be required for uniformity and
consensus, this suggests a mechanism for convergent forms of pattern formation in which initially
asymmetric patterns evolve into symmetric ones.

Symmetry—the property of appearing the same from
di↵erent viewpoints—is so central to physics that
Weyl [1] suggested that “all a priori statements in physics
have their origin in symmetry”; Anderson [2] went fur-
ther to propose that “physics is the study of symmetry.”
In the study of complex networks this tradition was for
many years relegated to a secondary position, for the ex-
cellent reason that real complex systems appeared not
to exhibit symmetries. Recent work has shown, however,
that they not only can exhibit a myriad of symmetries [3]
but also that such symmetries have direct implications
for dynamical behavior (see Ref. [4] for example). Par-
tially motivated by that, significant recent attention has
been dedicated to the extreme, most symmetric case of
uniform networks in which nodes are all identically cou-
pled to the others and have no natural grouping, as in a
ring or all-to-all network. It has been shown that such
systems can exhibit spatiotemporal patterns of coexist-
ing synchronous and non-synchronous behavior [5, 6], for
which elaborated mathematical analysis techniques are
now available [7]. The emergence of these patterns can
be regarded as a form of symmetry breaking, since the
realized state has less symmetry than the system [8].
Here we demonstrate for the first time that the con-
verse of symmetry breaking with the roles of the sys-
tem and its state reversed—which we term asymmetry-

induced symmetry—is also possible. We provide exam-
ples of uniform, rotationally symmetric networks of cou-
pled oscillators for which stable uniform states (thus ro-
tationally symmetric states) do not exist when the nodes
are identical but do exist when the nodes are not identi-
cal.

In a network of coupled oscillators a uniform, symmet-
ric state represents synchronization, in which all units
swing in concert, following the exact same dynamics
as a function of time [9]. Synchronization dynamics is
widespread across fields—ranging from physics and engi-

neering to biology and social sciences—and is intimately
related to the twin processes of consensus dynamics and
convergence to uniform patterns. Consensus dynamics is
a process through which a network of interacting agents
can achieve a common objective or reach agreement. Ex-
amples include decentralized coordination of moving sen-
sors [10, 11] and the dynamics of collective opinion for-
mation in social networks [12, 13]. Convergence to uni-
formity can occur through processes of di↵usion or relax-
ation, in which pairwise interactions in the network tend
to reduce the di↵erence between the states of the nodes.
Examples of such processes include convergence to equi-
librium in chaotic chemical reaction systems [14, 15],
population dispersion in natural systems [16], and relax-
ation in fluid networks [17].
As a model system that can exhibit asymmetry-

induced symmetry, we introduce a network of n two-
dimensional oscillators whose dynamics is governed by

✓̇i = ! + ri � 1� �ri

nX

j=1

sin(✓j � ✓i),
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the parameters � > 0 and " > 0 are constants represent-
ing the overall coupling strength, and A = (Aij)1i,jn,
Aij � 0, is the adjacency matrix encoding the structure
of the (possibly weighted and directed) network. Note
that the interaction network of system (1) has two com-
ponents, one representing the uniform, angle-to-angle
coupling between all pairs of nodes, and the other repre-
senting the angle-to-amplitude coupling with the network
structure given by the matrix A. For arbitrary network
structureA, the system (1) has a synchronous state given
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123 value is chosen to be the one that minimizes Λ, which we
124 denote by b!. In this case, the system starting near the
125 synchronous state diverges away and approaches a travel-
126 ing wave state (see Supplemental Material [18] for an
127 animation of this state). However, if we allow for non-
128 identical values of bi, we can stabilize the synchronous
129 state. Indeed, as shown in Fig. 1, after switching to a
130 numerically identified combination of nonhomogeneous bi
131 values, we see that the oscillators spontaneously return to
132 the synchronous state. Thus, for system (1), the stability of
133 the (uniform) synchronous state can only be supported by
134 nonidentical oscillators. While we focus on uniform net-
135 works in this Letter to avoid confounding factors (e.g.,
136 differences between oscillators needed to compensate for
137 differences between their couplings), the conclusion that
138 inherent heterogeneity can be necessary to realize uniform
139 states is general and, also, valid for nonuniform networks
140 (see Supplemental Material [18] for concrete examples).
141 The landscape of stability in the space of all possible
142 b :¼ ðb1;…; bnÞ provides a more complete view of
143 asymmetry-induced symmetry. Along the diagonal line
144 b1 ¼ % % % ¼ bn ≡ b in this space, Λ, as a function of b,
145 typically has a single minimum at b ¼ b! with Λðb!Þ > 0,

146in which case no homogeneous oscillators can be stably
147synchronized in the form of Eq. (2). Figures 2(a) and 2(e)
148show example cases for n ¼ 3 and n ¼ 7, respectively,
149in which Λðb!Þ > 0 (which is satisfied even when
150considering both positive and negative b). In the full
151n-dimensional b space, however, there can be a significant
152(nonzero-volume) region of stable synchronization [see
153Figs. 2(b) and 2(f)]. The shape of this region is necessarily
154cyclically symmetric around the homogeneous-bi line due
155to the symmetry of the network dynamics with respect to
156cyclic permutations of the nodes. This can be seen in the
157case of n ¼ 3, shown in Fig. 2(b), in which the stability
158region (blue) is invariant under the 120° rotation around
159that line. In both n ¼ 3 and n ¼ 7 cases, we observe that
160the stability region lies far away from the diagonal line
161representing the homogeneous-oscillator networks [the
162green lines in Figs. 2(b) and 2(f)], indicating that signifi-
163cant differences between the oscillators are required to
164achieve stable synchronization. For n ¼ 3, the stability
165region also appears to have a mirror symmetry about the
166three planes b1 ¼ b2, b2 ¼ b3, and b3 ¼ b1. Associated
167with these planes, we find six points of maximum stability
168in the box shown in Fig. 2(b): three pairs related to each
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Spontaneous synchronization has long served as a paradigm for behavioral uniformity that can
emerge from interactions in complex systems. When the interacting entities are identical and their
coupling patterns are also identical, the complete synchronization of the entire network is the state
inheriting the system symmetry. As in other systems subject to symmetry breaking, such sym-
metric states are not always stable. Here we report on the discovery of the converse of symmetry
breaking—the scenario in which complete synchronization is not stable for identically-coupled iden-
tical oscillators but becomes stable when, and only when, the oscillator parameters are judiciously
tuned to nonidentical values, thereby breaking the system symmetry to preserve the state symme-
try. Aside from demonstrating that diversity can facilitate and even be required for uniformity and
consensus, this suggests a mechanism for convergent forms of pattern formation in which initially
asymmetric patterns evolve into symmetric ones.

Symmetry—the property of appearing the same from
di↵erent viewpoints—is so central to physics that
Weyl [1] suggested that “all a priori statements in physics
have their origin in symmetry”; Anderson [2] went fur-
ther to propose that “physics is the study of symmetry.”
In the study of complex networks this tradition was for
many years relegated to a secondary position, for the ex-
cellent reason that real complex systems appeared not
to exhibit symmetries. Recent work has shown, however,
that they not only can exhibit a myriad of symmetries [3]
but also that such symmetries have direct implications
for dynamical behavior (see Ref. [4] for example). Par-
tially motivated by that, significant recent attention has
been dedicated to the extreme, most symmetric case of
uniform networks in which nodes are all identically cou-
pled to the others and have no natural grouping, as in a
ring or all-to-all network. It has been shown that such
systems can exhibit spatiotemporal patterns of coexist-
ing synchronous and non-synchronous behavior [5, 6], for
which elaborated mathematical analysis techniques are
now available [7]. The emergence of these patterns can
be regarded as a form of symmetry breaking, since the
realized state has less symmetry than the system [8].
Here we demonstrate for the first time that the con-
verse of symmetry breaking with the roles of the sys-
tem and its state reversed—which we term asymmetry-

induced symmetry—is also possible. We provide exam-
ples of uniform, rotationally symmetric networks of cou-
pled oscillators for which stable uniform states (thus ro-
tationally symmetric states) do not exist when the nodes
are identical but do exist when the nodes are not identi-
cal.

In a network of coupled oscillators a uniform, symmet-
ric state represents synchronization, in which all units
swing in concert, following the exact same dynamics
as a function of time [9]. Synchronization dynamics is
widespread across fields—ranging from physics and engi-

neering to biology and social sciences—and is intimately
related to the twin processes of consensus dynamics and
convergence to uniform patterns. Consensus dynamics is
a process through which a network of interacting agents
can achieve a common objective or reach agreement. Ex-
amples include decentralized coordination of moving sen-
sors [10, 11] and the dynamics of collective opinion for-
mation in social networks [12, 13]. Convergence to uni-
formity can occur through processes of di↵usion or relax-
ation, in which pairwise interactions in the network tend
to reduce the di↵erence between the states of the nodes.
Examples of such processes include convergence to equi-
librium in chaotic chemical reaction systems [14, 15],
population dispersion in natural systems [16], and relax-
ation in fluid networks [17].
As a model system that can exhibit asymmetry-

induced symmetry, we introduce a network of n two-
dimensional oscillators whose dynamics is governed by

✓̇i = ! + ri � 1� �ri

nX

j=1

sin(✓j � ✓i),

ṙi = biri(1� ri) + "ri

nX

j=1

Aij sin(✓j � ✓i),

(1)

where ✓i and ri are the angle and amplitude variables
for the ith oscillator, respectively, the constants ! and
bi > 0 characterize the dynamics of individual oscillators,
the parameters � > 0 and " > 0 are constants represent-
ing the overall coupling strength, and A = (Aij)1i,jn,
Aij � 0, is the adjacency matrix encoding the structure
of the (possibly weighted and directed) network. Note
that the interaction network of system (1) has two com-
ponents, one representing the uniform, angle-to-angle
coupling between all pairs of nodes, and the other repre-
senting the angle-to-amplitude coupling with the network
structure given by the matrix A. For arbitrary network
structureA, the system (1) has a synchronous state given
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123 value is chosen to be the one that minimizes Λ, which we
124 denote by b!. In this case, the system starting near the
125 synchronous state diverges away and approaches a travel-
126 ing wave state (see Supplemental Material [18] for an
127 animation of this state). However, if we allow for non-
128 identical values of bi, we can stabilize the synchronous
129 state. Indeed, as shown in Fig. 1, after switching to a
130 numerically identified combination of nonhomogeneous bi
131 values, we see that the oscillators spontaneously return to
132 the synchronous state. Thus, for system (1), the stability of
133 the (uniform) synchronous state can only be supported by
134 nonidentical oscillators. While we focus on uniform net-
135 works in this Letter to avoid confounding factors (e.g.,
136 differences between oscillators needed to compensate for
137 differences between their couplings), the conclusion that
138 inherent heterogeneity can be necessary to realize uniform
139 states is general and, also, valid for nonuniform networks
140 (see Supplemental Material [18] for concrete examples).
141 The landscape of stability in the space of all possible
142 b :¼ ðb1;…; bnÞ provides a more complete view of
143 asymmetry-induced symmetry. Along the diagonal line
144 b1 ¼ % % % ¼ bn ≡ b in this space, Λ, as a function of b,
145 typically has a single minimum at b ¼ b! with Λðb!Þ > 0,

146in which case no homogeneous oscillators can be stably
147synchronized in the form of Eq. (2). Figures 2(a) and 2(e)
148show example cases for n ¼ 3 and n ¼ 7, respectively,
149in which Λðb!Þ > 0 (which is satisfied even when
150considering both positive and negative b). In the full
151n-dimensional b space, however, there can be a significant
152(nonzero-volume) region of stable synchronization [see
153Figs. 2(b) and 2(f)]. The shape of this region is necessarily
154cyclically symmetric around the homogeneous-bi line due
155to the symmetry of the network dynamics with respect to
156cyclic permutations of the nodes. This can be seen in the
157case of n ¼ 3, shown in Fig. 2(b), in which the stability
158region (blue) is invariant under the 120° rotation around
159that line. In both n ¼ 3 and n ¼ 7 cases, we observe that
160the stability region lies far away from the diagonal line
161representing the homogeneous-oscillator networks [the
162green lines in Figs. 2(b) and 2(f)], indicating that signifi-
163cant differences between the oscillators are required to
164achieve stable synchronization. For n ¼ 3, the stability
165region also appears to have a mirror symmetry about the
166three planes b1 ¼ b2, b2 ¼ b3, and b3 ¼ b1. Associated
167with these planes, we find six points of maximum stability
168in the box shown in Fig. 2(b): three pairs related to each
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F2:1 FIG. 2. Stability landscape for the synchronous state. (a)–(d) Maximum Lyapunov exponent Λ for n ¼ 3. (a) Λ vs b for bi ¼ b, ∀i.
F2:2 (b) Region of stability, Λðb1; b2; b3Þ ≤ 0 (blue) in the full b space. (c) Λ on the slice shown in (b). (d) Λ vs b3 along the orange line in (b)
F2:3 and (c). (e),(f) Λ landscape for the n ¼ 7 case in Fig. 1. (e) Λ vs b for bi ¼ b, ∀i. (f) Λ on a 2D slice of the 7D b space, parametrized by b
F2:4 along the line bi ¼ b and the (Euclidean) distance from that line. The slice was selected to contain the (orange) point corresponding to
F2:5 the heterogeneous bi used in Fig. 1. The white curves in (c) and (f) indicate Λ ¼ 0. (g) Λ vs the distance along the orange line in (f). We
F2:6 used ε ¼ 2 and δ ¼ 0.3 for all panels.
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159that line. In both n ¼ 3 and n ¼ 7 cases, we observe that
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How often does this occur?

YZ, TN, & AEM, Asymmetry-induced synchronization in oscillator networks, to appear in Phys. Rev. E, arXiv:1705.07907 



Networks with multiple link types
Adjacency matrices A(↵), ↵ = 1, . . . ,K

K = 3



Networks with multiple link types
Adjacency matrices A(1)



Networks with multiple link types
Adjacency matrices A(2)A(1),



Networks with multiple link types
Adjacency matrices A(3)A(1) A(2), ,



Symmetric network structures
• Symmetric network: every node can be mapped 

to any other node by some permutation of nodes 
without changing any A(α).

• For undirected networks with a single link type, 
they are called vertex-transitive graphs. 

• Includes circulant graphs, defined as a network 
whose nodes can be arranged in a ring so that 
the network is invariant under rotations.

Example of 
symmetric network 
(circulant graph)
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A scenario has recently been reported in which in order to stabilize complete synchronization of
an oscillator network—a symmetric state—the symmetry of the system itself has to be broken by
making the oscillators nonidentical. But how often does such behavior—which we term asymmetry-
induced synchronization (AISync)—occur in oscillator networks? Here we present a general scheme
for constructing AISync systems and demonstrate that this behavior is the norm rather than the
exception in a wide class of physical systems that can be seen as multilayer networks. Since a
symmetric network in complete synchrony is the basic building block of cluster synchronization in
more general networks, AISync should be common also in facilitating cluster synchronization by
breaking the symmetry of the cluster subnetworks.

A common assumption in the field of network dy-
namics is that homogeneity in the local dynamics [1, 2]
and interaction network [3–5]—or in the combination of
both [6, 7]—can facilitate complete synchronization. It
has been recently shown, however, that structural hetero-
geneity in networks of identical oscillators [8] or oscillator
heterogeneity in structurally symmetric networks [9] can
stabilize otherwise unstable synchronous states, thus ef-
fectively breaking the symmetry of a system to stabilize
a symmetric state. These scenarios, which we refer to
as asymmetry-induced synchronization (AISync), can be
interpreted as the converse of symmetry breaking, and
hence as a converse of chimera states [10, 11]. Perhaps
the most physically relevant form of AISync is the one
in which identically coupled oscillators (thus playing ex-
actly the same structural role) can converge to identical
dynamics only when they themselves are nonidentical;
this has been demonstrated, however, exclusively for ro-
tationally symmetric networks and one type of periodic
oscillators [9]. Whether such AISync behavior can be
shown to be common across many systems, including ex-
perimentally testable ones, has been an open question.

In this Letter we introduce and analyze a broad class of
AISync systems that can have general symmetric network
structure with multiple link types and general oscillator
dynamics (which can be chaotic, periodic, continuous-
time, discrete-time, etc.). This in particular includes
physical systems previously used in network synchro-
nization experiments, thus providing a recipe for future
empirical studies. For this class, we demonstrate that
AISync is indeed common and provide a full characteri-
zation of those networks that support AISync behavior,
showing that the fraction of such networks is significant
over a range of network sizes and link densities.

We start with networks of N (not necessarily identical)
oscillators coupled through K di↵erent types of interac-
tions. The network dynamics is described by

Ẋi = Fi(Xi) +
KX

↵=1

NX

i0=1
i0 6=i

A(↵)
ii0 H(↵)(Xi, Xi0), (1)

where Xi = Xi(t) is the M -dimensional state vector of
node i, the function Fi governs the intrinsic dynamics

of node i, the (binary) adjacency matrix A(↵) = (A(↵)
ii0 )

represents the topology of interactions through links of
type ↵, and H(↵) is the interaction function associated
with the link type ↵. A completely synchronous state of
the network is defined by X1(t) = X2(t) = · · · = XN (t).

To study the possibility of AISync, we assume that the
adjacency matrices A(↵) represents a symmetric network,
defined as a network in which every node can be mapped
to any other node by some permutation of nodes without
changing any A(↵). Thus, the set of links of any given
type must couple every node identically (see Fig. 1(a) for
an example). When restricted to undirected networks
with a single link type, our definition of symmetric net-
works yields the class of vertex-transitive graphs from
graph theory [12]. This rich class encompasses Cayley
graphs (defined as a network of relations between ele-
ments of a finite group; see SM, Sec. S1) and circulant
graphs (defined as a network whose nodes can be ar-
ranged in a ring so that the network is invariant under
rotations), which have previously been used to study
chimera states [13]. Enumerating all vertex-transitive
graphs of a given size N becomes challenging as N grows
and has so far been completed only for N < 32 [14]. The
symmetric networks we consider here generalizes vertex-
transitive graphs to the even richer class of networks that
can be directed and include multiple link types.

Given a symmetric network structure, the system in
Eq. (1) exhibits AISync if it satisfies the following two
conditions: (C1) there are no stable synchronous states
for any homogeneous system (i.e., with F1 = · · · = FN ),
and (C2) there is a heterogeneous system (i.e., with
Fi 6= Fi0 , for some i 6= i0) for which a stable synchronous
state exists. A challenge in establishing AISync is that
the form of Eq. (1) does not guarantee the existence of
a completely synchronous state. Another challenge con-
cerns the stability analysis of such a state, since Eq. (1) is
beyond the framework normally used in the master sta-
bility function (MSF) approach and its generalizations
currently available [2, 15–17]: oscillators can be noniden-
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A scenario has recently been reported in which in order to stabilize complete synchronization of
an oscillator network—a symmetric state—the symmetry of the system itself has to be broken by
making the oscillators nonidentical. But how often does such behavior—which we term asymmetry-
induced synchronization (AISync)—occur in oscillator networks? Here we present a general scheme
for constructing AISync systems and demonstrate that this behavior is the norm rather than the
exception in a wide class of physical systems that can be seen as multilayer networks. Since a
symmetric network in complete synchrony is the basic building block of cluster synchronization in
more general networks, AISync should be common also in facilitating cluster synchronization by
breaking the symmetry of the cluster subnetworks.

A common assumption in the field of network dy-
namics is that homogeneity in the local dynamics [1, 2]
and interaction network [3–5]—or in the combination of
both [6, 7]—can facilitate complete synchronization. It
has been recently shown, however, that structural hetero-
geneity in networks of identical oscillators [8] or oscillator
heterogeneity in structurally symmetric networks [9] can
stabilize otherwise unstable synchronous states, thus ef-
fectively breaking the symmetry of a system to stabilize
a symmetric state. These scenarios, which we refer to
as asymmetry-induced synchronization (AISync), can be
interpreted as the converse of symmetry breaking, and
hence as a converse of chimera states [10, 11]. Perhaps
the most physically relevant form of AISync is the one
in which identically coupled oscillators (thus playing ex-
actly the same structural role) can converge to identical
dynamics only when they themselves are nonidentical;
this has been demonstrated, however, exclusively for ro-
tationally symmetric networks and one type of periodic
oscillators [9]. Whether such AISync behavior can be
shown to be common across many systems, including ex-
perimentally testable ones, has been an open question.

In this Letter we introduce and analyze a broad class of
AISync systems that can have general symmetric network
structure with multiple link types and general oscillator
dynamics (which can be chaotic, periodic, continuous-
time, discrete-time, etc.). This in particular includes
physical systems previously used in network synchro-
nization experiments, thus providing a recipe for future
empirical studies. For this class, we demonstrate that
AISync is indeed common and provide a full characteri-
zation of those networks that support AISync behavior,
showing that the fraction of such networks is significant
over a range of network sizes and link densities.

We start with networks of N (not necessarily identical)
oscillators coupled through K di↵erent types of interac-
tions. The network dynamics is described by

Ẋi = Fi(Xi) +
KX

↵=1

NX

i0=1
i0 6=i

A(↵)
ii0 H(↵)(Xi, Xi0), (1)

where Xi = Xi(t) is the M -dimensional state vector of
node i, the function Fi governs the intrinsic dynamics

of node i, the (binary) adjacency matrix A(↵) = (A(↵)
ii0 )

represents the topology of interactions through links of
type ↵, and H(↵) is the interaction function associated
with the link type ↵. A completely synchronous state of
the network is defined by X1(t) = X2(t) = · · · = XN (t).

To study the possibility of AISync, we assume that the
adjacency matrices A(↵) represents a symmetric network,
defined as a network in which every node can be mapped
to any other node by some permutation of nodes without
changing any A(↵). Thus, the set of links of any given
type must couple every node identically (see Fig. 1(a) for
an example). When restricted to undirected networks
with a single link type, our definition of symmetric net-
works yields the class of vertex-transitive graphs from
graph theory [12]. This rich class encompasses Cayley
graphs (defined as a network of relations between ele-
ments of a finite group; see SM, Sec. S1) and circulant
graphs (defined as a network whose nodes can be ar-
ranged in a ring so that the network is invariant under
rotations), which have previously been used to study
chimera states [13]. Enumerating all vertex-transitive
graphs of a given size N becomes challenging as N grows
and has so far been completed only for N < 32 [14]. The
symmetric networks we consider here generalizes vertex-
transitive graphs to the even richer class of networks that
can be directed and include multiple link types.

Given a symmetric network structure, the system in
Eq. (1) exhibits AISync if it satisfies the following two
conditions: (C1) there are no stable synchronous states
for any homogeneous system (i.e., with F1 = · · · = FN ),
and (C2) there is a heterogeneous system (i.e., with
Fi 6= Fi0 , for some i 6= i0) for which a stable synchronous
state exists. A challenge in establishing AISync is that
the form of Eq. (1) does not guarantee the existence of
a completely synchronous state. Another challenge con-
cerns the stability analysis of such a state, since Eq. (1) is
beyond the framework normally used in the master sta-
bility function (MSF) approach and its generalizations
currently available [2, 15–17]: oscillators can be noniden-
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A scenario has recently been reported in which in order to stabilize complete synchronization of
an oscillator network—a symmetric state—the symmetry of the system itself has to be broken by
making the oscillators nonidentical. But how often does such behavior—which we term asymmetry-
induced synchronization (AISync)—occur in oscillator networks? Here we present a general scheme
for constructing AISync systems and demonstrate that this behavior is the norm rather than the
exception in a wide class of physical systems that can be seen as multilayer networks. Since a
symmetric network in complete synchrony is the basic building block of cluster synchronization in
more general networks, AISync should be common also in facilitating cluster synchronization by
breaking the symmetry of the cluster subnetworks.

A common assumption in the field of network dy-
namics is that homogeneity in the local dynamics [1, 2]
and interaction network [3–5]—or in the combination of
both [6, 7]—can facilitate complete synchronization. It
has been recently shown, however, that structural hetero-
geneity in networks of identical oscillators [8] or oscillator
heterogeneity in structurally symmetric networks [9] can
stabilize otherwise unstable synchronous states, thus ef-
fectively breaking the symmetry of a system to stabilize
a symmetric state. These scenarios, which we refer to
as asymmetry-induced synchronization (AISync), can be
interpreted as the converse of symmetry breaking, and
hence as a converse of chimera states [10, 11]. Perhaps
the most physically relevant form of AISync is the one
in which identically coupled oscillators (thus playing ex-
actly the same structural role) can converge to identical
dynamics only when they themselves are nonidentical;
this has been demonstrated, however, exclusively for ro-
tationally symmetric networks and one type of periodic
oscillators [9]. Whether such AISync behavior can be
shown to be common across many systems, including ex-
perimentally testable ones, has been an open question.

In this Letter we introduce and analyze a broad class of
AISync systems that can have general symmetric network
structure with multiple link types and general oscillator
dynamics (which can be chaotic, periodic, continuous-
time, discrete-time, etc.). This in particular includes
physical systems previously used in network synchro-
nization experiments, thus providing a recipe for future
empirical studies. For this class, we demonstrate that
AISync is indeed common and provide a full characteri-
zation of those networks that support AISync behavior,
showing that the fraction of such networks is significant
over a range of network sizes and link densities.

We start with networks of N (not necessarily identical)
oscillators coupled through K di↵erent types of interac-
tions. The network dynamics is described by

Ẋi = Fi(Xi) +
KX

↵=1

NX

i0=1
i0 6=i

A(↵)
ii0 H(↵)(Xi, Xi0), (1)

where Xi = Xi(t) is the M -dimensional state vector of
node i, the function Fi governs the intrinsic dynamics

of node i, the (binary) adjacency matrix A(↵) = (A(↵)
ii0 )

represents the topology of interactions through links of
type ↵, and H(↵) is the interaction function associated
with the link type ↵. A completely synchronous state of
the network is defined by X1(t) = X2(t) = · · · = XN (t).

To study the possibility of AISync, we assume that the
adjacency matrices A(↵) represents a symmetric network,
defined as a network in which every node can be mapped
to any other node by some permutation of nodes without
changing any A(↵). Thus, the set of links of any given
type must couple every node identically (see Fig. 1(a) for
an example). When restricted to undirected networks
with a single link type, our definition of symmetric net-
works yields the class of vertex-transitive graphs from
graph theory [12]. This rich class encompasses Cayley
graphs (defined as a network of relations between ele-
ments of a finite group; see SM, Sec. S1) and circulant
graphs (defined as a network whose nodes can be ar-
ranged in a ring so that the network is invariant under
rotations), which have previously been used to study
chimera states [13]. Enumerating all vertex-transitive
graphs of a given size N becomes challenging as N grows
and has so far been completed only for N < 32 [14]. The
symmetric networks we consider here generalizes vertex-
transitive graphs to the even richer class of networks that
can be directed and include multiple link types.

Given a symmetric network structure, the system in
Eq. (1) exhibits AISync if it satisfies the following two
conditions: (C1) there are no stable synchronous states
for any homogeneous system (i.e., with F1 = · · · = FN ),
and (C2) there is a heterogeneous system (i.e., with
Fi 6= Fi0 , for some i 6= i0) for which a stable synchronous
state exists. A challenge in establishing AISync is that
the form of Eq. (1) does not guarantee the existence of
a completely synchronous state. Another challenge con-
cerns the stability analysis of such a state, since Eq. (1) is
beyond the framework normally used in the master sta-
bility function (MSF) approach and its generalizations
currently available [2, 15–17]: oscillators can be noniden-
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making the oscillators nonidentical. But how often does such behavior—which we term asymmetry-
induced synchronization (AISync)—occur in oscillator networks? Here we present a general scheme
for constructing AISync systems and demonstrate that this behavior is the norm rather than the
exception in a wide class of physical systems that can be seen as multilayer networks. Since a
symmetric network in complete synchrony is the basic building block of cluster synchronization in
more general networks, AISync should be common also in facilitating cluster synchronization by
breaking the symmetry of the cluster subnetworks.

A common assumption in the field of network dy-
namics is that homogeneity in the local dynamics [1, 2]
and interaction network [3–5]—or in the combination of
both [6, 7]—can facilitate complete synchronization. It
has been recently shown, however, that structural hetero-
geneity in networks of identical oscillators [8] or oscillator
heterogeneity in structurally symmetric networks [9] can
stabilize otherwise unstable synchronous states, thus ef-
fectively breaking the symmetry of a system to stabilize
a symmetric state. These scenarios, which we refer to
as asymmetry-induced synchronization (AISync), can be
interpreted as the converse of symmetry breaking, and
hence as a converse of chimera states [10, 11]. Perhaps
the most physically relevant form of AISync is the one
in which identically coupled oscillators (thus playing ex-
actly the same structural role) can converge to identical
dynamics only when they themselves are nonidentical;
this has been demonstrated, however, exclusively for ro-
tationally symmetric networks and one type of periodic
oscillators [9]. Whether such AISync behavior can be
shown to be common across many systems, including ex-
perimentally testable ones, has been an open question.

In this Letter we introduce and analyze a broad class of
AISync systems that can have general symmetric network
structure with multiple link types and general oscillator
dynamics (which can be chaotic, periodic, continuous-
time, discrete-time, etc.). This in particular includes
physical systems previously used in network synchro-
nization experiments, thus providing a recipe for future
empirical studies. For this class, we demonstrate that
AISync is indeed common and provide a full characteri-
zation of those networks that support AISync behavior,
showing that the fraction of such networks is significant
over a range of network sizes and link densities.

We start with networks of N (not necessarily identical)
oscillators coupled through K di↵erent types of interac-
tions. The network dynamics is described by

Ẋi = Fi(Xi) +
KX

↵=1

NX

i0=1
i0 6=i

A(↵)
ii0 H(↵)(Xi, Xi0), (1)

where Xi = Xi(t) is the M -dimensional state vector of
node i, the function Fi governs the intrinsic dynamics

of node i, the (binary) adjacency matrix A(↵) = (A(↵)
ii0 )

represents the topology of interactions through links of
type ↵, and H(↵) is the interaction function associated
with the link type ↵. A completely synchronous state of
the network is defined by X1(t) = X2(t) = · · · = XN (t).

To study the possibility of AISync, we assume that the
adjacency matrices A(↵) represents a symmetric network,
defined as a network in which every node can be mapped
to any other node by some permutation of nodes without
changing any A(↵). Thus, the set of links of any given
type must couple every node identically (see Fig. 1(a) for
an example). When restricted to undirected networks
with a single link type, our definition of symmetric net-
works yields the class of vertex-transitive graphs from
graph theory [12]. This rich class encompasses Cayley
graphs (defined as a network of relations between ele-
ments of a finite group; see SM, Sec. S1) and circulant
graphs (defined as a network whose nodes can be ar-
ranged in a ring so that the network is invariant under
rotations), which have previously been used to study
chimera states [13]. Enumerating all vertex-transitive
graphs of a given size N becomes challenging as N grows
and has so far been completed only for N < 32 [14]. The
symmetric networks we consider here generalizes vertex-
transitive graphs to the even richer class of networks that
can be directed and include multiple link types.

Given a symmetric network structure, the system in
Eq. (1) exhibits AISync if it satisfies the following two
conditions: (C1) there are no stable synchronous states
for any homogeneous system (i.e., with F1 = · · · = FN ),
and (C2) there is a heterogeneous system (i.e., with
Fi 6= Fi0 , for some i 6= i0) for which a stable synchronous
state exists. A challenge in establishing AISync is that
the form of Eq. (1) does not guarantee the existence of
a completely synchronous state. Another challenge con-
cerns the stability analysis of such a state, since Eq. (1) is
beyond the framework normally used in the master sta-
bility function (MSF) approach and its generalizations
currently available [2, 15–17]: oscillators can be noniden-
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A scenario has recently been reported in which in order to stabilize complete synchronization of
an oscillator network—a symmetric state—the symmetry of the system itself has to be broken by
making the oscillators nonidentical. But how often does such behavior—which we term asymmetry-
induced synchronization (AISync)—occur in oscillator networks? Here we present a general scheme
for constructing AISync systems and demonstrate that this behavior is the norm rather than the
exception in a wide class of physical systems that can be seen as multilayer networks. Since a
symmetric network in complete synchrony is the basic building block of cluster synchronization in
more general networks, AISync should be common also in facilitating cluster synchronization by
breaking the symmetry of the cluster subnetworks.

A common assumption in the field of network dy-
namics is that homogeneity in the local dynamics [1, 2]
and interaction network [3–5]—or in the combination of
both [6, 7]—can facilitate complete synchronization. It
has been recently shown, however, that structural hetero-
geneity in networks of identical oscillators [8] or oscillator
heterogeneity in structurally symmetric networks [9] can
stabilize otherwise unstable synchronous states, thus ef-
fectively breaking the symmetry of a system to stabilize
a symmetric state. These scenarios, which we refer to
as asymmetry-induced synchronization (AISync), can be
interpreted as the converse of symmetry breaking, and
hence as a converse of chimera states [10, 11]. Perhaps
the most physically relevant form of AISync is the one
in which identically coupled oscillators (thus playing ex-
actly the same structural role) can converge to identical
dynamics only when they themselves are nonidentical;
this has been demonstrated, however, exclusively for ro-
tationally symmetric networks and one type of periodic
oscillators [9]. Whether such AISync behavior can be
shown to be common across many systems, including ex-
perimentally testable ones, has been an open question.

In this Letter we introduce and analyze a broad class of
AISync systems that can have general symmetric network
structure with multiple link types and general oscillator
dynamics (which can be chaotic, periodic, continuous-
time, discrete-time, etc.). This in particular includes
physical systems previously used in network synchro-
nization experiments, thus providing a recipe for future
empirical studies. For this class, we demonstrate that
AISync is indeed common and provide a full characteri-
zation of those networks that support AISync behavior,
showing that the fraction of such networks is significant
over a range of network sizes and link densities.

We start with networks of N (not necessarily identical)
oscillators coupled through K di↵erent types of interac-
tions. The network dynamics is described by

Ẋi = Fi(Xi) +
KX

↵=1

NX

i0=1
i0 6=i

A(↵)
ii0 H(↵)(Xi, Xi0), (1)

where Xi = Xi(t) is the M -dimensional state vector of
node i, the function Fi governs the intrinsic dynamics

of node i, the (binary) adjacency matrix A(↵) = (A(↵)
ii0 )

represents the topology of interactions through links of
type ↵, and H(↵) is the interaction function associated
with the link type ↵. A completely synchronous state of
the network is defined by X1(t) = X2(t) = · · · = XN (t).

To study the possibility of AISync, we assume that the
adjacency matrices A(↵) represents a symmetric network,
defined as a network in which every node can be mapped
to any other node by some permutation of nodes without
changing any A(↵). Thus, the set of links of any given
type must couple every node identically (see Fig. 1(a) for
an example). When restricted to undirected networks
with a single link type, our definition of symmetric net-
works yields the class of vertex-transitive graphs from
graph theory [12]. This rich class encompasses Cayley
graphs (defined as a network of relations between ele-
ments of a finite group; see SM, Sec. S1) and circulant
graphs (defined as a network whose nodes can be ar-
ranged in a ring so that the network is invariant under
rotations), which have previously been used to study
chimera states [13]. Enumerating all vertex-transitive
graphs of a given size N becomes challenging as N grows
and has so far been completed only for N < 32 [14]. The
symmetric networks we consider here generalizes vertex-
transitive graphs to the even richer class of networks that
can be directed and include multiple link types.

Given a symmetric network structure, the system in
Eq. (1) exhibits AISync if it satisfies the following two
conditions: (C1) there are no stable synchronous states
for any homogeneous system (i.e., with F1 = · · · = FN ),
and (C2) there is a heterogeneous system (i.e., with
Fi 6= Fi0 , for some i 6= i0) for which a stable synchronous
state exists. A challenge in establishing AISync is that
the form of Eq. (1) does not guarantee the existence of
a completely synchronous state. Another challenge con-
cerns the stability analysis of such a state, since Eq. (1) is
beyond the framework normally used in the master sta-
bility function (MSF) approach and its generalizations
currently available [2, 15–17]: oscillators can be noniden-
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an oscillator network—a symmetric state—the symmetry of the system itself has to be broken by
making the oscillators nonidentical. But how often does such behavior—which we term asymmetry-
induced synchronization (AISync)—occur in oscillator networks? Here we present a general scheme
for constructing AISync systems and demonstrate that this behavior is the norm rather than the
exception in a wide class of physical systems that can be seen as multilayer networks. Since a
symmetric network in complete synchrony is the basic building block of cluster synchronization in
more general networks, AISync should be common also in facilitating cluster synchronization by
breaking the symmetry of the cluster subnetworks.

A common assumption in the field of network dy-
namics is that homogeneity in the local dynamics [1, 2]
and interaction network [3–5]—or in the combination of
both [6, 7]—can facilitate complete synchronization. It
has been recently shown, however, that structural hetero-
geneity in networks of identical oscillators [8] or oscillator
heterogeneity in structurally symmetric networks [9] can
stabilize otherwise unstable synchronous states, thus ef-
fectively breaking the symmetry of a system to stabilize
a symmetric state. These scenarios, which we refer to
as asymmetry-induced synchronization (AISync), can be
interpreted as the converse of symmetry breaking, and
hence as a converse of chimera states [10, 11]. Perhaps
the most physically relevant form of AISync is the one
in which identically coupled oscillators (thus playing ex-
actly the same structural role) can converge to identical
dynamics only when they themselves are nonidentical;
this has been demonstrated, however, exclusively for ro-
tationally symmetric networks and one type of periodic
oscillators [9]. Whether such AISync behavior can be
shown to be common across many systems, including ex-
perimentally testable ones, has been an open question.

In this Letter we introduce and analyze a broad class of
AISync systems that can have general symmetric network
structure with multiple link types and general oscillator
dynamics (which can be chaotic, periodic, continuous-
time, discrete-time, etc.). This in particular includes
physical systems previously used in network synchro-
nization experiments, thus providing a recipe for future
empirical studies. For this class, we demonstrate that
AISync is indeed common and provide a full characteri-
zation of those networks that support AISync behavior,
showing that the fraction of such networks is significant
over a range of network sizes and link densities.

We start with networks of N (not necessarily identical)
oscillators coupled through K di↵erent types of interac-
tions. The network dynamics is described by

Ẋi = Fi(Xi) +
KX

↵=1

NX

i0=1
i0 6=i

A(↵)
ii0 H(↵)(Xi, Xi0), (1)

where Xi = Xi(t) is the M -dimensional state vector of
node i, the function Fi governs the intrinsic dynamics

of node i, the (binary) adjacency matrix A(↵) = (A(↵)
ii0 )

represents the topology of interactions through links of
type ↵, and H(↵) is the interaction function associated
with the link type ↵. A completely synchronous state of
the network is defined by X1(t) = X2(t) = · · · = XN (t).

To study the possibility of AISync, we assume that the
adjacency matrices A(↵) represents a symmetric network,
defined as a network in which every node can be mapped
to any other node by some permutation of nodes without
changing any A(↵). Thus, the set of links of any given
type must couple every node identically (see Fig. 1(a) for
an example). When restricted to undirected networks
with a single link type, our definition of symmetric net-
works yields the class of vertex-transitive graphs from
graph theory [12]. This rich class encompasses Cayley
graphs (defined as a network of relations between ele-
ments of a finite group; see SM, Sec. S1) and circulant
graphs (defined as a network whose nodes can be ar-
ranged in a ring so that the network is invariant under
rotations), which have previously been used to study
chimera states [13]. Enumerating all vertex-transitive
graphs of a given size N becomes challenging as N grows
and has so far been completed only for N < 32 [14]. The
symmetric networks we consider here generalizes vertex-
transitive graphs to the even richer class of networks that
can be directed and include multiple link types.

Given a symmetric network structure, the system in
Eq. (1) exhibits AISync if it satisfies the following two
conditions: (C1) there are no stable synchronous states
for any homogeneous system (i.e., with F1 = · · · = FN ),
and (C2) there is a heterogeneous system (i.e., with
Fi 6= Fi0 , for some i 6= i0) for which a stable synchronous
state exists. A challenge in establishing AISync is that
the form of Eq. (1) does not guarantee the existence of
a completely synchronous state. Another challenge con-
cerns the stability analysis of such a state, since Eq. (1) is
beyond the framework normally used in the master sta-
bility function (MSF) approach and its generalizations
currently available [2, 15–17]: oscillators can be noniden-
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making the oscillators nonidentical. But how often does such behavior—which we term asymmetry-
induced synchronization (AISync)—occur in oscillator networks? Here we present a general scheme
for constructing AISync systems and demonstrate that this behavior is the norm rather than the
exception in a wide class of physical systems that can be seen as multilayer networks. Since a
symmetric network in complete synchrony is the basic building block of cluster synchronization in
more general networks, AISync should be common also in facilitating cluster synchronization by
breaking the symmetry of the cluster subnetworks.

A common assumption in the field of network dy-
namics is that homogeneity in the local dynamics [1, 2]
and interaction network [3–5]—or in the combination of
both [6, 7]—can facilitate complete synchronization. It
has been recently shown, however, that structural hetero-
geneity in networks of identical oscillators [8] or oscillator
heterogeneity in structurally symmetric networks [9] can
stabilize otherwise unstable synchronous states, thus ef-
fectively breaking the symmetry of a system to stabilize
a symmetric state. These scenarios, which we refer to
as asymmetry-induced synchronization (AISync), can be
interpreted as the converse of symmetry breaking, and
hence as a converse of chimera states [10, 11]. Perhaps
the most physically relevant form of AISync is the one
in which identically coupled oscillators (thus playing ex-
actly the same structural role) can converge to identical
dynamics only when they themselves are nonidentical;
this has been demonstrated, however, exclusively for ro-
tationally symmetric networks and one type of periodic
oscillators [9]. Whether such AISync behavior can be
shown to be common across many systems, including ex-
perimentally testable ones, has been an open question.

In this Letter we introduce and analyze a broad class of
AISync systems that can have general symmetric network
structure with multiple link types and general oscillator
dynamics (which can be chaotic, periodic, continuous-
time, discrete-time, etc.). This in particular includes
physical systems previously used in network synchro-
nization experiments, thus providing a recipe for future
empirical studies. For this class, we demonstrate that
AISync is indeed common and provide a full characteri-
zation of those networks that support AISync behavior,
showing that the fraction of such networks is significant
over a range of network sizes and link densities.

We start with networks of N (not necessarily identical)
oscillators coupled through K di↵erent types of interac-
tions. The network dynamics is described by

Ẋi = Fi(Xi) +
KX

↵=1

NX

i0=1
i0 6=i

A(↵)
ii0 H(↵)(Xi, Xi0), (1)

where Xi = Xi(t) is the M -dimensional state vector of
node i, the function Fi governs the intrinsic dynamics

of node i, the (binary) adjacency matrix A(↵) = (A(↵)
ii0 )

represents the topology of interactions through links of
type ↵, and H(↵) is the interaction function associated
with the link type ↵. A completely synchronous state of
the network is defined by X1(t) = X2(t) = · · · = XN (t).

To study the possibility of AISync, we assume that the
adjacency matrices A(↵) represents a symmetric network,
defined as a network in which every node can be mapped
to any other node by some permutation of nodes without
changing any A(↵). Thus, the set of links of any given
type must couple every node identically (see Fig. 1(a) for
an example). When restricted to undirected networks
with a single link type, our definition of symmetric net-
works yields the class of vertex-transitive graphs from
graph theory [12]. This rich class encompasses Cayley
graphs (defined as a network of relations between ele-
ments of a finite group; see SM, Sec. S1) and circulant
graphs (defined as a network whose nodes can be ar-
ranged in a ring so that the network is invariant under
rotations), which have previously been used to study
chimera states [13]. Enumerating all vertex-transitive
graphs of a given size N becomes challenging as N grows
and has so far been completed only for N < 32 [14]. The
symmetric networks we consider here generalizes vertex-
transitive graphs to the even richer class of networks that
can be directed and include multiple link types.

Given a symmetric network structure, the system in
Eq. (1) exhibits AISync if it satisfies the following two
conditions: (C1) there are no stable synchronous states
for any homogeneous system (i.e., with F1 = · · · = FN ),
and (C2) there is a heterogeneous system (i.e., with
Fi 6= Fi0 , for some i 6= i0) for which a stable synchronous
state exists. A challenge in establishing AISync is that
the form of Eq. (1) does not guarantee the existence of
a completely synchronous state. Another challenge con-
cerns the stability analysis of such a state, since Eq. (1) is
beyond the framework normally used in the master sta-
bility function (MSF) approach and its generalizations
currently available [2, 15–17]: oscillators can be noniden-
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nization experiments, thus providing a recipe for future
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nization experiments, thus providing a recipe for future
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type ↵, and H(↵) is the interaction function associated
with the link type ↵. A completely synchronous state of
the network is defined by X1(t) = X2(t) = · · · = XN (t).

To study the possibility of AISync, we assume that the
adjacency matrices A(↵) represents a symmetric network,
defined as a network in which every node can be mapped
to any other node by some permutation of nodes without
changing any A(↵). Thus, the set of links of any given
type must couple every node identically (see Fig. 1(a) for
an example). When restricted to undirected networks
with a single link type, our definition of symmetric net-
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graphs (defined as a network whose nodes can be ar-
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graphs of a given size N becomes challenging as N grows
and has so far been completed only for N < 32 [14]. The
symmetric networks we consider here generalizes vertex-
transitive graphs to the even richer class of networks that
can be directed and include multiple link types.

Given a symmetric network structure, the system in
Eq. (1) exhibits AISync if it satisfies the following two
conditions: (C1) there are no stable synchronous states
for any homogeneous system (i.e., with F1 = · · · = FN ),
and (C2) there is a heterogeneous system (i.e., with
Fi 6= Fi0 , for some i 6= i0) for which a stable synchronous
state exists. A challenge in establishing AISync is that
the form of Eq. (1) does not guarantee the existence of
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cerns the stability analysis of such a state, since Eq. (1) is
beyond the framework normally used in the master sta-
bility function (MSF) approach and its generalizations
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N = 3 N = 4 N = 5

symmetric
networks

Q (optimal) 9 14 21
Q (r > 0.2) 11 81 254
Q (r > 0.05) 29 318 2154
B (r > 0.2) 11 101 204
B (r > 0.05) 31 400 2406

TABLE I. Number of isomorphically distinct AISync-favoring
networks with N = 3, 4, 5 nodes and L = 2 layers (with
a = b = 1 to enable counting). The numbers are given for
both binary (B) and quaternary (Q) choices of internal sub-
link configurations, as well as for di↵erent AISync strength
[as measured by r defined in the text]. The network diagrams
encode all possible symmetric networks of a given size. See
SM [26], Sec. S9 for details and network diagrams for larger N .
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FIG. 3. Statistics on the prevalence of AISync-favoring sys-
tems as functions of (a) external sublink density and (b) net-
work size N . Both panels show the fraction of systems with
AISync strength r > 0.05 among those with circulant-graph
network structures, where the external sublink density is given
by D/[L2(N � 1)], and D is the external sublink in-degree.
For further analysis of these results, see SM [26], Sec. ??.

of the same type), and the superposition of two directed
rings in opposite directions (cyan and black links of dif-
ferent types; as in Fig. 2). For a given symmetric network
derived from these diagrams, we choose the external sub-
link pattern for each link type from all possible ways of
connecting a subnode pair to another. For the internal
sublink patterns, we use either the binary or quaternary
choices, where each node has one directed sublink (in
either direction) in the binary case, while all four possi-
bilities are allowed in the quaternary case: no sublink,
one directed sublink, and both directed sublinks. The
rest of Table I lists the total numbers of isomorphically
distinct monolayer networks eA with r > 0.05, r > 0.2,
and (optimal) r = 1; see SM [26], Sec. ?? for all optimal
networks with N = 3, 4.

Figure 3 shows the statistics of AISync-favoring net-
works. For numerical feasibility, we focus on those sys-
tems whose network structure is a directed, multi-link
type, circulant graph (which covers all symmetric net-

works if N is prime). Sampling uniformly within this
class (see SM [26], Sec. ??, for details [30]), we observe
that significant fraction of external sublink structures
are AISync-favoring over a range of sublink densities
[Fig. 3(a)] and network sizes [Fig. 3(b)]. We also observe
that sparse and dense structures favor AISync more of-
ten than medium-density ones, despite the expectation
that the e↵ect of internal sublink heterogeneity would be
smaller with higher external sublink density.

Given a symmetric network of identical oscillators, it
is instructive to compare our results above in which the
symmetry is broken by making the oscillators nonidenti-
cal with the alternative scenario in which the symmetry
is broken by making the network structure asymmetric.
For directed unweighted networks of di↵usively-coupled
identical oscillators, it can be shown that: 1) with the
exception of the complete graphs, all topologies that op-
timize synchronizability (i.e., those with � = 0) are asym-
metric [31]; 2) any network topology that can be spanned
from a node (i.e., mini�2 Re(�i) > 0) embeds optimally
synchronizable subnetworks generated by deleting a sub-
set of links [8, 32]. For example, a synchronous state
that is not stable for a directed ring network may be-
come stable for a directed chain formed by removing a
link. More generally, introducing structural heterogene-
ity (breaking the symmetry of the network) can stabilize
otherwise unstable homogeneous (symmetric) states.

Finally, we note that the defining characteristic of
AISync considered here—that preserving the symmetry
of a stable state requires breaking the symmetry of the
system—can bear analogs in oscillator networks whose
structure is not necessarily symmetric. Such a network
can always be partitioned into symmetric subnetwork
clusters (structurally equivalent subsets of nodes) that
are candidates for cluster synchronization [16, 33, 34].
Synchronization of one such cluster thus plays the role of
complete synchronization in a symmetric network, which
opens the possibility of exploiting AISync to tune cluster
synchronization patterns through oscillator heterogene-
ity in arbitrary complex networks. We hope that our
findings, and future theoretical and experimental stud-
ies they will stimulate, will significantly advance under-
standing of the interplay between symmetry and network
dynamics.
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with AISync strength r > 0.05 among those with circulant-
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is given by D/[L2(N � 1)], and D is the external sublink
in-degree. For further analysis of these results, see SM [26],
Sec. 11.
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binary case, while all four possibilities are allowed in the
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both directed sublinks. The rest of Table I lists the to-
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structures eA with r > 0.05, r > 0.2, and (optimal) r = 1;
see SM [26], Sec. S9 for all optimal networks with N = 3
and 4.

Figure 3 shows the statistics of AISync-favoring net-
works. For numerical feasibility, we focus on those sys-
tems whose network structure is a directed, multi-link

type, circulant graph (which covers all symmetric net-
works if N is prime). Sampling uniformly within this
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serve that significant fraction of external sublink struc-
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ties [Fig. 3(a)] and network sizes [Fig. 3(b)]. We also ob-
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often than medium-density ones, despite the expectation
that the e↵ect of internal sublink heterogeneity would be
smaller with higher external sublink density.
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is instructive to compare our results above in which the
symmetry is broken by making the oscillators nonidenti-
cal with the alternative scenario in which the symmetry
is broken by making the network structure asymmetric.
For directed unweighted networks of di↵usively-coupled
identical oscillators, it can be shown that: 1) with the
exception of the complete graphs, all topologies that op-
timize synchronizability (i.e., those with � = 0) are asym-
metric [31]; 2) any network topology that can be spanned
from a node (i.e., mini�2 Re(�i) > 0) embeds optimally
synchronizable subnetworks generated by deleting a sub-
set of links [8, 32]. For example, a synchronous state
that is not stable for a directed ring network may be-
come stable for a directed chain formed by removing a
link. More generally, introducing structural heterogene-
ity (breaking the symmetry of the network) can stabilize
otherwise unstable homogeneous (symmetric) states.

Finally, we note that the defining characteristic of
AISync considered here—that preserving the symmetry
of a stable state requires breaking the symmetry of the
system—can bear analogs in oscillator networks whose
structure is not necessarily symmetric. Such a network
can always be partitioned into symmetric subnetwork
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dynamics.
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encode all possible symmetric networks of a given size. See
SM [26], Sec. S9 for details and network diagrams for larger N .
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Finally, we note that the defining characteristic of
AISync considered here—that preserving the symmetry
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system—can bear analogs in oscillator networks whose
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can always be partitioned into symmetric subnetwork
clusters (structurally equivalent subsets of nodes) that
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Synchronization of one such cluster thus plays the role of
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ity in arbitrary complex networks. We hope that our
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with AISync strength r > 0.05 among those with circulant-
graph network structures, where the external sublink density
is given by D/[L2(N � 1)], and D is the external sublink
in-degree. For further analysis of these results, see SM [26],
Sec. 11.

rected ring (cyan and black links of the same type), and
the superposition of two directed rings in opposite direc-
tions (cyan and black links of di↵erent types; as in Fig. 2).
For a given symmetric network derived from these dia-
grams, we choose the external sublink pattern for each
link type from all possible ways of connecting a subnode
pair to another. For the internal sublink patterns, we
use either the binary or quaternary choices, where each
node has one directed sublink (in either direction) in the
binary case, while all four possibilities are allowed in the
quaternary case: no sublink, one directed sublink, and
both directed sublinks. The rest of Table I lists the to-
tal numbers of isomorphically distinct external sublink
structures eA with r > 0.05, r > 0.2, and (optimal) r = 1;
see SM [26], Sec. S9 for all optimal networks with N = 3
and 4.

Figure 3 shows the statistics of AISync-favoring net-
works. For numerical feasibility, we focus on those sys-
tems whose network structure is a directed, multi-link

type, circulant graph (which covers all symmetric net-
works if N is prime). Sampling uniformly within this
class (see SM [26], Sec. S10, for details [30]), we ob-
serve that significant fraction of external sublink struc-
tures are AISync-favoring over a range of sublink densi-
ties [Fig. 3(a)] and network sizes [Fig. 3(b)]. We also ob-
serve that sparse and dense structures favor AISync more
often than medium-density ones, despite the expectation
that the e↵ect of internal sublink heterogeneity would be
smaller with higher external sublink density.

Given a symmetric network of identical oscillators, it
is instructive to compare our results above in which the
symmetry is broken by making the oscillators nonidenti-
cal with the alternative scenario in which the symmetry
is broken by making the network structure asymmetric.
For directed unweighted networks of di↵usively-coupled
identical oscillators, it can be shown that: 1) with the
exception of the complete graphs, all topologies that op-
timize synchronizability (i.e., those with � = 0) are asym-
metric [31]; 2) any network topology that can be spanned
from a node (i.e., mini�2 Re(�i) > 0) embeds optimally
synchronizable subnetworks generated by deleting a sub-
set of links [8, 32]. For example, a synchronous state
that is not stable for a directed ring network may be-
come stable for a directed chain formed by removing a
link. More generally, introducing structural heterogene-
ity (breaking the symmetry of the network) can stabilize
otherwise unstable homogeneous (symmetric) states.

Finally, we note that the defining characteristic of
AISync considered here—that preserving the symmetry
of a stable state requires breaking the symmetry of the
system—can bear analogs in oscillator networks whose
structure is not necessarily symmetric. Such a network
can always be partitioned into symmetric subnetwork
clusters (structurally equivalent subsets of nodes) that
are candidates for cluster synchronization [16, 33, 34].
Synchronization of one of these clusters plays the role of
complete synchronization in a symmetric network, which
opens the possibility of exploiting AISync to tune cluster
synchronization patterns through oscillator heterogene-
ity in arbitrary complex networks. We hope that our
findings, and future theoretical and experimental stud-
ies they will stimulate, will significantly advance under-
standing of the interplay between symmetry and network
dynamics.
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FIG. 2. Example of AISync system. (a) Symmetric network of
N = 3 nodes, each with L = 2 directionally coupled subnodes
of Lorenz oscillators. The sublink direction in one node (cyan)
is di↵erent from the other two (green). (b) Contour plots of
 = (red) for the case of homogeneous nodes (all green or all-
cyan nodes) and  6= (blue) for heterogeneous nodes (one or
two green nodes). The shaded region corresponds to AISync

systems, for which = > 0 and  6= < 0. (c) Sample trajectory
of the system for a = 8 and b = 6 [cross symbol in (b)],
exhibiting AISync. The first component x1 of the Lorenz
oscillator state vector is shown for all n = 6 subnodes.

(common) stability of all completely synchronous states

of the form x
(i)
` = s`, 8i, `, where the subnode states

s` can in general be di↵erent for di↵erent `. Next, for
a given (homogeneous or heterogeneous) system, we sort
its Laplacian eigenvalues into two groups: �1, . . . ,�j⇤ ,
corresponding only to those perturbations parallel to
the synchronization manifold, and �j⇤+1, . . . ,�n, corre-
sponding to perturbations that are transverse to the man-
ifold and thus destroys synchronization. The stability (of
all completely synchronous states) is then determined by
 0 := maxj⇤<jn  (�j), noting that both j⇤ and �j gen-
erally depend on the network structure. This leads to
the following solution for the AISync conditions:  0 > 0
for all homogeneous systems and  0 < 0 for some het-
erogeneous system (see SM [26], Sec. S3 for an example
satisfying these conditions).

An example system exhibiting AISync is shown in
Fig. 2. The network structure is symmetric and has
N = 3 nodes and K = 2 types of links representing
sublink patterns in the clockwise and counterclockwise
directions in Fig. 2(a). Each node consists of L = 2
subnodes, each of which is a chaotic Lorenz oscillator.
The two subnodes are connected by a sublink, the di-
rection of which determines the node type. The system
has two parameters, a and b, representing the coupling
strength of internal and external sublinks, respectively.
In Fig. 2(b), we show  = (red) and  6= (blue) as func-
tions of these parameters, where  = ( 6=) are defined
to be the smaller value of  between the two possible

homogeneous (heterogeneous) systems. We verify condi-
tions (C1) and (C2) as described in SM [26] (Sec. S4)
in the region for which  = > 0 and  6= < 0 [shaded
purple in Fig. 2(b)], thus establishing that the system
exhibits AISync in that region. This is illustrated for
a sample trajectory in Fig. 2(c), which diverges from
synchrony while the nodes are kept homogeneous, but
re-synchronizes spontaneously after the nodes are made
heterogeneous (see SM [26], Sec. S5 for details). While
this provides an AISync example with a directed net-
work structure and a bounded stability region, we also
demonstrate AISync for experimentally testable systems
(coupled electro-optic oscillators [28]; SM [26], Sec. S6),
for systems with unbounded stability region (SM [26],
Sec. S7), and for systems with undirected network struc-
ture (SM [26], Sec. S8). These examples include both lin-
ear and nonlinear coupling functions, as well as discrete-
and continuous-time dynamics.

But how often does a network structure support
AISync? To systematically address this question, we
use the spread � of the eigenvalues of the Laplacian ma-
trix eL for the monolayer network representation, which
is a measure of synchronizability [8] defined by �2 :=Pn

j=2 |�j � �|2/[d2(n � 1)], where d :=
Pn

j=1
eLjj/n and

� :=
Pn

j=2 �j/(n � 1). A smaller � indicates higher
synchronizability. Given an external sublink structure
corresponding to a symmetric network, we compare the
minimum spread �= among all systems with homoge-
neous F (i) to the corresponding minimum � 6= among all
systems with strictly heterogeneous F (i). We call the
structure AISync-favoring if � 6= < �=, which indicates
that heterogeneous F (i) can make the system easier to
synchronize than any homogeneous F (i). As a measure
of how strongly the structure supports AISync, we define
r := 1 � � 6=/�=  1, where r > 0 indicates an AISync-
favoring structure, and r = 1 implies � 6= = 0 (i.e., there
is a heterogeneous system with optimal synchronizabil-
ity). For example, the structure in Fig. 2 has �= ⇡ 0.56
and � 6= ⇡ 0.33, and r ⇡ 0.41.

Using this AISync strength r, we first enumerate all
networks of a given size supporting AISync (Table I). For
each N , we generate one or more diagrams representing
all N -node symmetric networks, which are shown in the
first row of Table I for N = 3, 4, 5 (see SM [26], Sec. S9 for
larger N). In these diagrams, each color indicates a set of
links that, in any given symmetric network, must all exist
together and be of the same type or not exist at all (not-
ing that links from di↵erent sets can be of the same type).
For example, there are three distinct symmetric networks
for N = 3: a directed ring (cyan or black links), an undi-
rected ring (cyan and black links of the same type), and
the superposition of two directed rings in opposite direc-
tions (cyan and black links of di↵erent types; as in Fig. 2).
For a given symmetric network derived from these dia-
grams, we choose the external sublink pattern for each
link type from all possible ways of connecting a subnode
pair to another. For the internal sublink patterns, we

FIG. 2. Example of AISync system. (a) Symmetric network of
N = 3 nodes, each with L = 2 directionally coupled subnodes
of Lorenz oscillators. The sublink direction in one node (cyan)
is di↵erent from the other two (green). (b) Contour plots of
 = (red) for the case of homogeneous nodes (all green or all-
cyan nodes) and  6= (blue) for heterogeneous nodes (one or
two green nodes). The shaded region corresponds to AISync

systems, for which = > 0 and  6= < 0. (c) Sample trajectory
of the system for a = 8 and b = 6 [cross symbol in (b)],
exhibiting AISync. The first component x1 of the Lorenz
oscillator state vector is shown for all n = 6 subnodes.

study consensus dynamics and encompasses a variety of
nontrivial stability regions [23], the problem of verifying
AISync is fully solvable. To see this, we first note that
in this case the stability function  (�) determines the
(common) stability of all completely synchronous states

of the form x
(i)
` = s`, 8i, `, where the subnode states

s` can in general be di↵erent for di↵erent `. Next, for
a given (homogeneous or heterogeneous) system, we sort
its Laplacian eigenvalues into two groups: �1, . . . ,�j⇤ ,
corresponding only to those perturbations parallel to
the synchronization manifold, and �j⇤+1, . . . ,�n, corre-
sponding to perturbations that are transverse to the man-
ifold and thus destroys synchronization. The stability (of
all completely synchronous states) is then determined by
 0 := maxj⇤<jn  (�j), noting that both j⇤ and �j gen-
erally depend on the network structure. This leads to
the following solution for the AISync conditions:  0 > 0
for all homogeneous systems and  0 < 0 for some het-
erogeneous system (see SM [26], Sec. S3 for an example
satisfying these conditions).

An example system exhibiting AISync is shown in
Fig. 2. The network structure is symmetric and has
N = 3 nodes and K = 2 types of links representing
sublink patterns in the clockwise and counterclockwise
directions in Fig. 2(a). Each node consists of L = 2
subnodes, each of which is a chaotic Lorenz oscillator.
The two subnodes are connected by a sublink, the di-
rection of which determines the node type. The system

has two parameters, a and b, representing the coupling
strength of internal and external sublinks, respectively.
In Fig. 2(b), we show  = (red) and  6= (blue) as func-
tions of these parameters, where  = ( 6=) are defined
to be the smaller value of  between the two possible
homogeneous (heterogeneous) systems. We verify condi-
tions (C1) and (C2) as described in SM [26] (Sec. S4)
in the region for which  = > 0 and  6= < 0 [shaded
purple in Fig. 2(b)], thus establishing that the system
exhibits AISync in that region. This is illustrated for
a sample trajectory in Fig. 2(c), which diverges from
synchrony while the nodes are kept homogeneous, but
re-synchronizes spontaneously after the nodes are made
heterogeneous (see SM [26], Sec. S5 for details). While
this provides an AISync example with a directed net-
work structure and a bounded stability region, we also
demonstrate AISync for experimentally testable systems
(coupled electro-optic oscillators [28]; SM [26], Sec. S6),
for systems with unbounded stability region (SM [26],
Sec. S7), and for systems with undirected network struc-
ture (SM [26], Sec. S8). These examples include both lin-
ear and nonlinear coupling functions, as well as discrete-
and continuous-time dynamics.

But how often does a network structure support
AISync? To systematically address this question, we
use the spread � of the eigenvalues of the Laplacian ma-
trix eL for the monolayer network representation, which
is a measure of synchronizability [8] defined by �2 :=Pn

j=2 |�j � �|2/[d2(n � 1)], where d :=
Pn

j=1
eLjj/n and

� :=
Pn

j=2 �j/(n � 1). A smaller � indicates higher
synchronizability. Given an external sublink structure
corresponding to a symmetric network, we compare the
minimum spread �= among all systems with homoge-
neous F (i) to the corresponding minimum � 6= among all
systems with strictly heterogeneous F (i). We call the
structure AISync-favoring if � 6= < �=, which indicates
that heterogeneous F (i) can make the system easier to
synchronize than any homogeneous F (i). As a measure
of how strongly the structure supports AISync, we define
r := 1 � � 6=/�=  1, where r > 0 indicates an AISync-
favoring structure, and r = 1 implies � 6= = 0 (i.e., there
is a heterogeneous system with optimal synchronizabil-
ity). For example, the structure in Fig. 2 has �= ⇡ 0.56
and � 6= ⇡ 0.33, and r ⇡ 0.41.

Using this AISync strength r, we first enumerate all
networks of a given size supporting AISync (Table I). For
each N , we generate one or more diagrams representing
all N -node symmetric networks, which are shown in the
first row of Table I for N = 3, 4, 5 (see SM [26], Sec. S9 for
larger N). In these diagrams, each color indicates a set of
links that, in any given symmetric network, must all exist
together and be of the same type or not exist at all (not-
ing that links from di↵erent sets can be of the same type).
For example, there are three distinct symmetric networks
for N = 3: a directed ring (cyan or black links), an undi-
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N = 3 N = 4 N = 5

symmetric
networks

Q (optimal) 9 14 21
Q (r > 0.2) 11 81 254
Q (r > 0.05) 29 318 2154
B (r > 0.2) 11 101 204
B (r > 0.05) 31 400 2406

TABLE I. Number of isomorphically distinct AISync-favoring
networks with N = 3, 4, 5 nodes and L = 2 layers (with
a = b = 1 to enable counting). The numbers are given for
both binary (B) and quaternary (Q) choices of internal sub-
link configurations, as well as for di↵erent AISync strength
[as measured by r defined in the text]. The network diagrams
encode all possible symmetric networks of a given size. See
SM [26], Sec. S9 for details and network diagrams for larger N .
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B (r > 0.2) 11 101 204
B (r > 0.05) 31 400 2406

TABLE I. Number of isomorphically distinct AISync-favoring
systems with N = 3, 4, 5 nodes and L = 2 layers (with
a = b = 1 to enable counting). The numbers are given for
both binary (B) and quaternary (Q) choices of internal sub-
link configurations, as well as for di↵erent AISync strength
[as measured by r defined in the text]. The network diagrams
encode all possible symmetric networks of a given size. See
SM [26], Sec. ?? for details and network diagrams for larger N .
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FIG. 3. Statistics on the prevalence of AISync-favoring sys-
tems as functions of (a) external sublink density and (b) net-
work size N . Both panels show the fraction of systems with
AISync strength r > 0.05 among those with circulant-graph
network structures, where the external sublink density is given
by D/[L2(N � 1)], and D is the external sublink in-degree.
For further analysis of these results, see SM [26], Sec. ??.

of the same type), and the superposition of two directed
rings in opposite directions (cyan and black links of dif-
ferent types; as in Fig. 2). For a given symmetric network
derived from these diagrams, we choose the external sub-
link pattern for each link type from all possible ways of
connecting a subnode pair to another. For the internal
sublink patterns, we use either the binary or quaternary
choices, where each node has one directed sublink (in
either direction) in the binary case, while all four possi-
bilities are allowed in the quaternary case: no sublink,
one directed sublink, and both directed sublinks. The
rest of Table I lists the total numbers of isomorphically
distinct monolayer networks eA with r > 0.05, r > 0.2,
and (optimal) r = 1; see SM [26], Sec. ?? for all optimal
networks with N = 3, 4.

Figure 3 shows the statistics of AISync-favoring net-
works. For numerical feasibility, we focus on those sys-
tems whose network structure is a directed, multi-link
type, circulant graph (which covers all symmetric net-

works if N is prime). Sampling uniformly within this
class (see SM [26], Sec. ??, for details [30]), we observe
that significant fraction of external sublink structures
are AISync-favoring over a range of sublink densities
[Fig. 3(a)] and network sizes [Fig. 3(b)]. We also observe
that sparse and dense structures favor AISync more of-
ten than medium-density ones, despite the expectation
that the e↵ect of internal sublink heterogeneity would be
smaller with higher external sublink density.

Given a symmetric network of identical oscillators, it
is instructive to compare our results above in which the
symmetry is broken by making the oscillators nonidenti-
cal with the alternative scenario in which the symmetry
is broken by making the network structure asymmetric.
For directed unweighted networks of di↵usively-coupled
identical oscillators, it can be shown that: 1) with the
exception of the complete graphs, all topologies that op-
timize synchronizability (i.e., those with � = 0) are asym-
metric [31]; 2) any network topology that can be spanned
from a node (i.e., mini�2 Re(�i) > 0) embeds optimally
synchronizable subnetworks generated by deleting a sub-
set of links [8, 32]. For example, a synchronous state
that is not stable for a directed ring network may be-
come stable for a directed chain formed by removing a
link. More generally, introducing structural heterogene-
ity (breaking the symmetry of the network) can stabilize
otherwise unstable homogeneous (symmetric) states.

Finally, we note that the defining characteristic of
AISync considered here—that preserving the symmetry
of a stable state requires breaking the symmetry of the
system—can bear analogs in oscillator networks whose
structure is not necessarily symmetric. Such a network
can always be partitioned into symmetric subnetwork
clusters (structurally equivalent subsets of nodes) that
are candidates for cluster synchronization [16, 33, 34].
Synchronization of one such cluster thus plays the role of
complete synchronization in a symmetric network, which
opens the possibility of exploiting AISync to tune cluster
synchronization patterns through oscillator heterogene-
ity in arbitrary complex networks. We hope that our
findings, and future theoretical and experimental stud-
ies they will stimulate, will significantly advance under-
standing of the interplay between symmetry and network
dynamics.
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Sec. 11.
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For a given symmetric network derived from these dia-
grams, we choose the external sublink pattern for each
link type from all possible ways of connecting a subnode
pair to another. For the internal sublink patterns, we
use either the binary or quaternary choices, where each
node has one directed sublink (in either direction) in the
binary case, while all four possibilities are allowed in the
quaternary case: no sublink, one directed sublink, and
both directed sublinks. The rest of Table I lists the to-
tal numbers of isomorphically distinct external sublink
structures eA with r > 0.05, r > 0.2, and (optimal) r = 1;
see SM [26], Sec. S9 for all optimal networks with N = 3
and 4.

Figure 3 shows the statistics of AISync-favoring net-
works. For numerical feasibility, we focus on those sys-
tems whose network structure is a directed, multi-link

type, circulant graph (which covers all symmetric net-
works if N is prime). Sampling uniformly within this
class (see SM [26], Sec. S10, for details [30]), we ob-
serve that significant fraction of external sublink struc-
tures are AISync-favoring over a range of sublink densi-
ties [Fig. 3(a)] and network sizes [Fig. 3(b)]. We also ob-
serve that sparse and dense structures favor AISync more
often than medium-density ones, despite the expectation
that the e↵ect of internal sublink heterogeneity would be
smaller with higher external sublink density.

Given a symmetric network of identical oscillators, it
is instructive to compare our results above in which the
symmetry is broken by making the oscillators nonidenti-
cal with the alternative scenario in which the symmetry
is broken by making the network structure asymmetric.
For directed unweighted networks of di↵usively-coupled
identical oscillators, it can be shown that: 1) with the
exception of the complete graphs, all topologies that op-
timize synchronizability (i.e., those with � = 0) are asym-
metric [31]; 2) any network topology that can be spanned
from a node (i.e., mini�2 Re(�i) > 0) embeds optimally
synchronizable subnetworks generated by deleting a sub-
set of links [8, 32]. For example, a synchronous state
that is not stable for a directed ring network may be-
come stable for a directed chain formed by removing a
link. More generally, introducing structural heterogene-
ity (breaking the symmetry of the network) can stabilize
otherwise unstable homogeneous (symmetric) states.

Finally, we note that the defining characteristic of
AISync considered here—that preserving the symmetry
of a stable state requires breaking the symmetry of the
system—can bear analogs in oscillator networks whose
structure is not necessarily symmetric. Such a network
can always be partitioned into symmetric subnetwork
clusters (structurally equivalent subsets of nodes) that
are candidates for cluster synchronization [16, 33, 34].
Synchronization of one of these clusters plays the role of
complete synchronization in a symmetric network, which
opens the possibility of exploiting AISync to tune cluster
synchronization patterns through oscillator heterogene-
ity in arbitrary complex networks. We hope that our
findings, and future theoretical and experimental stud-
ies they will stimulate, will significantly advance under-
standing of the interplay between symmetry and network
dynamics.
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FIG. 1. Multilayer construction of AISync networks. (a) Example of a symmetric network of N = 4 heterogeneous oscillators
and K = 3 types of (directed) links with associated interaction functions H(1), H(2) and H(3). (b) One of many possible
multilayer networks corresponding to the network in (a), with L = 2 layers and n = LN = 8 identical subnodes. Subnodes
are labeled with node indices, with prime and double prime indicating layer 1 and 2, respectively. (c) Flattened, monolayer

representation of the multilayer network in (b). (d) Block structure of the adjacency matrix e
A for the monolayer network in

(c). Colors indicate di↵erent types of nodes (diagonal blocks) and links (o↵-diagonal blocks).

ing the MSF framework to the flattened representation
of the system.

In our multilayer construction, each node represents
a set of L identical subnodes, belonging to L di↵erent
layers and connected by a set of internal sublinks. The
pattern of these internal sublinks is thus considered part
of the node’s properties and can be used to represent
node heterogeneity. For a pair of connected nodes, the
type of the connecting link is determined by the pattern
of external sublinks between the subnodes of these two
nodes. This construction yields a multilayer network [18–
23] of subnodes and sublinks with L layers; see Fig. 1(b)
for an L = 2 example. Note that in general there is
more than one possible multilayer network for a given
symmetric network. Coupling the dynamics of subnodes
di↵usively in this network, Eq. (1) can be written at the
subnode level as

ẋ
(i)
` = f(x(i)

` ) +
NX

i0=1

LX

`0=1

eA(ii0)
``0

⇥
h(x(i0)

`0 ) � h(x(i)
` )

⇤
, (2)

where x
(i)
` = x

(i)
` (t) is the m-dimensional state vector for

subnode ` (i.e., in layer `) of node i, the function f de-
termines the dynamics of every isolated subnode, and h
is the interaction function common to all sublinks. Here,
for all links of a given type between di↵erent nodes, the

corresponding coupling matrix eA(ii0) := ( eA(ii0)
``0 ), i 6= i0,

is the same and encodes the subnode connection pat-
tern for that link type. In contrast, the subnode connec-
tion pattern within each node i is encoded in the matrix

F (i) := ( eA(ii)
``0 ). Note that the node-to-node interactions

are not necessarily di↵usive, but the subnode-to-subnode
interactions are di↵usive. This guarantees the existence

of a synchronous state of Eq. (2) given by x
(i)
` (t) = s(t),

8i, ` with ṡ = f (s), which corresponds to a synchronous
state of Eq. (1). Thus, we have a general class of multi-
layer models of symmetric networks that admit complete
synchronization (see SM [24], Sec. S2 for more details).

To facilitate the stability analysis, we flatten the mul-
tilayer network representation into a single layer (see
Fig. 1(c) for an example). By defining a single index

for all the n := LN subnodes, in which node i has subn-
odes j = ki1, . . . , kiL with ki` := (i � 1)L + `, we can
rewrite Eq. (2) in the standard form for a (single-layer)
di↵usively coupled network of oscillators:

ẋj = f(xj) +
nX

j0=1

eAjj0 [h(xj0) � h(xj)], (3)

where xj = x
(i)
` and eAjj0 := eA(ii0)

``0 for j = ki` and

j0 = ki0`0 . The weighted adjacency matrix eA = ( eAjj0)
thus encodes the structure of the monolayer network in
this representation (see Fig. 1(d) for an example). This
matrix has a block structure in which the matrices F (i)

appearing on the diagonal blocks characterize node prop-
erties, while eA(ii0) appearing on the o↵-diagonal blocks
reflect the link types. Since subnodes and sublinks are
identical, we can directly apply the MSF analysis [26]
to Eq. (3) and obtain the stability function  (�). The
maximum Lyapunov exponent (MLE) of the synchronous
state is then computed as  := max2jn  (�j), where
�1, . . . ,�n are the eigenvalues of the Laplacian matrix
eL := (eLjj0) of the monolayer network, defined as eLjj0 :=

�jj0
Pn

k=1
eAjk � eAjj0 , where �jj0 is the Kronecker delta

function. Here, �1 is the identically zero eigenvalue,
which is excluded in the definition of  for corresponding
to a mode of perturbation that does not a↵ect synchro-
nization stability. Thus, the synchronous state is asymp-
totically stable if  < 0 and unstable if  > 0. Using this
MSF analysis, we have developed a systematic method
for verifying the AISync conditions (C1) and (C2) for
our multilayer model (see SM [24], Sec. S3).

An example system exhibiting AISync is shown in
Fig. 2. The network structure is symmetric and has
N = 3 nodes and K = 2 types of links corresponding
to links in the clockwise and counterclockwise directions
in Fig. 2(a). Each node consists of L = 2 subnodes, each
of which is a chaotic Lorenz oscillator. The two subnodes
are connected by a sublink, the direction of which deter-
mines the node type. The system has two parameters, a
and b, representing the coupling strength of internal and

FIG. 1. Multilayer construction of AISync networks. (a) Example of a symmetric network of N = 4 heterogeneous oscillators
and K = 3 types of (directed) links with associated interaction functions H(1), H(2) and H(3). (b) One of many possible
multilayer networks corresponding to the network in (a), with L = 2 layers and n = LN = 8 identical subnodes. Subnodes
are labeled with node indices, with prime and double prime indicating layer 1 and 2, respectively. (c) Flattened, monolayer

representation of the multilayer network in (b). (d) Block structure of the adjacency matrix e
A for the monolayer network in

(c). Colors indicate di↵erent types of nodes (diagonal blocks) and links (o↵-diagonal blocks).

tical (di↵erent Fi), and the network can host K > 1
types of directed interactions. To overcome these chal-
lenges, below we propose a multilayer construction that
defines a large subclass of systems in the form of Eq. (1).
We show that any system in this subclass is guaranteed
to have a synchronous state, and the stability of that
state can be analyzed by applying the MSF framework
to the flattened representation of the system.

In our multilayer system, each node represents a set
of L identical subnodes, belonging to L di↵erent layers
and connected by a set of internal sublinks. The pattern
of these internal sublinks is thus considered part of the
node’s properties and can be used to represent node het-
erogeneity. For a pair of connected nodes, the type of the
connecting link is determined by the pattern of external

sublinks between the subnodes of these two nodes. This
construction yields a multilayer network [18–22] of subn-
odes and sublinks with L layers; see Fig. 1(b) for an L = 2
example. Note that in general there is more than one
possible multilayer network for a given symmetric net-
work. The multilayer networks just defined are broader
than most classes of systems used in previous studies of
synchronization on multilayer networks [24, 25], since the
links between two di↵erent layers are not constrained to
be one-to-one. The underlying hierarchical organization,
in which each node decomposes into interacting subn-
odes, is shared by many physical systems, such as the
multi-processor nodes in modern supercomputers.

Coupling the dynamics of subnodes di↵usively in this
network, the multilayer system can be described at the
subnode level as

ẋ
(i)
` = f(x(i)

` ) +
NX

i0=1

LX

`0=1

eA(ii0)
``0

⇥
h(x(i0)

`0 ) � h(x(i)
` )

⇤
, (2)

where x
(i)
` = x

(i)
` (t) is the m-dimensional state vector for

subnode ` (i.e., in layer `) of node i, the function f de-
termines the dynamics of every isolated subnode, and h
is the interaction function common to all sublinks. Here,
for all links of a given type between di↵erent nodes, the

corresponding coupling matrix eA(ii0) := ( eA(ii0)
``0 ), i 6= i0,

is the same and encodes the subnode connection pat-
tern for that link type. In contrast, the subnode connec-
tion pattern within each node i is encoded in the ma-

trix F (i) := ( eA(ii)
``0 ). The node-to-node interactions are

not necessarily di↵usive, but the subnode-to-subnode in-
teractions are di↵usive, which guarantees the existence

of a synchronous state given by x
(i)
` (t) = s(t), 8i, `

with ṡ = f (s). Thus, Eq. (2) describes a general class
of multilayer models of symmetric networks that ad-
mit a state corresponding to complete synchronization,
Xi(t) = S(t), 8i, when written in the form of Eq. (1)
(see SM [26], Sec. S2 for more details).

To facilitate the stability analysis, we flatten the mul-
tilayer network representation into a single layer (see
Fig. 1(c) for an example). We use eA = ( eAjj0) to denote
the weighted adjacency matrix that encodes the struc-
ture of the resulting monolayer network [see Fig. 1(d)
for an example]. This matrix has a block structure
in which the matrices F (i) appearing on the diagonal
blocks characterize node properties, while eA(ii0) appear-
ing on the o↵-diagonal blocks reflect the link types.
Since subnodes and sublinks are identical, we can di-
rectly apply the MSF analysis [29] to the monolayer net-
work and obtain the stability function  (�) (see SM [26],
Sec. S2 for details). The maximum Lyapunov exponent
(MLE) of the synchronous state is then computed as
 := max2jn  (�j), where �1, . . . ,�n are the eigenval-

ues of the corresponding Laplacian matrix eL := (eLjj0),

defined as eLjj0 := �jj0
Pn

k=1
eAjk � eAjj0 , where �jj0 is the

Kronecker delta function. Here, �1 is the identically zero
eigenvalue, which is excluded in the definition of  for
corresponding to a mode of perturbation that does not
a↵ect synchronization stability. Thus, the synchronous
state is asymptotically stable if  < 0 and unstable if
 > 0. Using this MSF analysis, we have developed a sys-
tematic scheme for verifying the AISync conditions (C1)
and (C2) for our multilayer system (SM [26], Sec. S4).

In the case of linear f and h, which is widely used to
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FIG. 1. Multilayer construction of AISync networks. (a) Example of a symmetric network of N = 4 heterogeneous oscillators
and K = 3 types of (directed) links with associated interaction functions H(1), H(2) and H(3). (b) One of many possible
multilayer networks corresponding to the network in (a), with L = 2 layers and n = LN = 8 identical subnodes. Subnodes
are labeled with node indices, with prime and double prime indicating layer 1 and 2, respectively. (c) Flattened, monolayer

representation of the multilayer network in (b). (d) Block structure of the adjacency matrix e
A for the monolayer network in

(c). Colors indicate di↵erent types of nodes (diagonal blocks) and links (o↵-diagonal blocks).

ing the MSF framework to the flattened representation
of the system.

In our multilayer construction, each node represents
a set of L identical subnodes, belonging to L di↵erent
layers and connected by a set of internal sublinks. The
pattern of these internal sublinks is thus considered part
of the node’s properties and can be used to represent
node heterogeneity. For a pair of connected nodes, the
type of the connecting link is determined by the pattern
of external sublinks between the subnodes of these two
nodes. This construction yields a multilayer network [18–
23] of subnodes and sublinks with L layers; see Fig. 1(b)
for an L = 2 example. Note that in general there is
more than one possible multilayer network for a given
symmetric network. Coupling the dynamics of subnodes
di↵usively in this network, Eq. (1) can be written at the
subnode level as

ẋ
(i)
` = f(x(i)

` ) +
NX

i0=1

LX

`0=1

eA(ii0)
``0

⇥
h(x(i0)

`0 ) � h(x(i)
` )

⇤
, (2)

where x
(i)
` = x

(i)
` (t) is the m-dimensional state vector for

subnode ` (i.e., in layer `) of node i, the function f de-
termines the dynamics of every isolated subnode, and h
is the interaction function common to all sublinks. Here,
for all links of a given type between di↵erent nodes, the

corresponding coupling matrix eA(ii0) := ( eA(ii0)
``0 ), i 6= i0,

is the same and encodes the subnode connection pat-
tern for that link type. In contrast, the subnode connec-
tion pattern within each node i is encoded in the matrix

F (i) := ( eA(ii)
``0 ). Note that the node-to-node interactions

are not necessarily di↵usive, but the subnode-to-subnode
interactions are di↵usive. This guarantees the existence

of a synchronous state of Eq. (2) given by x
(i)
` (t) = s(t),

8i, ` with ṡ = f (s), which corresponds to a synchronous
state of Eq. (1). Thus, we have a general class of multi-
layer models of symmetric networks that admit complete
synchronization (see SM [24], Sec. S2 for more details).

To facilitate the stability analysis, we flatten the mul-
tilayer network representation into a single layer (see
Fig. 1(c) for an example). By defining a single index

for all the n := LN subnodes, in which node i has subn-
odes j = ki1, . . . , kiL with ki` := (i � 1)L + `, we can
rewrite Eq. (2) in the standard form for a (single-layer)
di↵usively coupled network of oscillators:

ẋj = f(xj) +
nX

j0=1

eAjj0 [h(xj0) � h(xj)], (3)

where xj = x
(i)
` and eAjj0 := eA(ii0)

``0 for j = ki` and

j0 = ki0`0 . The weighted adjacency matrix eA = ( eAjj0)
thus encodes the structure of the monolayer network in
this representation (see Fig. 1(d) for an example). This
matrix has a block structure in which the matrices F (i)

appearing on the diagonal blocks characterize node prop-
erties, while eA(ii0) appearing on the o↵-diagonal blocks
reflect the link types. Since subnodes and sublinks are
identical, we can directly apply the MSF analysis [26]
to Eq. (3) and obtain the stability function  (�). The
maximum Lyapunov exponent (MLE) of the synchronous
state is then computed as  := max2jn  (�j), where
�1, . . . ,�n are the eigenvalues of the Laplacian matrix
eL := (eLjj0) of the monolayer network, defined as eLjj0 :=

�jj0
Pn

k=1
eAjk � eAjj0 , where �jj0 is the Kronecker delta

function. Here, �1 is the identically zero eigenvalue,
which is excluded in the definition of  for corresponding
to a mode of perturbation that does not a↵ect synchro-
nization stability. Thus, the synchronous state is asymp-
totically stable if  < 0 and unstable if  > 0. Using this
MSF analysis, we have developed a systematic method
for verifying the AISync conditions (C1) and (C2) for
our multilayer model (see SM [24], Sec. S3).

An example system exhibiting AISync is shown in
Fig. 2. The network structure is symmetric and has
N = 3 nodes and K = 2 types of links corresponding
to links in the clockwise and counterclockwise directions
in Fig. 2(a). Each node consists of L = 2 subnodes, each
of which is a chaotic Lorenz oscillator. The two subnodes
are connected by a sublink, the direction of which deter-
mines the node type. The system has two parameters, a
and b, representing the coupling strength of internal and

FIG. 1. Multilayer construction of AISync networks. (a) Example of a symmetric network of N = 4 heterogeneous oscillators
and K = 3 types of (directed) links with associated interaction functions H(1), H(2) and H(3). (b) One of many possible
multilayer networks corresponding to the network in (a), with L = 2 layers and n = LN = 8 identical subnodes. Subnodes
are labeled with node indices, with prime and double prime indicating layer 1 and 2, respectively. (c) Flattened, monolayer

representation of the multilayer network in (b). (d) Block structure of the adjacency matrix e
A for the monolayer network in

(c). Colors indicate di↵erent types of nodes (diagonal blocks) and links (o↵-diagonal blocks).

tical (di↵erent Fi), and the network can host K > 1
types of directed interactions. To overcome these chal-
lenges, below we propose a multilayer construction that
defines a large subclass of systems in the form of Eq. (1).
We show that any system in this subclass is guaranteed
to have a synchronous state, and the stability of that
state can be analyzed by applying the MSF framework
to the flattened representation of the system.

In our multilayer system, each node represents a set
of L identical subnodes, belonging to L di↵erent layers
and connected by a set of internal sublinks. The pattern
of these internal sublinks is thus considered part of the
node’s properties and can be used to represent node het-
erogeneity. For a pair of connected nodes, the type of the
connecting link is determined by the pattern of external

sublinks between the subnodes of these two nodes. This
construction yields a multilayer network [18–22] of subn-
odes and sublinks with L layers; see Fig. 1(b) for an L = 2
example. Note that in general there is more than one
possible multilayer network for a given symmetric net-
work. The multilayer networks just defined are broader
than most classes of systems used in previous studies of
synchronization on multilayer networks [24, 25], since the
links between two di↵erent layers are not constrained to
be one-to-one. The underlying hierarchical organization,
in which each node decomposes into interacting subn-
odes, is shared by many physical systems, such as the
multi-processor nodes in modern supercomputers.

Coupling the dynamics of subnodes di↵usively in this
network, the multilayer system can be described at the
subnode level as

ẋ
(i)
` = f(x(i)

` ) +
NX

i0=1

LX

`0=1

eA(ii0)
``0

⇥
h(x(i0)

`0 ) � h(x(i)
` )

⇤
, (2)

where x
(i)
` = x

(i)
` (t) is the m-dimensional state vector for

subnode ` (i.e., in layer `) of node i, the function f de-
termines the dynamics of every isolated subnode, and h
is the interaction function common to all sublinks. Here,
for all links of a given type between di↵erent nodes, the

corresponding coupling matrix eA(ii0) := ( eA(ii0)
``0 ), i 6= i0,

is the same and encodes the subnode connection pat-
tern for that link type. In contrast, the subnode connec-
tion pattern within each node i is encoded in the ma-

trix F (i) := ( eA(ii)
``0 ). The node-to-node interactions are

not necessarily di↵usive, but the subnode-to-subnode in-
teractions are di↵usive, which guarantees the existence

of a synchronous state given by x
(i)
` (t) = s(t), 8i, `

with ṡ = f (s). Thus, Eq. (2) describes a general class
of multilayer models of symmetric networks that ad-
mit a state corresponding to complete synchronization,
Xi(t) = S(t), 8i, when written in the form of Eq. (1)
(see SM [26], Sec. S2 for more details).

To facilitate the stability analysis, we flatten the mul-
tilayer network representation into a single layer (see
Fig. 1(c) for an example). We use eA = ( eAjj0) to denote
the weighted adjacency matrix that encodes the struc-
ture of the resulting monolayer network [see Fig. 1(d)
for an example]. This matrix has a block structure
in which the matrices F (i) appearing on the diagonal
blocks characterize node properties, while eA(ii0) appear-
ing on the o↵-diagonal blocks reflect the link types.
Since subnodes and sublinks are identical, we can di-
rectly apply the MSF analysis [29] to the monolayer net-
work and obtain the stability function  (�) (see SM [26],
Sec. S2 for details). The maximum Lyapunov exponent
(MLE) of the synchronous state is then computed as
 := max2jn  (�j), where �1, . . . ,�n are the eigenval-

ues of the corresponding Laplacian matrix eL := (eLjj0),

defined as eLjj0 := �jj0
Pn

k=1
eAjk � eAjj0 , where �jj0 is the

Kronecker delta function. Here, �1 is the identically zero
eigenvalue, which is excluded in the definition of  for
corresponding to a mode of perturbation that does not
a↵ect synchronization stability. Thus, the synchronous
state is asymptotically stable if  < 0 and unstable if
 > 0. Using this MSF analysis, we have developed a sys-
tematic scheme for verifying the AISync conditions (C1)
and (C2) for our multilayer system (SM [26], Sec. S4).

In the case of linear f and h, which is widely used to
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FIG. 1. Multilayer construction of AISync networks. (a) Example of a symmetric network of N = 4 heterogeneous oscillators
and K = 3 types of (directed) links with associated interaction functions H(1), H(2) and H(3). (b) One of many possible
multilayer networks corresponding to the network in (a), with L = 2 layers and n = LN = 8 identical subnodes. Subnodes
are labeled with node indices, with prime and double prime indicating layer 1 and 2, respectively. (c) Flattened, monolayer

representation of the multilayer network in (b). (d) Block structure of the adjacency matrix e
A for the monolayer network in

(c). Colors indicate di↵erent types of nodes (diagonal blocks) and links (o↵-diagonal blocks).

ing the MSF framework to the flattened representation
of the system.

In our multilayer construction, each node represents
a set of L identical subnodes, belonging to L di↵erent
layers and connected by a set of internal sublinks. The
pattern of these internal sublinks is thus considered part
of the node’s properties and can be used to represent
node heterogeneity. For a pair of connected nodes, the
type of the connecting link is determined by the pattern
of external sublinks between the subnodes of these two
nodes. This construction yields a multilayer network [18–
23] of subnodes and sublinks with L layers; see Fig. 1(b)
for an L = 2 example. Note that in general there is
more than one possible multilayer network for a given
symmetric network. Coupling the dynamics of subnodes
di↵usively in this network, Eq. (1) can be written at the
subnode level as

ẋ
(i)
` = f(x(i)

` ) +
NX

i0=1

LX

`0=1

eA(ii0)
``0

⇥
h(x(i0)

`0 ) � h(x(i)
` )

⇤
, (2)

where x
(i)
` = x

(i)
` (t) is the m-dimensional state vector for

subnode ` (i.e., in layer `) of node i, the function f de-
termines the dynamics of every isolated subnode, and h
is the interaction function common to all sublinks. Here,
for all links of a given type between di↵erent nodes, the

corresponding coupling matrix eA(ii0) := ( eA(ii0)
``0 ), i 6= i0,

is the same and encodes the subnode connection pat-
tern for that link type. In contrast, the subnode connec-
tion pattern within each node i is encoded in the matrix

F (i) := ( eA(ii)
``0 ). Note that the node-to-node interactions

are not necessarily di↵usive, but the subnode-to-subnode
interactions are di↵usive. This guarantees the existence

of a synchronous state of Eq. (2) given by x
(i)
` (t) = s(t),

8i, ` with ṡ = f (s), which corresponds to a synchronous
state of Eq. (1). Thus, we have a general class of multi-
layer models of symmetric networks that admit complete
synchronization (see SM [24], Sec. S2 for more details).

To facilitate the stability analysis, we flatten the mul-
tilayer network representation into a single layer (see
Fig. 1(c) for an example). By defining a single index

for all the n := LN subnodes, in which node i has subn-
odes j = ki1, . . . , kiL with ki` := (i � 1)L + `, we can
rewrite Eq. (2) in the standard form for a (single-layer)
di↵usively coupled network of oscillators:

ẋj = f(xj) +
nX

j0=1

eAjj0 [h(xj0) � h(xj)], (3)

where xj = x
(i)
` and eAjj0 := eA(ii0)

``0 for j = ki` and

j0 = ki0`0 . The weighted adjacency matrix eA = ( eAjj0)
thus encodes the structure of the monolayer network in
this representation (see Fig. 1(d) for an example). This
matrix has a block structure in which the matrices F (i)

appearing on the diagonal blocks characterize node prop-
erties, while eA(ii0) appearing on the o↵-diagonal blocks
reflect the link types. Since subnodes and sublinks are
identical, we can directly apply the MSF analysis [26]
to Eq. (3) and obtain the stability function  (�). The
maximum Lyapunov exponent (MLE) of the synchronous
state is then computed as  := max2jn  (�j), where
�1, . . . ,�n are the eigenvalues of the Laplacian matrix
eL := (eLjj0) of the monolayer network, defined as eLjj0 :=

�jj0
Pn

k=1
eAjk � eAjj0 , where �jj0 is the Kronecker delta

function. Here, �1 is the identically zero eigenvalue,
which is excluded in the definition of  for corresponding
to a mode of perturbation that does not a↵ect synchro-
nization stability. Thus, the synchronous state is asymp-
totically stable if  < 0 and unstable if  > 0. Using this
MSF analysis, we have developed a systematic method
for verifying the AISync conditions (C1) and (C2) for
our multilayer model (see SM [24], Sec. S3).

An example system exhibiting AISync is shown in
Fig. 2. The network structure is symmetric and has
N = 3 nodes and K = 2 types of links corresponding
to links in the clockwise and counterclockwise directions
in Fig. 2(a). Each node consists of L = 2 subnodes, each
of which is a chaotic Lorenz oscillator. The two subnodes
are connected by a sublink, the direction of which deter-
mines the node type. The system has two parameters, a
and b, representing the coupling strength of internal and

FIG. 1. Multilayer construction of AISync networks. (a) Example of a symmetric network of N = 4 heterogeneous oscillators
and K = 3 types of (directed) links with associated interaction functions H(1), H(2) and H(3). (b) One of many possible
multilayer networks corresponding to the network in (a), with L = 2 layers and n = LN = 8 identical subnodes. Subnodes
are labeled with node indices, with prime and double prime indicating layer 1 and 2, respectively. (c) Flattened, monolayer

representation of the multilayer network in (b). (d) Block structure of the adjacency matrix e
A for the monolayer network in

(c). Colors indicate di↵erent types of nodes (diagonal blocks) and links (o↵-diagonal blocks).

tical (di↵erent Fi), and the network can host K > 1
types of directed interactions. To overcome these chal-
lenges, below we propose a multilayer construction that
defines a large subclass of systems in the form of Eq. (1).
We show that any system in this subclass is guaranteed
to have a synchronous state, and the stability of that
state can be analyzed by applying the MSF framework
to the flattened representation of the system.

In our multilayer system, each node represents a set
of L identical subnodes, belonging to L di↵erent layers
and connected by a set of internal sublinks. The pattern
of these internal sublinks is thus considered part of the
node’s properties and can be used to represent node het-
erogeneity. For a pair of connected nodes, the type of the
connecting link is determined by the pattern of external

sublinks between the subnodes of these two nodes. This
construction yields a multilayer network [18–22] of subn-
odes and sublinks with L layers; see Fig. 1(b) for an L = 2
example. Note that in general there is more than one
possible multilayer network for a given symmetric net-
work. The multilayer networks just defined are broader
than most classes of systems used in previous studies of
synchronization on multilayer networks [24, 25], since the
links between two di↵erent layers are not constrained to
be one-to-one. The underlying hierarchical organization,
in which each node decomposes into interacting subn-
odes, is shared by many physical systems, such as the
multi-processor nodes in modern supercomputers.

Coupling the dynamics of subnodes di↵usively in this
network, the multilayer system can be described at the
subnode level as

ẋ
(i)
` = f(x(i)

` ) +
NX

i0=1

LX

`0=1

eA(ii0)
``0

⇥
h(x(i0)

`0 ) � h(x(i)
` )

⇤
, (2)

where x
(i)
` = x

(i)
` (t) is the m-dimensional state vector for

subnode ` (i.e., in layer `) of node i, the function f de-
termines the dynamics of every isolated subnode, and h
is the interaction function common to all sublinks. Here,
for all links of a given type between di↵erent nodes, the

corresponding coupling matrix eA(ii0) := ( eA(ii0)
``0 ), i 6= i0,

is the same and encodes the subnode connection pat-
tern for that link type. In contrast, the subnode connec-
tion pattern within each node i is encoded in the ma-

trix F (i) := ( eA(ii)
``0 ). The node-to-node interactions are

not necessarily di↵usive, but the subnode-to-subnode in-
teractions are di↵usive, which guarantees the existence

of a synchronous state given by x
(i)
` (t) = s(t), 8i, `

with ṡ = f (s). Thus, Eq. (2) describes a general class
of multilayer models of symmetric networks that ad-
mit a state corresponding to complete synchronization,
Xi(t) = S(t), 8i, when written in the form of Eq. (1)
(see SM [26], Sec. S2 for more details).

To facilitate the stability analysis, we flatten the mul-
tilayer network representation into a single layer (see
Fig. 1(c) for an example). We use eA = ( eAjj0) to denote
the weighted adjacency matrix that encodes the struc-
ture of the resulting monolayer network [see Fig. 1(d)
for an example]. This matrix has a block structure
in which the matrices F (i) appearing on the diagonal
blocks characterize node properties, while eA(ii0) appear-
ing on the o↵-diagonal blocks reflect the link types.
Since subnodes and sublinks are identical, we can di-
rectly apply the MSF analysis [29] to the monolayer net-
work and obtain the stability function  (�) (see SM [26],
Sec. S2 for details). The maximum Lyapunov exponent
(MLE) of the synchronous state is then computed as
 := max2jn  (�j), where �1, . . . ,�n are the eigenval-

ues of the corresponding Laplacian matrix eL := (eLjj0),

defined as eLjj0 := �jj0
Pn

k=1
eAjk � eAjj0 , where �jj0 is the

Kronecker delta function. Here, �1 is the identically zero
eigenvalue, which is excluded in the definition of  for
corresponding to a mode of perturbation that does not
a↵ect synchronization stability. Thus, the synchronous
state is asymptotically stable if  < 0 and unstable if
 > 0. Using this MSF analysis, we have developed a sys-
tematic scheme for verifying the AISync conditions (C1)
and (C2) for our multilayer system (SM [26], Sec. S4).

In the case of linear f and h, which is widely used to
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FIG. 1. Multilayer construction of AISync networks. (a) Example of a symmetric network of N = 4 heterogeneous oscillators
and K = 3 types of (directed) links with associated interaction functions H(1), H(2) and H(3). (b) One of many possible
multilayer networks corresponding to the network in (a), with L = 2 layers and n = LN = 8 identical subnodes. Subnodes
are labeled with node indices, with prime and double prime indicating layer 1 and 2, respectively. (c) Flattened, monolayer

representation of the multilayer network in (b). (d) Block structure of the adjacency matrix e
A for the monolayer network in

(c). Colors indicate di↵erent types of nodes (diagonal blocks) and links (o↵-diagonal blocks).

ing the MSF framework to the flattened representation
of the system.

In our multilayer construction, each node represents
a set of L identical subnodes, belonging to L di↵erent
layers and connected by a set of internal sublinks. The
pattern of these internal sublinks is thus considered part
of the node’s properties and can be used to represent
node heterogeneity. For a pair of connected nodes, the
type of the connecting link is determined by the pattern
of external sublinks between the subnodes of these two
nodes. This construction yields a multilayer network [18–
23] of subnodes and sublinks with L layers; see Fig. 1(b)
for an L = 2 example. Note that in general there is
more than one possible multilayer network for a given
symmetric network. Coupling the dynamics of subnodes
di↵usively in this network, Eq. (1) can be written at the
subnode level as

ẋ
(i)
` = f(x(i)

` ) +
NX

i0=1

LX

`0=1

eA(ii0)
``0

⇥
h(x(i0)

`0 ) � h(x(i)
` )

⇤
, (2)

where x
(i)
` = x

(i)
` (t) is the m-dimensional state vector for

subnode ` (i.e., in layer `) of node i, the function f de-
termines the dynamics of every isolated subnode, and h
is the interaction function common to all sublinks. Here,
for all links of a given type between di↵erent nodes, the

corresponding coupling matrix eA(ii0) := ( eA(ii0)
``0 ), i 6= i0,

is the same and encodes the subnode connection pat-
tern for that link type. In contrast, the subnode connec-
tion pattern within each node i is encoded in the matrix

F (i) := ( eA(ii)
``0 ). Note that the node-to-node interactions

are not necessarily di↵usive, but the subnode-to-subnode
interactions are di↵usive. This guarantees the existence

of a synchronous state of Eq. (2) given by x
(i)
` (t) = s(t),

8i, ` with ṡ = f (s), which corresponds to a synchronous
state of Eq. (1). Thus, we have a general class of multi-
layer models of symmetric networks that admit complete
synchronization (see SM [24], Sec. S2 for more details).

To facilitate the stability analysis, we flatten the mul-
tilayer network representation into a single layer (see
Fig. 1(c) for an example). By defining a single index

for all the n := LN subnodes, in which node i has subn-
odes j = ki1, . . . , kiL with ki` := (i � 1)L + `, we can
rewrite Eq. (2) in the standard form for a (single-layer)
di↵usively coupled network of oscillators:

ẋj = f(xj) +
nX

j0=1

eAjj0 [h(xj0) � h(xj)], (3)

where xj = x
(i)
` and eAjj0 := eA(ii0)

``0 for j = ki` and

j0 = ki0`0 . The weighted adjacency matrix eA = ( eAjj0)
thus encodes the structure of the monolayer network in
this representation (see Fig. 1(d) for an example). This
matrix has a block structure in which the matrices F (i)

appearing on the diagonal blocks characterize node prop-
erties, while eA(ii0) appearing on the o↵-diagonal blocks
reflect the link types. Since subnodes and sublinks are
identical, we can directly apply the MSF analysis [26]
to Eq. (3) and obtain the stability function  (�). The
maximum Lyapunov exponent (MLE) of the synchronous
state is then computed as  := max2jn  (�j), where
�1, . . . ,�n are the eigenvalues of the Laplacian matrix
eL := (eLjj0) of the monolayer network, defined as eLjj0 :=

�jj0
Pn

k=1
eAjk � eAjj0 , where �jj0 is the Kronecker delta

function. Here, �1 is the identically zero eigenvalue,
which is excluded in the definition of  for corresponding
to a mode of perturbation that does not a↵ect synchro-
nization stability. Thus, the synchronous state is asymp-
totically stable if  < 0 and unstable if  > 0. Using this
MSF analysis, we have developed a systematic method
for verifying the AISync conditions (C1) and (C2) for
our multilayer model (see SM [24], Sec. S3).

An example system exhibiting AISync is shown in
Fig. 2. The network structure is symmetric and has
N = 3 nodes and K = 2 types of links corresponding
to links in the clockwise and counterclockwise directions
in Fig. 2(a). Each node consists of L = 2 subnodes, each
of which is a chaotic Lorenz oscillator. The two subnodes
are connected by a sublink, the direction of which deter-
mines the node type. The system has two parameters, a
and b, representing the coupling strength of internal and

FIG. 1. Multilayer construction of AISync networks. (a) Example of a symmetric network of N = 4 heterogeneous oscillators
and K = 3 types of (directed) links with associated interaction functions H(1), H(2) and H(3). (b) One of many possible
multilayer networks corresponding to the network in (a), with L = 2 layers and n = LN = 8 identical subnodes. Subnodes
are labeled with node indices, with prime and double prime indicating layer 1 and 2, respectively. (c) Flattened, monolayer

representation of the multilayer network in (b). (d) Block structure of the adjacency matrix e
A for the monolayer network in

(c). Colors indicate di↵erent types of nodes (diagonal blocks) and links (o↵-diagonal blocks).

tical (di↵erent Fi), and the network can host K > 1
types of directed interactions. To overcome these chal-
lenges, below we propose a multilayer construction that
defines a large subclass of systems in the form of Eq. (1).
We show that any system in this subclass is guaranteed
to have a synchronous state, and the stability of that
state can be analyzed by applying the MSF framework
to the flattened representation of the system.

In our multilayer system, each node represents a set
of L identical subnodes, belonging to L di↵erent layers
and connected by a set of internal sublinks. The pattern
of these internal sublinks is thus considered part of the
node’s properties and can be used to represent node het-
erogeneity. For a pair of connected nodes, the type of the
connecting link is determined by the pattern of external

sublinks between the subnodes of these two nodes. This
construction yields a multilayer network [18–22] of subn-
odes and sublinks with L layers; see Fig. 1(b) for an L = 2
example. Note that in general there is more than one
possible multilayer network for a given symmetric net-
work. The multilayer networks just defined are broader
than most classes of systems used in previous studies of
synchronization on multilayer networks [24, 25], since the
links between two di↵erent layers are not constrained to
be one-to-one. The underlying hierarchical organization,
in which each node decomposes into interacting subn-
odes, is shared by many physical systems, such as the
multi-processor nodes in modern supercomputers.

Coupling the dynamics of subnodes di↵usively in this
network, the multilayer system can be described at the
subnode level as

ẋ
(i)
` = f(x(i)

` ) +
NX

i0=1

LX

`0=1

eA(ii0)
``0

⇥
h(x(i0)

`0 ) � h(x(i)
` )

⇤
, (2)

where x
(i)
` = x

(i)
` (t) is the m-dimensional state vector for

subnode ` (i.e., in layer `) of node i, the function f de-
termines the dynamics of every isolated subnode, and h
is the interaction function common to all sublinks. Here,
for all links of a given type between di↵erent nodes, the

corresponding coupling matrix eA(ii0) := ( eA(ii0)
``0 ), i 6= i0,

is the same and encodes the subnode connection pat-
tern for that link type. In contrast, the subnode connec-
tion pattern within each node i is encoded in the ma-

trix F (i) := ( eA(ii)
``0 ). The node-to-node interactions are

not necessarily di↵usive, but the subnode-to-subnode in-
teractions are di↵usive, which guarantees the existence

of a synchronous state given by x
(i)
` (t) = s(t), 8i, `

with ṡ = f (s). Thus, Eq. (2) describes a general class
of multilayer models of symmetric networks that ad-
mit a state corresponding to complete synchronization,
Xi(t) = S(t), 8i, when written in the form of Eq. (1)
(see SM [26], Sec. S2 for more details).

To facilitate the stability analysis, we flatten the mul-
tilayer network representation into a single layer (see
Fig. 1(c) for an example). We use eA = ( eAjj0) to denote
the weighted adjacency matrix that encodes the struc-
ture of the resulting monolayer network [see Fig. 1(d)
for an example]. This matrix has a block structure
in which the matrices F (i) appearing on the diagonal
blocks characterize node properties, while eA(ii0) appear-
ing on the o↵-diagonal blocks reflect the link types.
Since subnodes and sublinks are identical, we can di-
rectly apply the MSF analysis [29] to the monolayer net-
work and obtain the stability function  (�) (see SM [26],
Sec. S2 for details). The maximum Lyapunov exponent
(MLE) of the synchronous state is then computed as
 := max2jn  (�j), where �1, . . . ,�n are the eigenval-

ues of the corresponding Laplacian matrix eL := (eLjj0),

defined as eLjj0 := �jj0
Pn

k=1
eAjk � eAjj0 , where �jj0 is the

Kronecker delta function. Here, �1 is the identically zero
eigenvalue, which is excluded in the definition of  for
corresponding to a mode of perturbation that does not
a↵ect synchronization stability. Thus, the synchronous
state is asymptotically stable if  < 0 and unstable if
 > 0. Using this MSF analysis, we have developed a sys-
tematic scheme for verifying the AISync conditions (C1)
and (C2) for our multilayer system (SM [26], Sec. S4).

In the case of linear f and h, which is widely used to
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FIG. 1. Multilayer construction of AISync networks. (a) Example of a symmetric network of N = 4 heterogeneous oscillators
and K = 3 types of (directed) links with associated interaction functions H(1), H(2) and H(3). (b) One of many possible
multilayer networks corresponding to the network in (a), with L = 2 layers and n = LN = 8 identical subnodes. Subnodes
are labeled with node indices, with prime and double prime indicating layer 1 and 2, respectively. (c) Flattened, monolayer

representation of the multilayer network in (b). (d) Block structure of the adjacency matrix e
A for the monolayer network in

(c). Colors indicate di↵erent types of nodes (diagonal blocks) and links (o↵-diagonal blocks).

ing the MSF framework to the flattened representation
of the system.

In our multilayer construction, each node represents
a set of L identical subnodes, belonging to L di↵erent
layers and connected by a set of internal sublinks. The
pattern of these internal sublinks is thus considered part
of the node’s properties and can be used to represent
node heterogeneity. For a pair of connected nodes, the
type of the connecting link is determined by the pattern
of external sublinks between the subnodes of these two
nodes. This construction yields a multilayer network [18–
23] of subnodes and sublinks with L layers; see Fig. 1(b)
for an L = 2 example. Note that in general there is
more than one possible multilayer network for a given
symmetric network. Coupling the dynamics of subnodes
di↵usively in this network, Eq. (1) can be written at the
subnode level as

ẋ
(i)
` = f(x(i)

` ) +
NX

i0=1

LX

`0=1

eA(ii0)
``0

⇥
h(x(i0)

`0 ) � h(x(i)
` )

⇤
, (2)

where x
(i)
` = x

(i)
` (t) is the m-dimensional state vector for

subnode ` (i.e., in layer `) of node i, the function f de-
termines the dynamics of every isolated subnode, and h
is the interaction function common to all sublinks. Here,
for all links of a given type between di↵erent nodes, the

corresponding coupling matrix eA(ii0) := ( eA(ii0)
``0 ), i 6= i0,

is the same and encodes the subnode connection pat-
tern for that link type. In contrast, the subnode connec-
tion pattern within each node i is encoded in the matrix

F (i) := ( eA(ii)
``0 ). Note that the node-to-node interactions

are not necessarily di↵usive, but the subnode-to-subnode
interactions are di↵usive. This guarantees the existence

of a synchronous state of Eq. (2) given by x
(i)
` (t) = s(t),

8i, ` with ṡ = f (s), which corresponds to a synchronous
state of Eq. (1). Thus, we have a general class of multi-
layer models of symmetric networks that admit complete
synchronization (see SM [24], Sec. S2 for more details).

To facilitate the stability analysis, we flatten the mul-
tilayer network representation into a single layer (see
Fig. 1(c) for an example). By defining a single index

for all the n := LN subnodes, in which node i has subn-
odes j = ki1, . . . , kiL with ki` := (i � 1)L + `, we can
rewrite Eq. (2) in the standard form for a (single-layer)
di↵usively coupled network of oscillators:

ẋj = f(xj) +
nX

j0=1

eAjj0 [h(xj0) � h(xj)], (3)

where xj = x
(i)
` and eAjj0 := eA(ii0)

``0 for j = ki` and

j0 = ki0`0 . The weighted adjacency matrix eA = ( eAjj0)
thus encodes the structure of the monolayer network in
this representation (see Fig. 1(d) for an example). This
matrix has a block structure in which the matrices F (i)

appearing on the diagonal blocks characterize node prop-
erties, while eA(ii0) appearing on the o↵-diagonal blocks
reflect the link types. Since subnodes and sublinks are
identical, we can directly apply the MSF analysis [26]
to Eq. (3) and obtain the stability function  (�). The
maximum Lyapunov exponent (MLE) of the synchronous
state is then computed as  := max2jn  (�j), where
�1, . . . ,�n are the eigenvalues of the Laplacian matrix
eL := (eLjj0) of the monolayer network, defined as eLjj0 :=

�jj0
Pn

k=1
eAjk � eAjj0 , where �jj0 is the Kronecker delta

function. Here, �1 is the identically zero eigenvalue,
which is excluded in the definition of  for corresponding
to a mode of perturbation that does not a↵ect synchro-
nization stability. Thus, the synchronous state is asymp-
totically stable if  < 0 and unstable if  > 0. Using this
MSF analysis, we have developed a systematic method
for verifying the AISync conditions (C1) and (C2) for
our multilayer model (see SM [24], Sec. S3).

An example system exhibiting AISync is shown in
Fig. 2. The network structure is symmetric and has
N = 3 nodes and K = 2 types of links corresponding
to links in the clockwise and counterclockwise directions
in Fig. 2(a). Each node consists of L = 2 subnodes, each
of which is a chaotic Lorenz oscillator. The two subnodes
are connected by a sublink, the direction of which deter-
mines the node type. The system has two parameters, a
and b, representing the coupling strength of internal and

FIG. 1. Multilayer construction of AISync networks. (a) Example of a symmetric network of N = 4 heterogeneous oscillators
and K = 3 types of (directed) links with associated interaction functions H(1), H(2) and H(3). (b) One of many possible
multilayer networks corresponding to the network in (a), with L = 2 layers and n = LN = 8 identical subnodes. Subnodes
are labeled with node indices, with prime and double prime indicating layer 1 and 2, respectively. (c) Flattened, monolayer

representation of the multilayer network in (b). (d) Block structure of the adjacency matrix e
A for the monolayer network in

(c). Colors indicate di↵erent types of nodes (diagonal blocks) and links (o↵-diagonal blocks).

tical (di↵erent Fi), and the network can host K > 1
types of directed interactions. To overcome these chal-
lenges, below we propose a multilayer construction that
defines a large subclass of systems in the form of Eq. (1).
We show that any system in this subclass is guaranteed
to have a synchronous state, and the stability of that
state can be analyzed by applying the MSF framework
to the flattened representation of the system.

In our multilayer system, each node represents a set
of L identical subnodes, belonging to L di↵erent layers
and connected by a set of internal sublinks. The pattern
of these internal sublinks is thus considered part of the
node’s properties and can be used to represent node het-
erogeneity. For a pair of connected nodes, the type of the
connecting link is determined by the pattern of external

sublinks between the subnodes of these two nodes. This
construction yields a multilayer network [18–22] of subn-
odes and sublinks with L layers; see Fig. 1(b) for an L = 2
example. Note that in general there is more than one
possible multilayer network for a given symmetric net-
work. The multilayer networks just defined are broader
than most classes of systems used in previous studies of
synchronization on multilayer networks [24, 25], since the
links between two di↵erent layers are not constrained to
be one-to-one. The underlying hierarchical organization,
in which each node decomposes into interacting subn-
odes, is shared by many physical systems, such as the
multi-processor nodes in modern supercomputers.

Coupling the dynamics of subnodes di↵usively in this
network, the multilayer system can be described at the
subnode level as

ẋ
(i)
` = f(x(i)

` ) +
NX

i0=1

LX

`0=1

eA(ii0)
``0

⇥
h(x(i0)

`0 ) � h(x(i)
` )

⇤
, (2)

where x
(i)
` = x

(i)
` (t) is the m-dimensional state vector for

subnode ` (i.e., in layer `) of node i, the function f de-
termines the dynamics of every isolated subnode, and h
is the interaction function common to all sublinks. Here,
for all links of a given type between di↵erent nodes, the

corresponding coupling matrix eA(ii0) := ( eA(ii0)
``0 ), i 6= i0,

is the same and encodes the subnode connection pat-
tern for that link type. In contrast, the subnode connec-
tion pattern within each node i is encoded in the ma-

trix F (i) := ( eA(ii)
``0 ). The node-to-node interactions are

not necessarily di↵usive, but the subnode-to-subnode in-
teractions are di↵usive, which guarantees the existence

of a synchronous state given by x
(i)
` (t) = s(t), 8i, `

with ṡ = f (s). Thus, Eq. (2) describes a general class
of multilayer models of symmetric networks that ad-
mit a state corresponding to complete synchronization,
Xi(t) = S(t), 8i, when written in the form of Eq. (1)
(see SM [26], Sec. S2 for more details).

To facilitate the stability analysis, we flatten the mul-
tilayer network representation into a single layer (see
Fig. 1(c) for an example). We use eA = ( eAjj0) to denote
the weighted adjacency matrix that encodes the struc-
ture of the resulting monolayer network [see Fig. 1(d)
for an example]. This matrix has a block structure
in which the matrices F (i) appearing on the diagonal
blocks characterize node properties, while eA(ii0) appear-
ing on the o↵-diagonal blocks reflect the link types.
Since subnodes and sublinks are identical, we can di-
rectly apply the MSF analysis [29] to the monolayer net-
work and obtain the stability function  (�) (see SM [26],
Sec. S2 for details). The maximum Lyapunov exponent
(MLE) of the synchronous state is then computed as
 := max2jn  (�j), where �1, . . . ,�n are the eigenval-

ues of the corresponding Laplacian matrix eL := (eLjj0),

defined as eLjj0 := �jj0
Pn

k=1
eAjk � eAjj0 , where �jj0 is the

Kronecker delta function. Here, �1 is the identically zero
eigenvalue, which is excluded in the definition of  for
corresponding to a mode of perturbation that does not
a↵ect synchronization stability. Thus, the synchronous
state is asymptotically stable if  < 0 and unstable if
 > 0. Using this MSF analysis, we have developed a sys-
tematic scheme for verifying the AISync conditions (C1)
and (C2) for our multilayer system (SM [26], Sec. S4).

In the case of linear f and h, which is widely used to
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FIG. 1. Multilayer construction of AISync networks. (a) Example of a symmetric network of N = 4 heterogeneous oscillators
and K = 3 types of (directed) links with associated interaction functions H(1), H(2) and H(3). (b) One of many possible
multilayer networks corresponding to the network in (a), with L = 2 layers and n = LN = 8 identical subnodes. Subnodes
are labeled with node indices, with prime and double prime indicating layer 1 and 2, respectively. (c) Flattened, monolayer

representation of the multilayer network in (b). (d) Block structure of the adjacency matrix e
A for the monolayer network in

(c). Colors indicate di↵erent types of nodes (diagonal blocks) and links (o↵-diagonal blocks).

ing the MSF framework to the flattened representation
of the system.

In our multilayer construction, each node represents
a set of L identical subnodes, belonging to L di↵erent
layers and connected by a set of internal sublinks. The
pattern of these internal sublinks is thus considered part
of the node’s properties and can be used to represent
node heterogeneity. For a pair of connected nodes, the
type of the connecting link is determined by the pattern
of external sublinks between the subnodes of these two
nodes. This construction yields a multilayer network [18–
23] of subnodes and sublinks with L layers; see Fig. 1(b)
for an L = 2 example. Note that in general there is
more than one possible multilayer network for a given
symmetric network. Coupling the dynamics of subnodes
di↵usively in this network, Eq. (1) can be written at the
subnode level as

ẋ
(i)
` = f(x(i)

` ) +
NX

i0=1

LX

`0=1

eA(ii0)
``0

⇥
h(x(i0)

`0 ) � h(x(i)
` )

⇤
, (2)

where x
(i)
` = x

(i)
` (t) is the m-dimensional state vector for

subnode ` (i.e., in layer `) of node i, the function f de-
termines the dynamics of every isolated subnode, and h
is the interaction function common to all sublinks. Here,
for all links of a given type between di↵erent nodes, the

corresponding coupling matrix eA(ii0) := ( eA(ii0)
``0 ), i 6= i0,

is the same and encodes the subnode connection pat-
tern for that link type. In contrast, the subnode connec-
tion pattern within each node i is encoded in the matrix

F (i) := ( eA(ii)
``0 ). Note that the node-to-node interactions

are not necessarily di↵usive, but the subnode-to-subnode
interactions are di↵usive. This guarantees the existence

of a synchronous state of Eq. (2) given by x
(i)
` (t) = s(t),

8i, ` with ṡ = f (s), which corresponds to a synchronous
state of Eq. (1). Thus, we have a general class of multi-
layer models of symmetric networks that admit complete
synchronization (see SM [24], Sec. S2 for more details).

To facilitate the stability analysis, we flatten the mul-
tilayer network representation into a single layer (see
Fig. 1(c) for an example). By defining a single index

for all the n := LN subnodes, in which node i has subn-
odes j = ki1, . . . , kiL with ki` := (i � 1)L + `, we can
rewrite Eq. (2) in the standard form for a (single-layer)
di↵usively coupled network of oscillators:

ẋj = f(xj) +
nX

j0=1

eAjj0 [h(xj0) � h(xj)], (3)

where xj = x
(i)
` and eAjj0 := eA(ii0)

``0 for j = ki` and

j0 = ki0`0 . The weighted adjacency matrix eA = ( eAjj0)
thus encodes the structure of the monolayer network in
this representation (see Fig. 1(d) for an example). This
matrix has a block structure in which the matrices F (i)

appearing on the diagonal blocks characterize node prop-
erties, while eA(ii0) appearing on the o↵-diagonal blocks
reflect the link types. Since subnodes and sublinks are
identical, we can directly apply the MSF analysis [26]
to Eq. (3) and obtain the stability function  (�). The
maximum Lyapunov exponent (MLE) of the synchronous
state is then computed as  := max2jn  (�j), where
�1, . . . ,�n are the eigenvalues of the Laplacian matrix
eL := (eLjj0) of the monolayer network, defined as eLjj0 :=

�jj0
Pn

k=1
eAjk � eAjj0 , where �jj0 is the Kronecker delta

function. Here, �1 is the identically zero eigenvalue,
which is excluded in the definition of  for corresponding
to a mode of perturbation that does not a↵ect synchro-
nization stability. Thus, the synchronous state is asymp-
totically stable if  < 0 and unstable if  > 0. Using this
MSF analysis, we have developed a systematic method
for verifying the AISync conditions (C1) and (C2) for
our multilayer model (see SM [24], Sec. S3).

An example system exhibiting AISync is shown in
Fig. 2. The network structure is symmetric and has
N = 3 nodes and K = 2 types of links corresponding
to links in the clockwise and counterclockwise directions
in Fig. 2(a). Each node consists of L = 2 subnodes, each
of which is a chaotic Lorenz oscillator. The two subnodes
are connected by a sublink, the direction of which deter-
mines the node type. The system has two parameters, a
and b, representing the coupling strength of internal and

FIG. 1. Multilayer construction of AISync networks. (a) Example of a symmetric network of N = 4 heterogeneous oscillators
and K = 3 types of (directed) links with associated interaction functions H(1), H(2) and H(3). (b) One of many possible
multilayer networks corresponding to the network in (a), with L = 2 layers and n = LN = 8 identical subnodes. Subnodes
are labeled with node indices, with prime and double prime indicating layer 1 and 2, respectively. (c) Flattened, monolayer

representation of the multilayer network in (b). (d) Block structure of the adjacency matrix e
A for the monolayer network in

(c). Colors indicate di↵erent types of nodes (diagonal blocks) and links (o↵-diagonal blocks).

tical (di↵erent Fi), and the network can host K > 1
types of directed interactions. To overcome these chal-
lenges, below we propose a multilayer construction that
defines a large subclass of systems in the form of Eq. (1).
We show that any system in this subclass is guaranteed
to have a synchronous state, and the stability of that
state can be analyzed by applying the MSF framework
to the flattened representation of the system.

In our multilayer system, each node represents a set
of L identical subnodes, belonging to L di↵erent layers
and connected by a set of internal sublinks. The pattern
of these internal sublinks is thus considered part of the
node’s properties and can be used to represent node het-
erogeneity. For a pair of connected nodes, the type of the
connecting link is determined by the pattern of external

sublinks between the subnodes of these two nodes. This
construction yields a multilayer network [18–22] of subn-
odes and sublinks with L layers; see Fig. 1(b) for an L = 2
example. Note that in general there is more than one
possible multilayer network for a given symmetric net-
work. The multilayer networks just defined are broader
than most classes of systems used in previous studies of
synchronization on multilayer networks [24, 25], since the
links between two di↵erent layers are not constrained to
be one-to-one. The underlying hierarchical organization,
in which each node decomposes into interacting subn-
odes, is shared by many physical systems, such as the
multi-processor nodes in modern supercomputers.

Coupling the dynamics of subnodes di↵usively in this
network, the multilayer system can be described at the
subnode level as

ẋ
(i)
` = f(x(i)

` ) +
NX

i0=1

LX

`0=1

eA(ii0)
``0

⇥
h(x(i0)

`0 ) � h(x(i)
` )

⇤
, (2)

where x
(i)
` = x

(i)
` (t) is the m-dimensional state vector for

subnode ` (i.e., in layer `) of node i, the function f de-
termines the dynamics of every isolated subnode, and h
is the interaction function common to all sublinks. Here,
for all links of a given type between di↵erent nodes, the

corresponding coupling matrix eA(ii0) := ( eA(ii0)
``0 ), i 6= i0,

is the same and encodes the subnode connection pat-
tern for that link type. In contrast, the subnode connec-
tion pattern within each node i is encoded in the ma-

trix F (i) := ( eA(ii)
``0 ). The node-to-node interactions are

not necessarily di↵usive, but the subnode-to-subnode in-
teractions are di↵usive, which guarantees the existence

of a synchronous state given by x
(i)
` (t) = s(t), 8i, `

with ṡ = f (s). Thus, Eq. (2) describes a general class
of multilayer models of symmetric networks that ad-
mit a state corresponding to complete synchronization,
Xi(t) = S(t), 8i, when written in the form of Eq. (1)
(see SM [26], Sec. S2 for more details).

To facilitate the stability analysis, we flatten the mul-
tilayer network representation into a single layer (see
Fig. 1(c) for an example). We use eA = ( eAjj0) to denote
the weighted adjacency matrix that encodes the struc-
ture of the resulting monolayer network [see Fig. 1(d)
for an example]. This matrix has a block structure
in which the matrices F (i) appearing on the diagonal
blocks characterize node properties, while eA(ii0) appear-
ing on the o↵-diagonal blocks reflect the link types.
Since subnodes and sublinks are identical, we can di-
rectly apply the MSF analysis [29] to the monolayer net-
work and obtain the stability function  (�) (see SM [26],
Sec. S2 for details). The maximum Lyapunov exponent
(MLE) of the synchronous state is then computed as
 := max2jn  (�j), where �1, . . . ,�n are the eigenval-

ues of the corresponding Laplacian matrix eL := (eLjj0),

defined as eLjj0 := �jj0
Pn

k=1
eAjk � eAjj0 , where �jj0 is the

Kronecker delta function. Here, �1 is the identically zero
eigenvalue, which is excluded in the definition of  for
corresponding to a mode of perturbation that does not
a↵ect synchronization stability. Thus, the synchronous
state is asymptotically stable if  < 0 and unstable if
 > 0. Using this MSF analysis, we have developed a sys-
tematic scheme for verifying the AISync conditions (C1)
and (C2) for our multilayer system (SM [26], Sec. S4).

In the case of linear f and h, which is widely used to
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FIG. 1. Multilayer construction of AISync networks. (a) Example of a symmetric network of N = 4 heterogeneous oscillators
and K = 3 types of (directed) links with associated interaction functions H(1), H(2) and H(3). (b) One of many possible
multilayer networks corresponding to the network in (a), with L = 2 layers and n = LN = 8 identical subnodes. Subnodes
are labeled with node indices, with prime and double prime indicating layer 1 and 2, respectively. (c) Flattened, monolayer

representation of the multilayer network in (b). (d) Block structure of the adjacency matrix e
A for the monolayer network in

(c). Colors indicate di↵erent types of nodes (diagonal blocks) and links (o↵-diagonal blocks).

ing the MSF framework to the flattened representation
of the system.

In our multilayer construction, each node represents
a set of L identical subnodes, belonging to L di↵erent
layers and connected by a set of internal sublinks. The
pattern of these internal sublinks is thus considered part
of the node’s properties and can be used to represent
node heterogeneity. For a pair of connected nodes, the
type of the connecting link is determined by the pattern
of external sublinks between the subnodes of these two
nodes. This construction yields a multilayer network [18–
23] of subnodes and sublinks with L layers; see Fig. 1(b)
for an L = 2 example. Note that in general there is
more than one possible multilayer network for a given
symmetric network. Coupling the dynamics of subnodes
di↵usively in this network, Eq. (1) can be written at the
subnode level as

ẋ
(i)
` = f(x(i)

` ) +
NX

i0=1

LX

`0=1

eA(ii0)
``0

⇥
h(x(i0)

`0 ) � h(x(i)
` )

⇤
, (2)

where x
(i)
` = x

(i)
` (t) is the m-dimensional state vector for

subnode ` (i.e., in layer `) of node i, the function f de-
termines the dynamics of every isolated subnode, and h
is the interaction function common to all sublinks. Here,
for all links of a given type between di↵erent nodes, the

corresponding coupling matrix eA(ii0) := ( eA(ii0)
``0 ), i 6= i0,

is the same and encodes the subnode connection pat-
tern for that link type. In contrast, the subnode connec-
tion pattern within each node i is encoded in the matrix

F (i) := ( eA(ii)
``0 ). Note that the node-to-node interactions

are not necessarily di↵usive, but the subnode-to-subnode
interactions are di↵usive. This guarantees the existence

of a synchronous state of Eq. (2) given by x
(i)
` (t) = s(t),

8i, ` with ṡ = f (s), which corresponds to a synchronous
state of Eq. (1). Thus, we have a general class of multi-
layer models of symmetric networks that admit complete
synchronization (see SM [24], Sec. S2 for more details).

To facilitate the stability analysis, we flatten the mul-
tilayer network representation into a single layer (see
Fig. 1(c) for an example). By defining a single index

for all the n := LN subnodes, in which node i has subn-
odes j = ki1, . . . , kiL with ki` := (i � 1)L + `, we can
rewrite Eq. (2) in the standard form for a (single-layer)
di↵usively coupled network of oscillators:

ẋj = f(xj) +
nX

j0=1

eAjj0 [h(xj0) � h(xj)], (3)

where xj = x
(i)
` and eAjj0 := eA(ii0)

``0 for j = ki` and

j0 = ki0`0 . The weighted adjacency matrix eA = ( eAjj0)
thus encodes the structure of the monolayer network in
this representation (see Fig. 1(d) for an example). This
matrix has a block structure in which the matrices F (i)

appearing on the diagonal blocks characterize node prop-
erties, while eA(ii0) appearing on the o↵-diagonal blocks
reflect the link types. Since subnodes and sublinks are
identical, we can directly apply the MSF analysis [26]
to Eq. (3) and obtain the stability function  (�). The
maximum Lyapunov exponent (MLE) of the synchronous
state is then computed as  := max2jn  (�j), where
�1, . . . ,�n are the eigenvalues of the Laplacian matrix
eL := (eLjj0) of the monolayer network, defined as eLjj0 :=

�jj0
Pn

k=1
eAjk � eAjj0 , where �jj0 is the Kronecker delta

function. Here, �1 is the identically zero eigenvalue,
which is excluded in the definition of  for corresponding
to a mode of perturbation that does not a↵ect synchro-
nization stability. Thus, the synchronous state is asymp-
totically stable if  < 0 and unstable if  > 0. Using this
MSF analysis, we have developed a systematic method
for verifying the AISync conditions (C1) and (C2) for
our multilayer model (see SM [24], Sec. S3).

An example system exhibiting AISync is shown in
Fig. 2. The network structure is symmetric and has
N = 3 nodes and K = 2 types of links corresponding
to links in the clockwise and counterclockwise directions
in Fig. 2(a). Each node consists of L = 2 subnodes, each
of which is a chaotic Lorenz oscillator. The two subnodes
are connected by a sublink, the direction of which deter-
mines the node type. The system has two parameters, a
and b, representing the coupling strength of internal and

FIG. 1. Multilayer construction of AISync networks. (a) Example of a symmetric network of N = 4 heterogeneous oscillators
and K = 3 types of (directed) links with associated interaction functions H(1), H(2) and H(3). (b) One of many possible
multilayer networks corresponding to the network in (a), with L = 2 layers and n = LN = 8 identical subnodes. Subnodes
are labeled with node indices, with prime and double prime indicating layer 1 and 2, respectively. (c) Flattened, monolayer

representation of the multilayer network in (b). (d) Block structure of the adjacency matrix e
A for the monolayer network in

(c). Colors indicate di↵erent types of nodes (diagonal blocks) and links (o↵-diagonal blocks).

tical (di↵erent Fi), and the network can host K > 1
types of directed interactions. To overcome these chal-
lenges, below we propose a multilayer construction that
defines a large subclass of systems in the form of Eq. (1).
We show that any system in this subclass is guaranteed
to have a synchronous state, and the stability of that
state can be analyzed by applying the MSF framework
to the flattened representation of the system.

In our multilayer system, each node represents a set
of L identical subnodes, belonging to L di↵erent layers
and connected by a set of internal sublinks. The pattern
of these internal sublinks is thus considered part of the
node’s properties and can be used to represent node het-
erogeneity. For a pair of connected nodes, the type of the
connecting link is determined by the pattern of external

sublinks between the subnodes of these two nodes. This
construction yields a multilayer network [18–22] of subn-
odes and sublinks with L layers; see Fig. 1(b) for an L = 2
example. Note that in general there is more than one
possible multilayer network for a given symmetric net-
work. The multilayer networks just defined are broader
than most classes of systems used in previous studies of
synchronization on multilayer networks [24, 25], since the
links between two di↵erent layers are not constrained to
be one-to-one. The underlying hierarchical organization,
in which each node decomposes into interacting subn-
odes, is shared by many physical systems, such as the
multi-processor nodes in modern supercomputers.

Coupling the dynamics of subnodes di↵usively in this
network, the multilayer system can be described at the
subnode level as

ẋ
(i)
` = f(x(i)

` ) +
NX

i0=1

LX

`0=1

eA(ii0)
``0

⇥
h(x(i0)

`0 ) � h(x(i)
` )

⇤
, (2)

where x
(i)
` = x

(i)
` (t) is the m-dimensional state vector for

subnode ` (i.e., in layer `) of node i, the function f de-
termines the dynamics of every isolated subnode, and h
is the interaction function common to all sublinks. Here,
for all links of a given type between di↵erent nodes, the

corresponding coupling matrix eA(ii0) := ( eA(ii0)
``0 ), i 6= i0,

is the same and encodes the subnode connection pat-
tern for that link type. In contrast, the subnode connec-
tion pattern within each node i is encoded in the ma-

trix F (i) := ( eA(ii)
``0 ). The node-to-node interactions are

not necessarily di↵usive, but the subnode-to-subnode in-
teractions are di↵usive, which guarantees the existence

of a synchronous state given by x
(i)
` (t) = s(t), 8i, `

with ṡ = f (s). Thus, Eq. (2) describes a general class
of multilayer models of symmetric networks that ad-
mit a state corresponding to complete synchronization,
Xi(t) = S(t), 8i, when written in the form of Eq. (1)
(see SM [26], Sec. S2 for more details).

To facilitate the stability analysis, we flatten the mul-
tilayer network representation into a single layer (see
Fig. 1(c) for an example). We use eA = ( eAjj0) to denote
the weighted adjacency matrix that encodes the struc-
ture of the resulting monolayer network [see Fig. 1(d)
for an example]. This matrix has a block structure
in which the matrices F (i) appearing on the diagonal
blocks characterize node properties, while eA(ii0) appear-
ing on the o↵-diagonal blocks reflect the link types.
Since subnodes and sublinks are identical, we can di-
rectly apply the MSF analysis [29] to the monolayer net-
work and obtain the stability function  (�) (see SM [26],
Sec. S2 for details). The maximum Lyapunov exponent
(MLE) of the synchronous state is then computed as
 := max2jn  (�j), where �1, . . . ,�n are the eigenval-

ues of the corresponding Laplacian matrix eL := (eLjj0),

defined as eLjj0 := �jj0
Pn

k=1
eAjk � eAjj0 , where �jj0 is the

Kronecker delta function. Here, �1 is the identically zero
eigenvalue, which is excluded in the definition of  for
corresponding to a mode of perturbation that does not
a↵ect synchronization stability. Thus, the synchronous
state is asymptotically stable if  < 0 and unstable if
 > 0. Using this MSF analysis, we have developed a sys-
tematic scheme for verifying the AISync conditions (C1)
and (C2) for our multilayer system (SM [26], Sec. S4).

In the case of linear f and h, which is widely used to

Multilayer network of subnodes and sublinks 

• Completely synchronous state is guaranteed  
• Stability readily computed using Master Stability Function  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A scenario has recently been reported in which in order to stabilize complete synchronization of
an oscillator network—a symmetric state—the symmetry of the system itself has to be broken by
making the oscillators nonidentical. But how often does such behavior—which we term asymmetry-
induced synchronization (AISync)—occur in oscillator networks? Here we present a general scheme
for constructing AISync systems and demonstrate that this behavior is the norm rather than the
exception in a wide class of physical systems that can be seen as multilayer networks. Since a
symmetric network in complete synchrony is the basic building block of cluster synchronization in
more general networks, AISync should be common also in facilitating cluster synchronization by
breaking the symmetry of the cluster subnetworks.

A common assumption in the field of network dy-
namics is that homogeneity in the local dynamics [1, 2]
and interaction network [3–5]—or in the combination of
both [6, 7]—can facilitate complete synchronization. It
has been recently shown, however, that structural hetero-
geneity in networks of identical oscillators [8] or oscillator
heterogeneity in structurally symmetric networks [9] can
stabilize otherwise unstable synchronous states, thus ef-
fectively breaking the symmetry of a system to stabilize
a symmetric state. These scenarios, which we refer to
as asymmetry-induced synchronization (AISync), can be
interpreted as the converse of symmetry breaking, and
hence as a converse of chimera states [10, 11]. Perhaps
the most physically relevant form of AISync is the one
in which identically coupled oscillators (thus playing ex-
actly the same structural role) can converge to identical
dynamics only when they themselves are nonidentical;
this has been demonstrated, however, exclusively for ro-
tationally symmetric networks and one type of periodic
oscillators [9]. Whether such AISync behavior can be
shown to be common across many systems, including ex-
perimentally testable ones, has been an open question.

In this Letter we introduce and analyze a broad class of
AISync systems that can have general symmetric network
structure with multiple link types and general oscillator
dynamics (which can be chaotic, periodic, continuous-
time, discrete-time, etc.). This in particular includes
physical systems previously used in network synchro-
nization experiments, thus providing a recipe for future
empirical studies. For this class, we demonstrate that
AISync is indeed common and provide a full characteri-
zation of those networks that support AISync behavior,
showing that the fraction of such networks is significant
over a range of network sizes and link densities.

We start with networks of N (not necessarily identical)
oscillators coupled through K di↵erent types of interac-
tions. The network dynamics is described by

Ẋi = Fi(Xi) +
KX

↵=1

NX

i0=1
i0 6=i

A(↵)
ii0 H(↵)(Xi, Xi0), (1)

where Xi = Xi(t) is the M -dimensional state vector of
node i, the function Fi governs the intrinsic dynamics

of node i, the (binary) adjacency matrix A(↵) = (A(↵)
ii0 )

represents the topology of interactions through links of
type ↵, and H(↵) is the interaction function associated
with the link type ↵. A completely synchronous state of
the network is defined by X1(t) = X2(t) = · · · = XN (t).

To study the possibility of AISync, we assume that the
adjacency matrices A(↵) represents a symmetric network,
defined as a network in which every node can be mapped
to any other node by some permutation of nodes without
changing any A(↵). Thus, the set of links of any given
type must couple every node identically (see Fig. 1(a) for
an example). When restricted to undirected networks
with a single link type, our definition of symmetric net-
works yields the class of vertex-transitive graphs from
graph theory [12]. This rich class encompasses Cayley
graphs (defined as a network of relations between ele-
ments of a finite group; see SM, Sec. S1) and circulant
graphs (defined as a network whose nodes can be ar-
ranged in a ring so that the network is invariant under
rotations), which have previously been used to study
chimera states [13]. Enumerating all vertex-transitive
graphs of a given size N becomes challenging as N grows
and has so far been completed only for N < 32 [14]. The
symmetric networks we consider here generalizes vertex-
transitive graphs to the even richer class of networks that
can be directed and include multiple link types.

Given a symmetric network structure, the system in
Eq. (1) exhibits AISync if it satisfies the following two
conditions: (C1) there are no stable synchronous states
for any homogeneous system (i.e., with F1 = · · · = FN ),
and (C2) there is a heterogeneous system (i.e., with
Fi 6= Fi0 , for some i 6= i0) for which a stable synchronous
state exists. A challenge in establishing AISync is that
the form of Eq. (1) does not guarantee the existence of
a completely synchronous state. Another challenge con-
cerns the stability analysis of such a state, since Eq. (1) is
beyond the framework normally used in the master sta-
bility function (MSF) approach and its generalizations
currently available [2, 15–17]: oscillators can be noniden-
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FIG. 2. Example of AISync system. (a) Symmetric network of
N = 3 nodes, each with L = 2 directionally coupled subnodes
of Lorenz oscillators. The sublink direction in one node (cyan)
is di↵erent from the other two (green). (b) Contour plots of
 = (red) for the case of homogeneous nodes (all green or all-
cyan nodes) and  6= (blue) for heterogeneous nodes (one or
two green nodes). The shaded region corresponds to AISync

systems, for which = > 0 and  6= < 0. (c) Sample trajectory
of the system for a = 8 and b = 6 [cross symbol in (b)],
exhibiting AISync. The first component x1 of the Lorenz
oscillator state vector is shown for all n = 6 subnodes.

(common) stability of all completely synchronous states

of the form x
(i)
` = s`, 8i, `, where the subnode states

s` can in general be di↵erent for di↵erent `. Next, for
a given (homogeneous or heterogeneous) system, we sort
its Laplacian eigenvalues into two groups: �1, . . . ,�j⇤ ,
corresponding only to those perturbations parallel to
the synchronization manifold, and �j⇤+1, . . . ,�n, corre-
sponding to perturbations that are transverse to the man-
ifold and thus destroys synchronization. The stability (of
all completely synchronous states) is then determined by
 0 := maxj⇤<jn  (�j), noting that both j⇤ and �j gen-
erally depend on the network structure. This leads to
the following solution for the AISync conditions:  0 > 0
for all homogeneous systems and  0 < 0 for some het-
erogeneous system (see SM [26], Sec. S3 for an example
satisfying these conditions).

An example system exhibiting AISync is shown in
Fig. 2. The network structure is symmetric and has
N = 3 nodes and K = 2 types of links representing
sublink patterns in the clockwise and counterclockwise
directions in Fig. 2(a). Each node consists of L = 2
subnodes, each of which is a chaotic Lorenz oscillator.
The two subnodes are connected by a sublink, the di-
rection of which determines the node type. The system
has two parameters, a and b, representing the coupling
strength of internal and external sublinks, respectively.
In Fig. 2(b), we show  = (red) and  6= (blue) as func-
tions of these parameters, where  = ( 6=) are defined
to be the smaller value of  between the two possible

homogeneous (heterogeneous) systems. We verify condi-
tions (C1) and (C2) as described in SM [26] (Sec. S4)
in the region for which  = > 0 and  6= < 0 [shaded
purple in Fig. 2(b)], thus establishing that the system
exhibits AISync in that region. This is illustrated for
a sample trajectory in Fig. 2(c), which diverges from
synchrony while the nodes are kept homogeneous, but
re-synchronizes spontaneously after the nodes are made
heterogeneous (see SM [26], Sec. S5 for details). While
this provides an AISync example with a directed net-
work structure and a bounded stability region, we also
demonstrate AISync for experimentally testable systems
(coupled electro-optic oscillators [28]; SM [26], Sec. S6),
for systems with unbounded stability region (SM [26],
Sec. S7), and for systems with undirected network struc-
ture (SM [26], Sec. S8). These examples include both lin-
ear and nonlinear coupling functions, as well as discrete-
and continuous-time dynamics.

But how often does a network structure support
AISync? To systematically address this question, we
use the spread � of the eigenvalues of the Laplacian ma-
trix eL for the monolayer network representation, which
is a measure of synchronizability [8] defined by �2 :=Pn

j=2 |�j � �|2/[d2(n � 1)], where d :=
Pn

j=1
eLjj/n and

� :=
Pn

j=2 �j/(n � 1). A smaller � indicates higher
synchronizability. Given an external sublink structure
corresponding to a symmetric network, we compare the
minimum spread �= among all systems with homoge-
neous F (i) to the corresponding minimum � 6= among all
systems with strictly heterogeneous F (i). We call the
structure AISync-favoring if � 6= < �=, which indicates
that heterogeneous F (i) can make the system easier to
synchronize than any homogeneous F (i). As a measure
of how strongly the structure supports AISync, we define
r := 1 � � 6=/�=  1, where r > 0 indicates an AISync-
favoring structure, and r = 1 implies � 6= = 0 (i.e., there
is a heterogeneous system with optimal synchronizabil-
ity). For example, the structure in Fig. 2 has �= ⇡ 0.56
and � 6= ⇡ 0.33, and r ⇡ 0.41.

Using this AISync strength r, we first enumerate all
networks of a given size supporting AISync (Table I). For
each N , we generate one or more diagrams representing
all N -node symmetric networks, which are shown in the
first row of Table I for N = 3, 4, 5 (see SM [26], Sec. S9 for
larger N). In these diagrams, each color indicates a set of
links that, in any given symmetric network, must all exist
together and be of the same type or not exist at all (not-
ing that links from di↵erent sets can be of the same type).
For example, there are three distinct symmetric networks
for N = 3: a directed ring (cyan or black links), an undi-
rected ring (cyan and black links of the same type), and
the superposition of two directed rings in opposite direc-
tions (cyan and black links of di↵erent types; as in Fig. 2).
For a given symmetric network derived from these dia-
grams, we choose the external sublink pattern for each
link type from all possible ways of connecting a subnode
pair to another. For the internal sublink patterns, we

FIG. 2. Example of AISync system. (a) Symmetric network of
N = 3 nodes, each with L = 2 directionally coupled subnodes
of Lorenz oscillators. The sublink direction in one node (cyan)
is di↵erent from the other two (green). (b) Contour plots of
 = (red) for the case of homogeneous nodes (all green or all-
cyan nodes) and  6= (blue) for heterogeneous nodes (one or
two green nodes). The shaded region corresponds to AISync

systems, for which = > 0 and  6= < 0. (c) Sample trajectory
of the system for a = 8 and b = 6 [cross symbol in (b)],
exhibiting AISync. The first component x1 of the Lorenz
oscillator state vector is shown for all n = 6 subnodes.

study consensus dynamics and encompasses a variety of
nontrivial stability regions [23], the problem of verifying
AISync is fully solvable. To see this, we first note that
in this case the stability function  (�) determines the
(common) stability of all completely synchronous states

of the form x
(i)
` = s`, 8i, `, where the subnode states

s` can in general be di↵erent for di↵erent `. Next, for
a given (homogeneous or heterogeneous) system, we sort
its Laplacian eigenvalues into two groups: �1, . . . ,�j⇤ ,
corresponding only to those perturbations parallel to
the synchronization manifold, and �j⇤+1, . . . ,�n, corre-
sponding to perturbations that are transverse to the man-
ifold and thus destroys synchronization. The stability (of
all completely synchronous states) is then determined by
 0 := maxj⇤<jn  (�j), noting that both j⇤ and �j gen-
erally depend on the network structure. This leads to
the following solution for the AISync conditions:  0 > 0
for all homogeneous systems and  0 < 0 for some het-
erogeneous system (see SM [26], Sec. S3 for an example
satisfying these conditions).

An example system exhibiting AISync is shown in
Fig. 2. The network structure is symmetric and has
N = 3 nodes and K = 2 types of links representing
sublink patterns in the clockwise and counterclockwise
directions in Fig. 2(a). Each node consists of L = 2
subnodes, each of which is a chaotic Lorenz oscillator.
The two subnodes are connected by a sublink, the di-
rection of which determines the node type. The system

has two parameters, a and b, representing the coupling
strength of internal and external sublinks, respectively.
In Fig. 2(b), we show  = (red) and  6= (blue) as func-
tions of these parameters, where  = ( 6=) are defined
to be the smaller value of  between the two possible
homogeneous (heterogeneous) systems. We verify condi-
tions (C1) and (C2) as described in SM [26] (Sec. S4)
in the region for which  = > 0 and  6= < 0 [shaded
purple in Fig. 2(b)], thus establishing that the system
exhibits AISync in that region. This is illustrated for
a sample trajectory in Fig. 2(c), which diverges from
synchrony while the nodes are kept homogeneous, but
re-synchronizes spontaneously after the nodes are made
heterogeneous (see SM [26], Sec. S5 for details). While
this provides an AISync example with a directed net-
work structure and a bounded stability region, we also
demonstrate AISync for experimentally testable systems
(coupled electro-optic oscillators [28]; SM [26], Sec. S6),
for systems with unbounded stability region (SM [26],
Sec. S7), and for systems with undirected network struc-
ture (SM [26], Sec. S8). These examples include both lin-
ear and nonlinear coupling functions, as well as discrete-
and continuous-time dynamics.

But how often does a network structure support
AISync? To systematically address this question, we
use the spread � of the eigenvalues of the Laplacian ma-
trix eL for the monolayer network representation, which
is a measure of synchronizability [8] defined by �2 :=Pn

j=2 |�j � �|2/[d2(n � 1)], where d :=
Pn

j=1
eLjj/n and

� :=
Pn

j=2 �j/(n � 1). A smaller � indicates higher
synchronizability. Given an external sublink structure
corresponding to a symmetric network, we compare the
minimum spread �= among all systems with homoge-
neous F (i) to the corresponding minimum � 6= among all
systems with strictly heterogeneous F (i). We call the
structure AISync-favoring if � 6= < �=, which indicates
that heterogeneous F (i) can make the system easier to
synchronize than any homogeneous F (i). As a measure
of how strongly the structure supports AISync, we define
r := 1 � � 6=/�=  1, where r > 0 indicates an AISync-
favoring structure, and r = 1 implies � 6= = 0 (i.e., there
is a heterogeneous system with optimal synchronizabil-
ity). For example, the structure in Fig. 2 has �= ⇡ 0.56
and � 6= ⇡ 0.33, and r ⇡ 0.41.

Using this AISync strength r, we first enumerate all
networks of a given size supporting AISync (Table I). For
each N , we generate one or more diagrams representing
all N -node symmetric networks, which are shown in the
first row of Table I for N = 3, 4, 5 (see SM [26], Sec. S9 for
larger N). In these diagrams, each color indicates a set of
links that, in any given symmetric network, must all exist
together and be of the same type or not exist at all (not-
ing that links from di↵erent sets can be of the same type).
For example, there are three distinct symmetric networks
for N = 3: a directed ring (cyan or black links), an undi-
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FIG. 2. Example of AISync system. (a) Symmetric network of
N = 3 nodes, each with L = 2 directionally coupled subnodes
of Lorenz oscillators. The sublink direction in one node (cyan)
is di↵erent from the other two (green). (b) Contour plots of
 = (red) for the case of homogeneous nodes (all green or all-
cyan nodes) and  6= (blue) for heterogeneous nodes (one or
two green nodes). The shaded region corresponds to AISync

systems, for which = > 0 and  6= < 0. (c) Sample trajectory
of the system for a = 8 and b = 6 [cross symbol in (b)],
exhibiting AISync. The first component x1 of the Lorenz
oscillator state vector is shown for all n = 6 subnodes.

(common) stability of all completely synchronous states

of the form x
(i)
` = s`, 8i, `, where the subnode states

s` can in general be di↵erent for di↵erent `. Next, for
a given (homogeneous or heterogeneous) system, we sort
its Laplacian eigenvalues into two groups: �1, . . . ,�j⇤ ,
corresponding only to those perturbations parallel to
the synchronization manifold, and �j⇤+1, . . . ,�n, corre-
sponding to perturbations that are transverse to the man-
ifold and thus destroys synchronization. The stability (of
all completely synchronous states) is then determined by
 0 := maxj⇤<jn  (�j), noting that both j⇤ and �j gen-
erally depend on the network structure. This leads to
the following solution for the AISync conditions:  0 > 0
for all homogeneous systems and  0 < 0 for some het-
erogeneous system (see SM [26], Sec. S3 for an example
satisfying these conditions).

An example system exhibiting AISync is shown in
Fig. 2. The network structure is symmetric and has
N = 3 nodes and K = 2 types of links representing
sublink patterns in the clockwise and counterclockwise
directions in Fig. 2(a). Each node consists of L = 2
subnodes, each of which is a chaotic Lorenz oscillator.
The two subnodes are connected by a sublink, the di-
rection of which determines the node type. The system
has two parameters, a and b, representing the coupling
strength of internal and external sublinks, respectively.
In Fig. 2(b), we show  = (red) and  6= (blue) as func-
tions of these parameters, where  = ( 6=) are defined
to be the smaller value of  between the two possible

homogeneous (heterogeneous) systems. We verify condi-
tions (C1) and (C2) as described in SM [26] (Sec. S4)
in the region for which  = > 0 and  6= < 0 [shaded
purple in Fig. 2(b)], thus establishing that the system
exhibits AISync in that region. This is illustrated for
a sample trajectory in Fig. 2(c), which diverges from
synchrony while the nodes are kept homogeneous, but
re-synchronizes spontaneously after the nodes are made
heterogeneous (see SM [26], Sec. S5 for details). While
this provides an AISync example with a directed net-
work structure and a bounded stability region, we also
demonstrate AISync for experimentally testable systems
(coupled electro-optic oscillators [28]; SM [26], Sec. S6),
for systems with unbounded stability region (SM [26],
Sec. S7), and for systems with undirected network struc-
ture (SM [26], Sec. S8). These examples include both lin-
ear and nonlinear coupling functions, as well as discrete-
and continuous-time dynamics.

But how often does a network structure support
AISync? To systematically address this question, we
use the spread � of the eigenvalues of the Laplacian ma-
trix eL for the monolayer network representation, which
is a measure of synchronizability [8] defined by �2 :=Pn

j=2 |�j � �|2/[d2(n � 1)], where d :=
Pn

j=1
eLjj/n and

� :=
Pn

j=2 �j/(n � 1). A smaller � indicates higher
synchronizability. Given an external sublink structure
corresponding to a symmetric network, we compare the
minimum spread �= among all systems with homoge-
neous F (i) to the corresponding minimum � 6= among all
systems with strictly heterogeneous F (i). We call the
structure AISync-favoring if � 6= < �=, which indicates
that heterogeneous F (i) can make the system easier to
synchronize than any homogeneous F (i). As a measure
of how strongly the structure supports AISync, we define
r := 1 � � 6=/�=  1, where r > 0 indicates an AISync-
favoring structure, and r = 1 implies � 6= = 0 (i.e., there
is a heterogeneous system with optimal synchronizabil-
ity). For example, the structure in Fig. 2 has �= ⇡ 0.56
and � 6= ⇡ 0.33, and r ⇡ 0.41.

Using this AISync strength r, we first enumerate all
networks of a given size supporting AISync (Table I). For
each N , we generate one or more diagrams representing
all N -node symmetric networks, which are shown in the
first row of Table I for N = 3, 4, 5 (see SM [26], Sec. S9 for
larger N). In these diagrams, each color indicates a set of
links that, in any given symmetric network, must all exist
together and be of the same type or not exist at all (not-
ing that links from di↵erent sets can be of the same type).
For example, there are three distinct symmetric networks
for N = 3: a directed ring (cyan or black links), an undi-
rected ring (cyan and black links of the same type), and
the superposition of two directed rings in opposite direc-
tions (cyan and black links of di↵erent types; as in Fig. 2).
For a given symmetric network derived from these dia-
grams, we choose the external sublink pattern for each
link type from all possible ways of connecting a subnode
pair to another. For the internal sublink patterns, we

FIG. 2. Example of AISync system. (a) Symmetric network of
N = 3 nodes, each with L = 2 directionally coupled subnodes
of Lorenz oscillators. The sublink direction in one node (cyan)
is di↵erent from the other two (green). (b) Contour plots of
 = (red) for the case of homogeneous nodes (all green or all-
cyan nodes) and  6= (blue) for heterogeneous nodes (one or
two green nodes). The shaded region corresponds to AISync

systems, for which = > 0 and  6= < 0. (c) Sample trajectory
of the system for a = 8 and b = 6 [cross symbol in (b)],
exhibiting AISync. The first component x1 of the Lorenz
oscillator state vector is shown for all n = 6 subnodes.

study consensus dynamics and encompasses a variety of
nontrivial stability regions [23], the problem of verifying
AISync is fully solvable. To see this, we first note that
in this case the stability function  (�) determines the
(common) stability of all completely synchronous states

of the form x
(i)
` = s`, 8i, `, where the subnode states

s` can in general be di↵erent for di↵erent `. Next, for
a given (homogeneous or heterogeneous) system, we sort
its Laplacian eigenvalues into two groups: �1, . . . ,�j⇤ ,
corresponding only to those perturbations parallel to
the synchronization manifold, and �j⇤+1, . . . ,�n, corre-
sponding to perturbations that are transverse to the man-
ifold and thus destroys synchronization. The stability (of
all completely synchronous states) is then determined by
 0 := maxj⇤<jn  (�j), noting that both j⇤ and �j gen-
erally depend on the network structure. This leads to
the following solution for the AISync conditions:  0 > 0
for all homogeneous systems and  0 < 0 for some het-
erogeneous system (see SM [26], Sec. S3 for an example
satisfying these conditions).

An example system exhibiting AISync is shown in
Fig. 2. The network structure is symmetric and has
N = 3 nodes and K = 2 types of links representing
sublink patterns in the clockwise and counterclockwise
directions in Fig. 2(a). Each node consists of L = 2
subnodes, each of which is a chaotic Lorenz oscillator.
The two subnodes are connected by a sublink, the di-
rection of which determines the node type. The system

has two parameters, a and b, representing the coupling
strength of internal and external sublinks, respectively.
In Fig. 2(b), we show  = (red) and  6= (blue) as func-
tions of these parameters, where  = ( 6=) are defined
to be the smaller value of  between the two possible
homogeneous (heterogeneous) systems. We verify condi-
tions (C1) and (C2) as described in SM [26] (Sec. S4)
in the region for which  = > 0 and  6= < 0 [shaded
purple in Fig. 2(b)], thus establishing that the system
exhibits AISync in that region. This is illustrated for
a sample trajectory in Fig. 2(c), which diverges from
synchrony while the nodes are kept homogeneous, but
re-synchronizes spontaneously after the nodes are made
heterogeneous (see SM [26], Sec. S5 for details). While
this provides an AISync example with a directed net-
work structure and a bounded stability region, we also
demonstrate AISync for experimentally testable systems
(coupled electro-optic oscillators [28]; SM [26], Sec. S6),
for systems with unbounded stability region (SM [26],
Sec. S7), and for systems with undirected network struc-
ture (SM [26], Sec. S8). These examples include both lin-
ear and nonlinear coupling functions, as well as discrete-
and continuous-time dynamics.

But how often does a network structure support
AISync? To systematically address this question, we
use the spread � of the eigenvalues of the Laplacian ma-
trix eL for the monolayer network representation, which
is a measure of synchronizability [8] defined by �2 :=Pn

j=2 |�j � �|2/[d2(n � 1)], where d :=
Pn

j=1
eLjj/n and

� :=
Pn

j=2 �j/(n � 1). A smaller � indicates higher
synchronizability. Given an external sublink structure
corresponding to a symmetric network, we compare the
minimum spread �= among all systems with homoge-
neous F (i) to the corresponding minimum � 6= among all
systems with strictly heterogeneous F (i). We call the
structure AISync-favoring if � 6= < �=, which indicates
that heterogeneous F (i) can make the system easier to
synchronize than any homogeneous F (i). As a measure
of how strongly the structure supports AISync, we define
r := 1 � � 6=/�=  1, where r > 0 indicates an AISync-
favoring structure, and r = 1 implies � 6= = 0 (i.e., there
is a heterogeneous system with optimal synchronizabil-
ity). For example, the structure in Fig. 2 has �= ⇡ 0.56
and � 6= ⇡ 0.33, and r ⇡ 0.41.

Using this AISync strength r, we first enumerate all
networks of a given size supporting AISync (Table I). For
each N , we generate one or more diagrams representing
all N -node symmetric networks, which are shown in the
first row of Table I for N = 3, 4, 5 (see SM [26], Sec. S9 for
larger N). In these diagrams, each color indicates a set of
links that, in any given symmetric network, must all exist
together and be of the same type or not exist at all (not-
ing that links from di↵erent sets can be of the same type).
For example, there are three distinct symmetric networks
for N = 3: a directed ring (cyan or black links), an undi-
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FIG. 2. Example of AISync system. (a) Symmetric network of
N = 3 nodes, each with L = 2 directionally coupled subnodes
of Lorenz oscillators. The sublink direction in one node (cyan)
is di↵erent from the other two (green). (b) Contour plots of
 = (red) for the case of homogeneous nodes (all green or all-
cyan nodes) and  6= (blue) for heterogeneous nodes (one or
two green nodes). The shaded region corresponds to AISync

systems, for which = > 0 and  6= < 0. (c) Sample trajectory
of the system for a = 8 and b = 6 [cross symbol in (b)],
exhibiting AISync. The first component x1 of the Lorenz
oscillator state vector is shown for all n = 6 subnodes.

(common) stability of all completely synchronous states

of the form x
(i)
` = s`, 8i, `, where the subnode states

s` can in general be di↵erent for di↵erent `. Next, for
a given (homogeneous or heterogeneous) system, we sort
its Laplacian eigenvalues into two groups: �1, . . . ,�j⇤ ,
corresponding only to those perturbations parallel to
the synchronization manifold, and �j⇤+1, . . . ,�n, corre-
sponding to perturbations that are transverse to the man-
ifold and thus destroys synchronization. The stability (of
all completely synchronous states) is then determined by
 0 := maxj⇤<jn  (�j), noting that both j⇤ and �j gen-
erally depend on the network structure. This leads to
the following solution for the AISync conditions:  0 > 0
for all homogeneous systems and  0 < 0 for some het-
erogeneous system (see SM [26], Sec. S3 for an example
satisfying these conditions).

An example system exhibiting AISync is shown in
Fig. 2. The network structure is symmetric and has
N = 3 nodes and K = 2 types of links representing
sublink patterns in the clockwise and counterclockwise
directions in Fig. 2(a). Each node consists of L = 2
subnodes, each of which is a chaotic Lorenz oscillator.
The two subnodes are connected by a sublink, the di-
rection of which determines the node type. The system
has two parameters, a and b, representing the coupling
strength of internal and external sublinks, respectively.
In Fig. 2(b), we show  = (red) and  6= (blue) as func-
tions of these parameters, where  = ( 6=) are defined
to be the smaller value of  between the two possible

homogeneous (heterogeneous) systems. We verify condi-
tions (C1) and (C2) as described in SM [26] (Sec. S4)
in the region for which  = > 0 and  6= < 0 [shaded
purple in Fig. 2(b)], thus establishing that the system
exhibits AISync in that region. This is illustrated for
a sample trajectory in Fig. 2(c), which diverges from
synchrony while the nodes are kept homogeneous, but
re-synchronizes spontaneously after the nodes are made
heterogeneous (see SM [26], Sec. S5 for details). While
this provides an AISync example with a directed net-
work structure and a bounded stability region, we also
demonstrate AISync for experimentally testable systems
(coupled electro-optic oscillators [28]; SM [26], Sec. S6),
for systems with unbounded stability region (SM [26],
Sec. S7), and for systems with undirected network struc-
ture (SM [26], Sec. S8). These examples include both lin-
ear and nonlinear coupling functions, as well as discrete-
and continuous-time dynamics.

But how often does a network structure support
AISync? To systematically address this question, we
use the spread � of the eigenvalues of the Laplacian ma-
trix eL for the monolayer network representation, which
is a measure of synchronizability [8] defined by �2 :=Pn

j=2 |�j � �|2/[d2(n � 1)], where d :=
Pn

j=1
eLjj/n and

� :=
Pn

j=2 �j/(n � 1). A smaller � indicates higher
synchronizability. Given an external sublink structure
corresponding to a symmetric network, we compare the
minimum spread �= among all systems with homoge-
neous F (i) to the corresponding minimum � 6= among all
systems with strictly heterogeneous F (i). We call the
structure AISync-favoring if � 6= < �=, which indicates
that heterogeneous F (i) can make the system easier to
synchronize than any homogeneous F (i). As a measure
of how strongly the structure supports AISync, we define
r := 1 � � 6=/�=  1, where r > 0 indicates an AISync-
favoring structure, and r = 1 implies � 6= = 0 (i.e., there
is a heterogeneous system with optimal synchronizabil-
ity). For example, the structure in Fig. 2 has �= ⇡ 0.56
and � 6= ⇡ 0.33, and r ⇡ 0.41.

Using this AISync strength r, we first enumerate all
networks of a given size supporting AISync (Table I). For
each N , we generate one or more diagrams representing
all N -node symmetric networks, which are shown in the
first row of Table I for N = 3, 4, 5 (see SM [26], Sec. S9 for
larger N). In these diagrams, each color indicates a set of
links that, in any given symmetric network, must all exist
together and be of the same type or not exist at all (not-
ing that links from di↵erent sets can be of the same type).
For example, there are three distinct symmetric networks
for N = 3: a directed ring (cyan or black links), an undi-
rected ring (cyan and black links of the same type), and
the superposition of two directed rings in opposite direc-
tions (cyan and black links of di↵erent types; as in Fig. 2).
For a given symmetric network derived from these dia-
grams, we choose the external sublink pattern for each
link type from all possible ways of connecting a subnode
pair to another. For the internal sublink patterns, we

FIG. 2. Example of AISync system. (a) Symmetric network of
N = 3 nodes, each with L = 2 directionally coupled subnodes
of Lorenz oscillators. The sublink direction in one node (cyan)
is di↵erent from the other two (green). (b) Contour plots of
 = (red) for the case of homogeneous nodes (all green or all-
cyan nodes) and  6= (blue) for heterogeneous nodes (one or
two green nodes). The shaded region corresponds to AISync

systems, for which = > 0 and  6= < 0. (c) Sample trajectory
of the system for a = 8 and b = 6 [cross symbol in (b)],
exhibiting AISync. The first component x1 of the Lorenz
oscillator state vector is shown for all n = 6 subnodes.

study consensus dynamics and encompasses a variety of
nontrivial stability regions [23], the problem of verifying
AISync is fully solvable. To see this, we first note that
in this case the stability function  (�) determines the
(common) stability of all completely synchronous states

of the form x
(i)
` = s`, 8i, `, where the subnode states

s` can in general be di↵erent for di↵erent `. Next, for
a given (homogeneous or heterogeneous) system, we sort
its Laplacian eigenvalues into two groups: �1, . . . ,�j⇤ ,
corresponding only to those perturbations parallel to
the synchronization manifold, and �j⇤+1, . . . ,�n, corre-
sponding to perturbations that are transverse to the man-
ifold and thus destroys synchronization. The stability (of
all completely synchronous states) is then determined by
 0 := maxj⇤<jn  (�j), noting that both j⇤ and �j gen-
erally depend on the network structure. This leads to
the following solution for the AISync conditions:  0 > 0
for all homogeneous systems and  0 < 0 for some het-
erogeneous system (see SM [26], Sec. S3 for an example
satisfying these conditions).

An example system exhibiting AISync is shown in
Fig. 2. The network structure is symmetric and has
N = 3 nodes and K = 2 types of links representing
sublink patterns in the clockwise and counterclockwise
directions in Fig. 2(a). Each node consists of L = 2
subnodes, each of which is a chaotic Lorenz oscillator.
The two subnodes are connected by a sublink, the di-
rection of which determines the node type. The system

has two parameters, a and b, representing the coupling
strength of internal and external sublinks, respectively.
In Fig. 2(b), we show  = (red) and  6= (blue) as func-
tions of these parameters, where  = ( 6=) are defined
to be the smaller value of  between the two possible
homogeneous (heterogeneous) systems. We verify condi-
tions (C1) and (C2) as described in SM [26] (Sec. S4)
in the region for which  = > 0 and  6= < 0 [shaded
purple in Fig. 2(b)], thus establishing that the system
exhibits AISync in that region. This is illustrated for
a sample trajectory in Fig. 2(c), which diverges from
synchrony while the nodes are kept homogeneous, but
re-synchronizes spontaneously after the nodes are made
heterogeneous (see SM [26], Sec. S5 for details). While
this provides an AISync example with a directed net-
work structure and a bounded stability region, we also
demonstrate AISync for experimentally testable systems
(coupled electro-optic oscillators [28]; SM [26], Sec. S6),
for systems with unbounded stability region (SM [26],
Sec. S7), and for systems with undirected network struc-
ture (SM [26], Sec. S8). These examples include both lin-
ear and nonlinear coupling functions, as well as discrete-
and continuous-time dynamics.

But how often does a network structure support
AISync? To systematically address this question, we
use the spread � of the eigenvalues of the Laplacian ma-
trix eL for the monolayer network representation, which
is a measure of synchronizability [8] defined by �2 :=Pn

j=2 |�j � �|2/[d2(n � 1)], where d :=
Pn

j=1
eLjj/n and

� :=
Pn

j=2 �j/(n � 1). A smaller � indicates higher
synchronizability. Given an external sublink structure
corresponding to a symmetric network, we compare the
minimum spread �= among all systems with homoge-
neous F (i) to the corresponding minimum � 6= among all
systems with strictly heterogeneous F (i). We call the
structure AISync-favoring if � 6= < �=, which indicates
that heterogeneous F (i) can make the system easier to
synchronize than any homogeneous F (i). As a measure
of how strongly the structure supports AISync, we define
r := 1 � � 6=/�=  1, where r > 0 indicates an AISync-
favoring structure, and r = 1 implies � 6= = 0 (i.e., there
is a heterogeneous system with optimal synchronizabil-
ity). For example, the structure in Fig. 2 has �= ⇡ 0.56
and � 6= ⇡ 0.33, and r ⇡ 0.41.

Using this AISync strength r, we first enumerate all
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for N = 3: a directed ring (cyan or black links), an undi-
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a = b = 1 to enable counting). The numbers are given for
both binary (B) and quaternary (Q) choices of internal sub-
link configurations, as well as for di↵erent AISync strength
[as measured by r defined in the text]. The network diagrams
encode all possible symmetric networks of a given size. See
SM [26], Sec. S9 for details and network diagrams for larger N .
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FIG. 3. Statistics on the prevalence of AISync-favoring sys-
tems as functions of (a) external sublink density and (b) net-
work size N . Both panels show the fraction of systems with
AISync strength r > 0.05 among those with circulant-graph
network structures, where the external sublink density is given
by D/[L2(N � 1)], and D is the external sublink in-degree.
For further analysis of these results, see SM [26], Sec. ??.

of the same type), and the superposition of two directed
rings in opposite directions (cyan and black links of dif-
ferent types; as in Fig. 2). For a given symmetric network
derived from these diagrams, we choose the external sub-
link pattern for each link type from all possible ways of
connecting a subnode pair to another. For the internal
sublink patterns, we use either the binary or quaternary
choices, where each node has one directed sublink (in
either direction) in the binary case, while all four possi-
bilities are allowed in the quaternary case: no sublink,
one directed sublink, and both directed sublinks. The
rest of Table I lists the total numbers of isomorphically
distinct monolayer networks eA with r > 0.05, r > 0.2,
and (optimal) r = 1; see SM [26], Sec. ?? for all optimal
networks with N = 3, 4.

Figure 3 shows the statistics of AISync-favoring net-
works. For numerical feasibility, we focus on those sys-
tems whose network structure is a directed, multi-link
type, circulant graph (which covers all symmetric net-

works if N is prime). Sampling uniformly within this
class (see SM [26], Sec. ??, for details [30]), we observe
that significant fraction of external sublink structures
are AISync-favoring over a range of sublink densities
[Fig. 3(a)] and network sizes [Fig. 3(b)]. We also observe
that sparse and dense structures favor AISync more of-
ten than medium-density ones, despite the expectation
that the e↵ect of internal sublink heterogeneity would be
smaller with higher external sublink density.

Given a symmetric network of identical oscillators, it
is instructive to compare our results above in which the
symmetry is broken by making the oscillators nonidenti-
cal with the alternative scenario in which the symmetry
is broken by making the network structure asymmetric.
For directed unweighted networks of di↵usively-coupled
identical oscillators, it can be shown that: 1) with the
exception of the complete graphs, all topologies that op-
timize synchronizability (i.e., those with � = 0) are asym-
metric [31]; 2) any network topology that can be spanned
from a node (i.e., mini�2 Re(�i) > 0) embeds optimally
synchronizable subnetworks generated by deleting a sub-
set of links [8, 32]. For example, a synchronous state
that is not stable for a directed ring network may be-
come stable for a directed chain formed by removing a
link. More generally, introducing structural heterogene-
ity (breaking the symmetry of the network) can stabilize
otherwise unstable homogeneous (symmetric) states.

Finally, we note that the defining characteristic of
AISync considered here—that preserving the symmetry
of a stable state requires breaking the symmetry of the
system—can bear analogs in oscillator networks whose
structure is not necessarily symmetric. Such a network
can always be partitioned into symmetric subnetwork
clusters (structurally equivalent subsets of nodes) that
are candidates for cluster synchronization [16, 33, 34].
Synchronization of one such cluster thus plays the role of
complete synchronization in a symmetric network, which
opens the possibility of exploiting AISync to tune cluster
synchronization patterns through oscillator heterogene-
ity in arbitrary complex networks. We hope that our
findings, and future theoretical and experimental stud-
ies they will stimulate, will significantly advance under-
standing of the interplay between symmetry and network
dynamics.
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node has one directed sublink (in either direction) in the
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often than medium-density ones, despite the expectation
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come stable for a directed chain formed by removing a
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can always be partitioned into symmetric subnetwork
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a = b = 1 to enable counting). The numbers are given for
both binary (B) and quaternary (Q) choices of internal sub-
link configurations, as well as for di↵erent AISync strength
[as measured by r defined in the text]. The network diagrams
encode all possible symmetric networks of a given size. See
SM [26], Sec. S9 for details and network diagrams for larger N .
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work size N . Both panels show the fraction of systems with
AISync strength r > 0.05 among those with circulant-graph
network structures, where the external sublink density is given
by D/[L2(N � 1)], and D is the external sublink in-degree.
For further analysis of these results, see SM [26], Sec. ??.

of the same type), and the superposition of two directed
rings in opposite directions (cyan and black links of dif-
ferent types; as in Fig. 2). For a given symmetric network
derived from these diagrams, we choose the external sub-
link pattern for each link type from all possible ways of
connecting a subnode pair to another. For the internal
sublink patterns, we use either the binary or quaternary
choices, where each node has one directed sublink (in
either direction) in the binary case, while all four possi-
bilities are allowed in the quaternary case: no sublink,
one directed sublink, and both directed sublinks. The
rest of Table I lists the total numbers of isomorphically
distinct monolayer networks eA with r > 0.05, r > 0.2,
and (optimal) r = 1; see SM [26], Sec. ?? for all optimal
networks with N = 3, 4.

Figure 3 shows the statistics of AISync-favoring net-
works. For numerical feasibility, we focus on those sys-
tems whose network structure is a directed, multi-link
type, circulant graph (which covers all symmetric net-

works if N is prime). Sampling uniformly within this
class (see SM [26], Sec. ??, for details [30]), we observe
that significant fraction of external sublink structures
are AISync-favoring over a range of sublink densities
[Fig. 3(a)] and network sizes [Fig. 3(b)]. We also observe
that sparse and dense structures favor AISync more of-
ten than medium-density ones, despite the expectation
that the e↵ect of internal sublink heterogeneity would be
smaller with higher external sublink density.

Given a symmetric network of identical oscillators, it
is instructive to compare our results above in which the
symmetry is broken by making the oscillators nonidenti-
cal with the alternative scenario in which the symmetry
is broken by making the network structure asymmetric.
For directed unweighted networks of di↵usively-coupled
identical oscillators, it can be shown that: 1) with the
exception of the complete graphs, all topologies that op-
timize synchronizability (i.e., those with � = 0) are asym-
metric [31]; 2) any network topology that can be spanned
from a node (i.e., mini�2 Re(�i) > 0) embeds optimally
synchronizable subnetworks generated by deleting a sub-
set of links [8, 32]. For example, a synchronous state
that is not stable for a directed ring network may be-
come stable for a directed chain formed by removing a
link. More generally, introducing structural heterogene-
ity (breaking the symmetry of the network) can stabilize
otherwise unstable homogeneous (symmetric) states.

Finally, we note that the defining characteristic of
AISync considered here—that preserving the symmetry
of a stable state requires breaking the symmetry of the
system—can bear analogs in oscillator networks whose
structure is not necessarily symmetric. Such a network
can always be partitioned into symmetric subnetwork
clusters (structurally equivalent subsets of nodes) that
are candidates for cluster synchronization [16, 33, 34].
Synchronization of one such cluster thus plays the role of
complete synchronization in a symmetric network, which
opens the possibility of exploiting AISync to tune cluster
synchronization patterns through oscillator heterogene-
ity in arbitrary complex networks. We hope that our
findings, and future theoretical and experimental stud-
ies they will stimulate, will significantly advance under-
standing of the interplay between symmetry and network
dynamics.
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synchronizable subnetworks generated by deleting a sub-
set of links [8, 32]. For example, a synchronous state
that is not stable for a directed ring network may be-
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ity (breaking the symmetry of the network) can stabilize
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derived from these diagrams, we choose the external sub-
link pattern for each link type from all possible ways of
connecting a subnode pair to another. For the internal
sublink patterns, we use either the binary or quaternary
choices, where each node has one directed sublink (in
either direction) in the binary case, while all four possi-
bilities are allowed in the quaternary case: no sublink,
one directed sublink, and both directed sublinks. The
rest of Table I lists the total numbers of isomorphically
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and (optimal) r = 1; see SM [26], Sec. ?? for all optimal
networks with N = 3, 4.

Figure 3 shows the statistics of AISync-favoring net-
works. For numerical feasibility, we focus on those sys-
tems whose network structure is a directed, multi-link
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works if N is prime). Sampling uniformly within this
class (see SM [26], Sec. ??, for details [30]), we observe
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[Fig. 3(a)] and network sizes [Fig. 3(b)]. We also observe
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ten than medium-density ones, despite the expectation
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smaller with higher external sublink density.
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is instructive to compare our results above in which the
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come stable for a directed chain formed by removing a
link. More generally, introducing structural heterogene-
ity (breaking the symmetry of the network) can stabilize
otherwise unstable homogeneous (symmetric) states.

Finally, we note that the defining characteristic of
AISync considered here—that preserving the symmetry
of a stable state requires breaking the symmetry of the
system—can bear analogs in oscillator networks whose
structure is not necessarily symmetric. Such a network
can always be partitioned into symmetric subnetwork
clusters (structurally equivalent subsets of nodes) that
are candidates for cluster synchronization [16, 33, 34].
Synchronization of one such cluster thus plays the role of
complete synchronization in a symmetric network, which
opens the possibility of exploiting AISync to tune cluster
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ity in arbitrary complex networks. We hope that our
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ity in arbitrary complex networks. We hope that our
findings, and future theoretical and experimental stud-
ies they will stimulate, will significantly advance under-
standing of the interplay between symmetry and network
dynamics.
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rings in opposite directions (cyan and black links of dif-
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derived from these diagrams, we choose the external sub-
link pattern for each link type from all possible ways of
connecting a subnode pair to another. For the internal
sublink patterns, we use either the binary or quaternary
choices, where each node has one directed sublink (in
either direction) in the binary case, while all four possi-
bilities are allowed in the quaternary case: no sublink,
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that significant fraction of external sublink structures
are AISync-favoring over a range of sublink densities
[Fig. 3(a)] and network sizes [Fig. 3(b)]. We also observe
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is instructive to compare our results above in which the
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otherwise unstable homogeneous (symmetric) states.

Finally, we note that the defining characteristic of
AISync considered here—that preserving the symmetry
of a stable state requires breaking the symmetry of the
system—can bear analogs in oscillator networks whose
structure is not necessarily symmetric. Such a network
can always be partitioned into symmetric subnetwork
clusters (structurally equivalent subsets of nodes) that
are candidates for cluster synchronization [16, 33, 34].
Synchronization of one such cluster thus plays the role of
complete synchronization in a symmetric network, which
opens the possibility of exploiting AISync to tune cluster
synchronization patterns through oscillator heterogene-
ity in arbitrary complex networks. We hope that our
findings, and future theoretical and experimental stud-
ies they will stimulate, will significantly advance under-
standing of the interplay between symmetry and network
dynamics.
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exception of the complete graphs, all topologies that op-
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metric [31]; 2) any network topology that can be spanned
from a node (i.e., mini�2 Re(�i) > 0) embeds optimally
synchronizable subnetworks generated by deleting a sub-
set of links [8, 32]. For example, a synchronous state
that is not stable for a directed ring network may be-
come stable for a directed chain formed by removing a
link. More generally, introducing structural heterogene-
ity (breaking the symmetry of the network) can stabilize
otherwise unstable homogeneous (symmetric) states.

Finally, we note that the defining characteristic of
AISync considered here—that preserving the symmetry
of a stable state requires breaking the symmetry of the
system—can bear analogs in oscillator networks whose
structure is not necessarily symmetric. Such a network
can always be partitioned into symmetric subnetwork
clusters (structurally equivalent subsets of nodes) that
are candidates for cluster synchronization [16, 33, 34].
Synchronization of one of these clusters plays the role of
complete synchronization in a symmetric network, which
opens the possibility of exploiting AISync to tune cluster
synchronization patterns through oscillator heterogene-
ity in arbitrary complex networks. We hope that our
findings, and future theoretical and experimental stud-
ies they will stimulate, will significantly advance under-
standing of the interplay between symmetry and network
dynamics.
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Summary
Symmetric states requiring system asymmetry  
         (converse of symmetry breaking) 
‣ In network synchronization: fully synchronous state 

stable only when the oscillators are non-identical 
‣ Observed quite often in the class of multilayer 

networks we considered

TN & AEM, Symmetric states requiring system asymmetry, Phys. Rev. Lett. 117, 114101 (2016) 
YZ, TN, & AEM, Asymmetry-induced synchronization in oscillator networks, to appear in Phys. Rev. E, arXiv:1705.07907 





More generally: states with more symmetry requiring 
system to have less symmetry  
‣ Curie’s principle 
‣ Convergent vs divergent pattern formation

TN & AEM, Symmetric states requiring system asymmetry, Phys. Rev. Lett. 117, 114101 (2016) 
YZ, TN, & AEM, Asymmetry-induced synchronization in oscillator networks, to appear in Phys. Rev. E, arXiv:1705.07907 

Final remarks



22

1

23

4

H(1)

H(2)

H(3)

(a)

1�4�

3� 2�

1��4��

3�� 2��

(b)
4��

3� 2��

1�

4�

3�� 2�

1��

(c) 0 1

0 0

1 0

0 0

00

10

10

10

0 1

0 1

0 0

1 0

01

00

00

10

0 1

0 0

0 1

0 1

01

00

00

01

0 0

1 0

0 1

0 0

10

10

00

00

(d)

FIG. 1. Multilayer construction of AISync networks. (a) Example of a symmetric network of N = 4 heterogeneous oscillators
and K = 3 types of (directed) links with associated interaction functions H(1), H(2) and H(3). (b) One of many possible
multilayer networks corresponding to the network in (a), with L = 2 layers and n = LN = 8 identical subnodes. Subnodes
are labeled with node indices, with prime and double prime indicating layer 1 and 2, respectively. (c) Flattened, monolayer

representation of the multilayer network in (b). (d) Block structure of the adjacency matrix e
A for the monolayer network in

(c). Colors indicate di↵erent types of nodes (diagonal blocks) and links (o↵-diagonal blocks).

ing the MSF framework to the flattened representation
of the system.

In our multilayer construction, each node represents
a set of L identical subnodes, belonging to L di↵erent
layers and connected by a set of internal sublinks. The
pattern of these internal sublinks is thus considered part
of the node’s properties and can be used to represent
node heterogeneity. For a pair of connected nodes, the
type of the connecting link is determined by the pattern
of external sublinks between the subnodes of these two
nodes. This construction yields a multilayer network [18–
23] of subnodes and sublinks with L layers; see Fig. 1(b)
for an L = 2 example. Note that in general there is
more than one possible multilayer network for a given
symmetric network. Coupling the dynamics of subnodes
di↵usively in this network, Eq. (1) can be written at the
subnode level as

ẋ
(i)
` = f(x(i)

` ) +
NX

i0=1

LX

`0=1

eA(ii0)
``0

⇥
h(x(i0)

`0 ) � h(x(i)
` )

⇤
, (2)

where x
(i)
` = x

(i)
` (t) is the m-dimensional state vector for

subnode ` (i.e., in layer `) of node i, the function f de-
termines the dynamics of every isolated subnode, and h
is the interaction function common to all sublinks. Here,
for all links of a given type between di↵erent nodes, the

corresponding coupling matrix eA(ii0) := ( eA(ii0)
``0 ), i 6= i0,

is the same and encodes the subnode connection pat-
tern for that link type. In contrast, the subnode connec-
tion pattern within each node i is encoded in the matrix

F (i) := ( eA(ii)
``0 ). Note that the node-to-node interactions

are not necessarily di↵usive, but the subnode-to-subnode
interactions are di↵usive. This guarantees the existence

of a synchronous state of Eq. (2) given by x
(i)
` (t) = s(t),

8i, ` with ṡ = f (s), which corresponds to a synchronous
state of Eq. (1). Thus, we have a general class of multi-
layer models of symmetric networks that admit complete
synchronization (see SM [24], Sec. S2 for more details).

To facilitate the stability analysis, we flatten the mul-
tilayer network representation into a single layer (see
Fig. 1(c) for an example). By defining a single index

for all the n := LN subnodes, in which node i has subn-
odes j = ki1, . . . , kiL with ki` := (i � 1)L + `, we can
rewrite Eq. (2) in the standard form for a (single-layer)
di↵usively coupled network of oscillators:

ẋj = f(xj) +
nX

j0=1

eAjj0 [h(xj0) � h(xj)], (3)

where xj = x
(i)
` and eAjj0 := eA(ii0)

``0 for j = ki` and

j0 = ki0`0 . The weighted adjacency matrix eA = ( eAjj0)
thus encodes the structure of the monolayer network in
this representation (see Fig. 1(d) for an example). This
matrix has a block structure in which the matrices F (i)

appearing on the diagonal blocks characterize node prop-
erties, while eA(ii0) appearing on the o↵-diagonal blocks
reflect the link types. Since subnodes and sublinks are
identical, we can directly apply the MSF analysis [26]
to Eq. (3) and obtain the stability function  (�). The
maximum Lyapunov exponent (MLE) of the synchronous
state is then computed as  := max2jn  (�j), where
�1, . . . ,�n are the eigenvalues of the Laplacian matrix
eL := (eLjj0) of the monolayer network, defined as eLjj0 :=

�jj0
Pn

k=1
eAjk � eAjj0 , where �jj0 is the Kronecker delta

function. Here, �1 is the identically zero eigenvalue,
which is excluded in the definition of  for corresponding
to a mode of perturbation that does not a↵ect synchro-
nization stability. Thus, the synchronous state is asymp-
totically stable if  < 0 and unstable if  > 0. Using this
MSF analysis, we have developed a systematic method
for verifying the AISync conditions (C1) and (C2) for
our multilayer model (see SM [24], Sec. S3).

An example system exhibiting AISync is shown in
Fig. 2. The network structure is symmetric and has
N = 3 nodes and K = 2 types of links corresponding
to links in the clockwise and counterclockwise directions
in Fig. 2(a). Each node consists of L = 2 subnodes, each
of which is a chaotic Lorenz oscillator. The two subnodes
are connected by a sublink, the direction of which deter-
mines the node type. The system has two parameters, a
and b, representing the coupling strength of internal and

FIG. 1. Multilayer construction of AISync networks. (a) Example of a symmetric network of N = 4 heterogeneous oscillators
and K = 3 types of (directed) links with associated interaction functions H(1), H(2) and H(3). (b) One of many possible
multilayer networks corresponding to the network in (a), with L = 2 layers and n = LN = 8 identical subnodes. Subnodes
are labeled with node indices, with prime and double prime indicating layer 1 and 2, respectively. (c) Flattened, monolayer

representation of the multilayer network in (b). (d) Block structure of the adjacency matrix e
A for the monolayer network in

(c). Colors indicate di↵erent types of nodes (diagonal blocks) and links (o↵-diagonal blocks).

tical (di↵erent Fi), and the network can host K > 1
types of directed interactions. To overcome these chal-
lenges, below we propose a multilayer construction that
defines a large subclass of systems in the form of Eq. (1).
We show that any system in this subclass is guaranteed
to have a synchronous state, and the stability of that
state can be analyzed by applying the MSF framework
to the flattened representation of the system.

In our multilayer system, each node represents a set
of L identical subnodes, belonging to L di↵erent layers
and connected by a set of internal sublinks. The pattern
of these internal sublinks is thus considered part of the
node’s properties and can be used to represent node het-
erogeneity. For a pair of connected nodes, the type of the
connecting link is determined by the pattern of external

sublinks between the subnodes of these two nodes. This
construction yields a multilayer network [18–22] of subn-
odes and sublinks with L layers; see Fig. 1(b) for an L = 2
example. Note that in general there is more than one
possible multilayer network for a given symmetric net-
work. The multilayer networks just defined are broader
than most classes of systems used in previous studies of
synchronization on multilayer networks [24, 25], since the
links between two di↵erent layers are not constrained to
be one-to-one. The underlying hierarchical organization,
in which each node decomposes into interacting subn-
odes, is shared by many physical systems, such as the
multi-processor nodes in modern supercomputers.

Coupling the dynamics of subnodes di↵usively in this
network, the multilayer system can be described at the
subnode level as

ẋ
(i)
` = f(x(i)

` ) +
NX

i0=1

LX

`0=1

eA(ii0)
``0

⇥
h(x(i0)

`0 ) � h(x(i)
` )

⇤
, (2)

where x
(i)
` = x

(i)
` (t) is the m-dimensional state vector for

subnode ` (i.e., in layer `) of node i, the function f de-
termines the dynamics of every isolated subnode, and h
is the interaction function common to all sublinks. Here,
for all links of a given type between di↵erent nodes, the

corresponding coupling matrix eA(ii0) := ( eA(ii0)
``0 ), i 6= i0,

is the same and encodes the subnode connection pat-
tern for that link type. In contrast, the subnode connec-
tion pattern within each node i is encoded in the ma-

trix F (i) := ( eA(ii)
``0 ). The node-to-node interactions are

not necessarily di↵usive, but the subnode-to-subnode in-
teractions are di↵usive, which guarantees the existence

of a synchronous state given by x
(i)
` (t) = s(t), 8i, `

with ṡ = f (s). Thus, Eq. (2) describes a general class
of multilayer models of symmetric networks that ad-
mit a state corresponding to complete synchronization,
Xi(t) = S(t), 8i, when written in the form of Eq. (1)
(see SM [26], Sec. S2 for more details).

To facilitate the stability analysis, we flatten the mul-
tilayer network representation into a single layer (see
Fig. 1(c) for an example). We use eA = ( eAjj0) to denote
the weighted adjacency matrix that encodes the struc-
ture of the resulting monolayer network [see Fig. 1(d)
for an example]. This matrix has a block structure
in which the matrices F (i) appearing on the diagonal
blocks characterize node properties, while eA(ii0) appear-
ing on the o↵-diagonal blocks reflect the link types.
Since subnodes and sublinks are identical, we can di-
rectly apply the MSF analysis [29] to the monolayer net-
work and obtain the stability function  (�) (see SM [26],
Sec. S2 for details). The maximum Lyapunov exponent
(MLE) of the synchronous state is then computed as
 := max2jn  (�j), where �1, . . . ,�n are the eigenval-

ues of the corresponding Laplacian matrix eL := (eLjj0),

defined as eLjj0 := �jj0
Pn

k=1
eAjk � eAjj0 , where �jj0 is the

Kronecker delta function. Here, �1 is the identically zero
eigenvalue, which is excluded in the definition of  for
corresponding to a mode of perturbation that does not
a↵ect synchronization stability. Thus, the synchronous
state is asymptotically stable if  < 0 and unstable if
 > 0. Using this MSF analysis, we have developed a sys-
tematic scheme for verifying the AISync conditions (C1)
and (C2) for our multilayer system (SM [26], Sec. S4).

In the case of linear f and h, which is widely used to
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FIG. 1. Multilayer construction of AISync networks. (a) Example of a symmetric network of N = 4 heterogeneous oscillators
and K = 3 types of (directed) links with associated interaction functions H(1), H(2) and H(3). (b) One of many possible
multilayer networks corresponding to the network in (a), with L = 2 layers and n = LN = 8 identical subnodes. Subnodes
are labeled with node indices, with prime and double prime indicating layer 1 and 2, respectively. (c) Flattened, monolayer

representation of the multilayer network in (b). (d) Block structure of the adjacency matrix e
A for the monolayer network in

(c). Colors indicate di↵erent types of nodes (diagonal blocks) and links (o↵-diagonal blocks).

ing the MSF framework to the flattened representation
of the system.

In our multilayer construction, each node represents
a set of L identical subnodes, belonging to L di↵erent
layers and connected by a set of internal sublinks. The
pattern of these internal sublinks is thus considered part
of the node’s properties and can be used to represent
node heterogeneity. For a pair of connected nodes, the
type of the connecting link is determined by the pattern
of external sublinks between the subnodes of these two
nodes. This construction yields a multilayer network [18–
23] of subnodes and sublinks with L layers; see Fig. 1(b)
for an L = 2 example. Note that in general there is
more than one possible multilayer network for a given
symmetric network. Coupling the dynamics of subnodes
di↵usively in this network, Eq. (1) can be written at the
subnode level as

ẋ
(i)
` = f(x(i)

` ) +
NX

i0=1

LX

`0=1

eA(ii0)
``0

⇥
h(x(i0)

`0 ) � h(x(i)
` )

⇤
, (2)

where x
(i)
` = x

(i)
` (t) is the m-dimensional state vector for

subnode ` (i.e., in layer `) of node i, the function f de-
termines the dynamics of every isolated subnode, and h
is the interaction function common to all sublinks. Here,
for all links of a given type between di↵erent nodes, the

corresponding coupling matrix eA(ii0) := ( eA(ii0)
``0 ), i 6= i0,

is the same and encodes the subnode connection pat-
tern for that link type. In contrast, the subnode connec-
tion pattern within each node i is encoded in the matrix

F (i) := ( eA(ii)
``0 ). Note that the node-to-node interactions

are not necessarily di↵usive, but the subnode-to-subnode
interactions are di↵usive. This guarantees the existence

of a synchronous state of Eq. (2) given by x
(i)
` (t) = s(t),

8i, ` with ṡ = f (s), which corresponds to a synchronous
state of Eq. (1). Thus, we have a general class of multi-
layer models of symmetric networks that admit complete
synchronization (see SM [24], Sec. S2 for more details).

To facilitate the stability analysis, we flatten the mul-
tilayer network representation into a single layer (see
Fig. 1(c) for an example). By defining a single index

for all the n := LN subnodes, in which node i has subn-
odes j = ki1, . . . , kiL with ki` := (i � 1)L + `, we can
rewrite Eq. (2) in the standard form for a (single-layer)
di↵usively coupled network of oscillators:

ẋj = f(xj) +
nX

j0=1

eAjj0 [h(xj0) � h(xj)], (3)

where xj = x
(i)
` and eAjj0 := eA(ii0)

``0 for j = ki` and

j0 = ki0`0 . The weighted adjacency matrix eA = ( eAjj0)
thus encodes the structure of the monolayer network in
this representation (see Fig. 1(d) for an example). This
matrix has a block structure in which the matrices F (i)

appearing on the diagonal blocks characterize node prop-
erties, while eA(ii0) appearing on the o↵-diagonal blocks
reflect the link types. Since subnodes and sublinks are
identical, we can directly apply the MSF analysis [26]
to Eq. (3) and obtain the stability function  (�). The
maximum Lyapunov exponent (MLE) of the synchronous
state is then computed as  := max2jn  (�j), where
�1, . . . ,�n are the eigenvalues of the Laplacian matrix
eL := (eLjj0) of the monolayer network, defined as eLjj0 :=

�jj0
Pn

k=1
eAjk � eAjj0 , where �jj0 is the Kronecker delta

function. Here, �1 is the identically zero eigenvalue,
which is excluded in the definition of  for corresponding
to a mode of perturbation that does not a↵ect synchro-
nization stability. Thus, the synchronous state is asymp-
totically stable if  < 0 and unstable if  > 0. Using this
MSF analysis, we have developed a systematic method
for verifying the AISync conditions (C1) and (C2) for
our multilayer model (see SM [24], Sec. S3).

An example system exhibiting AISync is shown in
Fig. 2. The network structure is symmetric and has
N = 3 nodes and K = 2 types of links corresponding
to links in the clockwise and counterclockwise directions
in Fig. 2(a). Each node consists of L = 2 subnodes, each
of which is a chaotic Lorenz oscillator. The two subnodes
are connected by a sublink, the direction of which deter-
mines the node type. The system has two parameters, a
and b, representing the coupling strength of internal and

FIG. 1. Multilayer construction of AISync networks. (a) Example of a symmetric network of N = 4 heterogeneous oscillators
and K = 3 types of (directed) links with associated interaction functions H(1), H(2) and H(3). (b) One of many possible
multilayer networks corresponding to the network in (a), with L = 2 layers and n = LN = 8 identical subnodes. Subnodes
are labeled with node indices, with prime and double prime indicating layer 1 and 2, respectively. (c) Flattened, monolayer

representation of the multilayer network in (b). (d) Block structure of the adjacency matrix e
A for the monolayer network in

(c). Colors indicate di↵erent types of nodes (diagonal blocks) and links (o↵-diagonal blocks).

tical (di↵erent Fi), and the network can host K > 1
types of directed interactions. To overcome these chal-
lenges, below we propose a multilayer construction that
defines a large subclass of systems in the form of Eq. (1).
We show that any system in this subclass is guaranteed
to have a synchronous state, and the stability of that
state can be analyzed by applying the MSF framework
to the flattened representation of the system.

In our multilayer system, each node represents a set
of L identical subnodes, belonging to L di↵erent layers
and connected by a set of internal sublinks. The pattern
of these internal sublinks is thus considered part of the
node’s properties and can be used to represent node het-
erogeneity. For a pair of connected nodes, the type of the
connecting link is determined by the pattern of external

sublinks between the subnodes of these two nodes. This
construction yields a multilayer network [18–22] of subn-
odes and sublinks with L layers; see Fig. 1(b) for an L = 2
example. Note that in general there is more than one
possible multilayer network for a given symmetric net-
work. The multilayer networks just defined are broader
than most classes of systems used in previous studies of
synchronization on multilayer networks [24, 25], since the
links between two di↵erent layers are not constrained to
be one-to-one. The underlying hierarchical organization,
in which each node decomposes into interacting subn-
odes, is shared by many physical systems, such as the
multi-processor nodes in modern supercomputers.

Coupling the dynamics of subnodes di↵usively in this
network, the multilayer system can be described at the
subnode level as

ẋ
(i)
` = f(x(i)

` ) +
NX

i0=1

LX

`0=1

eA(ii0)
``0

⇥
h(x(i0)

`0 ) � h(x(i)
` )

⇤
, (2)

where x
(i)
` = x

(i)
` (t) is the m-dimensional state vector for

subnode ` (i.e., in layer `) of node i, the function f de-
termines the dynamics of every isolated subnode, and h
is the interaction function common to all sublinks. Here,
for all links of a given type between di↵erent nodes, the

corresponding coupling matrix eA(ii0) := ( eA(ii0)
``0 ), i 6= i0,

is the same and encodes the subnode connection pat-
tern for that link type. In contrast, the subnode connec-
tion pattern within each node i is encoded in the ma-

trix F (i) := ( eA(ii)
``0 ). The node-to-node interactions are

not necessarily di↵usive, but the subnode-to-subnode in-
teractions are di↵usive, which guarantees the existence

of a synchronous state given by x
(i)
` (t) = s(t), 8i, `

with ṡ = f (s). Thus, Eq. (2) describes a general class
of multilayer models of symmetric networks that ad-
mit a state corresponding to complete synchronization,
Xi(t) = S(t), 8i, when written in the form of Eq. (1)
(see SM [26], Sec. S2 for more details).

To facilitate the stability analysis, we flatten the mul-
tilayer network representation into a single layer (see
Fig. 1(c) for an example). We use eA = ( eAjj0) to denote
the weighted adjacency matrix that encodes the struc-
ture of the resulting monolayer network [see Fig. 1(d)
for an example]. This matrix has a block structure
in which the matrices F (i) appearing on the diagonal
blocks characterize node properties, while eA(ii0) appear-
ing on the o↵-diagonal blocks reflect the link types.
Since subnodes and sublinks are identical, we can di-
rectly apply the MSF analysis [29] to the monolayer net-
work and obtain the stability function  (�) (see SM [26],
Sec. S2 for details). The maximum Lyapunov exponent
(MLE) of the synchronous state is then computed as
 := max2jn  (�j), where �1, . . . ,�n are the eigenval-

ues of the corresponding Laplacian matrix eL := (eLjj0),

defined as eLjj0 := �jj0
Pn

k=1
eAjk � eAjj0 , where �jj0 is the

Kronecker delta function. Here, �1 is the identically zero
eigenvalue, which is excluded in the definition of  for
corresponding to a mode of perturbation that does not
a↵ect synchronization stability. Thus, the synchronous
state is asymptotically stable if  < 0 and unstable if
 > 0. Using this MSF analysis, we have developed a sys-
tematic scheme for verifying the AISync conditions (C1)
and (C2) for our multilayer system (SM [26], Sec. S4).

In the case of linear f and h, which is widely used to

node = L identical subnodes 
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FIG. 1. Multilayer construction of AISync networks. (a) Example of a symmetric network of N = 4 heterogeneous oscillators
and K = 3 types of (directed) links with associated interaction functions H(1), H(2) and H(3). (b) One of many possible
multilayer networks corresponding to the network in (a), with L = 2 layers and n = LN = 8 identical subnodes. Subnodes
are labeled with node indices, with prime and double prime indicating layer 1 and 2, respectively. (c) Flattened, monolayer

representation of the multilayer network in (b). (d) Block structure of the adjacency matrix e
A for the monolayer network in

(c). Colors indicate di↵erent types of nodes (diagonal blocks) and links (o↵-diagonal blocks).

ing the MSF framework to the flattened representation
of the system.

In our multilayer construction, each node represents
a set of L identical subnodes, belonging to L di↵erent
layers and connected by a set of internal sublinks. The
pattern of these internal sublinks is thus considered part
of the node’s properties and can be used to represent
node heterogeneity. For a pair of connected nodes, the
type of the connecting link is determined by the pattern
of external sublinks between the subnodes of these two
nodes. This construction yields a multilayer network [18–
23] of subnodes and sublinks with L layers; see Fig. 1(b)
for an L = 2 example. Note that in general there is
more than one possible multilayer network for a given
symmetric network. Coupling the dynamics of subnodes
di↵usively in this network, Eq. (1) can be written at the
subnode level as

ẋ
(i)
` = f(x(i)

` ) +
NX

i0=1

LX

`0=1

eA(ii0)
``0

⇥
h(x(i0)

`0 ) � h(x(i)
` )

⇤
, (2)

where x
(i)
` = x

(i)
` (t) is the m-dimensional state vector for

subnode ` (i.e., in layer `) of node i, the function f de-
termines the dynamics of every isolated subnode, and h
is the interaction function common to all sublinks. Here,
for all links of a given type between di↵erent nodes, the

corresponding coupling matrix eA(ii0) := ( eA(ii0)
``0 ), i 6= i0,

is the same and encodes the subnode connection pat-
tern for that link type. In contrast, the subnode connec-
tion pattern within each node i is encoded in the matrix

F (i) := ( eA(ii)
``0 ). Note that the node-to-node interactions

are not necessarily di↵usive, but the subnode-to-subnode
interactions are di↵usive. This guarantees the existence

of a synchronous state of Eq. (2) given by x
(i)
` (t) = s(t),

8i, ` with ṡ = f (s), which corresponds to a synchronous
state of Eq. (1). Thus, we have a general class of multi-
layer models of symmetric networks that admit complete
synchronization (see SM [24], Sec. S2 for more details).

To facilitate the stability analysis, we flatten the mul-
tilayer network representation into a single layer (see
Fig. 1(c) for an example). By defining a single index

for all the n := LN subnodes, in which node i has subn-
odes j = ki1, . . . , kiL with ki` := (i � 1)L + `, we can
rewrite Eq. (2) in the standard form for a (single-layer)
di↵usively coupled network of oscillators:

ẋj = f(xj) +
nX

j0=1

eAjj0 [h(xj0) � h(xj)], (3)

where xj = x
(i)
` and eAjj0 := eA(ii0)

``0 for j = ki` and

j0 = ki0`0 . The weighted adjacency matrix eA = ( eAjj0)
thus encodes the structure of the monolayer network in
this representation (see Fig. 1(d) for an example). This
matrix has a block structure in which the matrices F (i)

appearing on the diagonal blocks characterize node prop-
erties, while eA(ii0) appearing on the o↵-diagonal blocks
reflect the link types. Since subnodes and sublinks are
identical, we can directly apply the MSF analysis [26]
to Eq. (3) and obtain the stability function  (�). The
maximum Lyapunov exponent (MLE) of the synchronous
state is then computed as  := max2jn  (�j), where
�1, . . . ,�n are the eigenvalues of the Laplacian matrix
eL := (eLjj0) of the monolayer network, defined as eLjj0 :=

�jj0
Pn

k=1
eAjk � eAjj0 , where �jj0 is the Kronecker delta

function. Here, �1 is the identically zero eigenvalue,
which is excluded in the definition of  for corresponding
to a mode of perturbation that does not a↵ect synchro-
nization stability. Thus, the synchronous state is asymp-
totically stable if  < 0 and unstable if  > 0. Using this
MSF analysis, we have developed a systematic method
for verifying the AISync conditions (C1) and (C2) for
our multilayer model (see SM [24], Sec. S3).

An example system exhibiting AISync is shown in
Fig. 2. The network structure is symmetric and has
N = 3 nodes and K = 2 types of links corresponding
to links in the clockwise and counterclockwise directions
in Fig. 2(a). Each node consists of L = 2 subnodes, each
of which is a chaotic Lorenz oscillator. The two subnodes
are connected by a sublink, the direction of which deter-
mines the node type. The system has two parameters, a
and b, representing the coupling strength of internal and

FIG. 1. Multilayer construction of AISync networks. (a) Example of a symmetric network of N = 4 heterogeneous oscillators
and K = 3 types of (directed) links with associated interaction functions H(1), H(2) and H(3). (b) One of many possible
multilayer networks corresponding to the network in (a), with L = 2 layers and n = LN = 8 identical subnodes. Subnodes
are labeled with node indices, with prime and double prime indicating layer 1 and 2, respectively. (c) Flattened, monolayer

representation of the multilayer network in (b). (d) Block structure of the adjacency matrix e
A for the monolayer network in

(c). Colors indicate di↵erent types of nodes (diagonal blocks) and links (o↵-diagonal blocks).

tical (di↵erent Fi), and the network can host K > 1
types of directed interactions. To overcome these chal-
lenges, below we propose a multilayer construction that
defines a large subclass of systems in the form of Eq. (1).
We show that any system in this subclass is guaranteed
to have a synchronous state, and the stability of that
state can be analyzed by applying the MSF framework
to the flattened representation of the system.

In our multilayer system, each node represents a set
of L identical subnodes, belonging to L di↵erent layers
and connected by a set of internal sublinks. The pattern
of these internal sublinks is thus considered part of the
node’s properties and can be used to represent node het-
erogeneity. For a pair of connected nodes, the type of the
connecting link is determined by the pattern of external

sublinks between the subnodes of these two nodes. This
construction yields a multilayer network [18–22] of subn-
odes and sublinks with L layers; see Fig. 1(b) for an L = 2
example. Note that in general there is more than one
possible multilayer network for a given symmetric net-
work. The multilayer networks just defined are broader
than most classes of systems used in previous studies of
synchronization on multilayer networks [24, 25], since the
links between two di↵erent layers are not constrained to
be one-to-one. The underlying hierarchical organization,
in which each node decomposes into interacting subn-
odes, is shared by many physical systems, such as the
multi-processor nodes in modern supercomputers.

Coupling the dynamics of subnodes di↵usively in this
network, the multilayer system can be described at the
subnode level as

ẋ
(i)
` = f(x(i)

` ) +
NX

i0=1

LX

`0=1

eA(ii0)
``0

⇥
h(x(i0)

`0 ) � h(x(i)
` )

⇤
, (2)

where x
(i)
` = x

(i)
` (t) is the m-dimensional state vector for

subnode ` (i.e., in layer `) of node i, the function f de-
termines the dynamics of every isolated subnode, and h
is the interaction function common to all sublinks. Here,
for all links of a given type between di↵erent nodes, the

corresponding coupling matrix eA(ii0) := ( eA(ii0)
``0 ), i 6= i0,

is the same and encodes the subnode connection pat-
tern for that link type. In contrast, the subnode connec-
tion pattern within each node i is encoded in the ma-

trix F (i) := ( eA(ii)
``0 ). The node-to-node interactions are

not necessarily di↵usive, but the subnode-to-subnode in-
teractions are di↵usive, which guarantees the existence

of a synchronous state given by x
(i)
` (t) = s(t), 8i, `

with ṡ = f (s). Thus, Eq. (2) describes a general class
of multilayer models of symmetric networks that ad-
mit a state corresponding to complete synchronization,
Xi(t) = S(t), 8i, when written in the form of Eq. (1)
(see SM [26], Sec. S2 for more details).

To facilitate the stability analysis, we flatten the mul-
tilayer network representation into a single layer (see
Fig. 1(c) for an example). We use eA = ( eAjj0) to denote
the weighted adjacency matrix that encodes the struc-
ture of the resulting monolayer network [see Fig. 1(d)
for an example]. This matrix has a block structure
in which the matrices F (i) appearing on the diagonal
blocks characterize node properties, while eA(ii0) appear-
ing on the o↵-diagonal blocks reflect the link types.
Since subnodes and sublinks are identical, we can di-
rectly apply the MSF analysis [29] to the monolayer net-
work and obtain the stability function  (�) (see SM [26],
Sec. S2 for details). The maximum Lyapunov exponent
(MLE) of the synchronous state is then computed as
 := max2jn  (�j), where �1, . . . ,�n are the eigenval-

ues of the corresponding Laplacian matrix eL := (eLjj0),

defined as eLjj0 := �jj0
Pn

k=1
eAjk � eAjj0 , where �jj0 is the

Kronecker delta function. Here, �1 is the identically zero
eigenvalue, which is excluded in the definition of  for
corresponding to a mode of perturbation that does not
a↵ect synchronization stability. Thus, the synchronous
state is asymptotically stable if  < 0 and unstable if
 > 0. Using this MSF analysis, we have developed a sys-
tematic scheme for verifying the AISync conditions (C1)
and (C2) for our multilayer system (SM [26], Sec. S4).

In the case of linear f and h, which is widely used to

node = L identical subnodes 

link types = patterns of external sublinks

node types = patterns of internal sublinks
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FIG. 1. Multilayer construction of AISync networks. (a) Example of a symmetric network of N = 4 heterogeneous oscillators
and K = 3 types of (directed) links with associated interaction functions H(1), H(2) and H(3). (b) One of many possible
multilayer networks corresponding to the network in (a), with L = 2 layers and n = LN = 8 identical subnodes. Subnodes
are labeled with node indices, with prime and double prime indicating layer 1 and 2, respectively. (c) Flattened, monolayer

representation of the multilayer network in (b). (d) Block structure of the adjacency matrix e
A for the monolayer network in

(c). Colors indicate di↵erent types of nodes (diagonal blocks) and links (o↵-diagonal blocks).

ing the MSF framework to the flattened representation
of the system.

In our multilayer construction, each node represents
a set of L identical subnodes, belonging to L di↵erent
layers and connected by a set of internal sublinks. The
pattern of these internal sublinks is thus considered part
of the node’s properties and can be used to represent
node heterogeneity. For a pair of connected nodes, the
type of the connecting link is determined by the pattern
of external sublinks between the subnodes of these two
nodes. This construction yields a multilayer network [18–
23] of subnodes and sublinks with L layers; see Fig. 1(b)
for an L = 2 example. Note that in general there is
more than one possible multilayer network for a given
symmetric network. Coupling the dynamics of subnodes
di↵usively in this network, Eq. (1) can be written at the
subnode level as

ẋ
(i)
` = f(x(i)

` ) +
NX

i0=1

LX

`0=1

eA(ii0)
``0

⇥
h(x(i0)

`0 ) � h(x(i)
` )

⇤
, (2)

where x
(i)
` = x

(i)
` (t) is the m-dimensional state vector for

subnode ` (i.e., in layer `) of node i, the function f de-
termines the dynamics of every isolated subnode, and h
is the interaction function common to all sublinks. Here,
for all links of a given type between di↵erent nodes, the

corresponding coupling matrix eA(ii0) := ( eA(ii0)
``0 ), i 6= i0,

is the same and encodes the subnode connection pat-
tern for that link type. In contrast, the subnode connec-
tion pattern within each node i is encoded in the matrix

F (i) := ( eA(ii)
``0 ). Note that the node-to-node interactions

are not necessarily di↵usive, but the subnode-to-subnode
interactions are di↵usive. This guarantees the existence

of a synchronous state of Eq. (2) given by x
(i)
` (t) = s(t),

8i, ` with ṡ = f (s), which corresponds to a synchronous
state of Eq. (1). Thus, we have a general class of multi-
layer models of symmetric networks that admit complete
synchronization (see SM [24], Sec. S2 for more details).

To facilitate the stability analysis, we flatten the mul-
tilayer network representation into a single layer (see
Fig. 1(c) for an example). By defining a single index

for all the n := LN subnodes, in which node i has subn-
odes j = ki1, . . . , kiL with ki` := (i � 1)L + `, we can
rewrite Eq. (2) in the standard form for a (single-layer)
di↵usively coupled network of oscillators:

ẋj = f(xj) +
nX

j0=1

eAjj0 [h(xj0) � h(xj)], (3)

where xj = x
(i)
` and eAjj0 := eA(ii0)

``0 for j = ki` and

j0 = ki0`0 . The weighted adjacency matrix eA = ( eAjj0)
thus encodes the structure of the monolayer network in
this representation (see Fig. 1(d) for an example). This
matrix has a block structure in which the matrices F (i)

appearing on the diagonal blocks characterize node prop-
erties, while eA(ii0) appearing on the o↵-diagonal blocks
reflect the link types. Since subnodes and sublinks are
identical, we can directly apply the MSF analysis [26]
to Eq. (3) and obtain the stability function  (�). The
maximum Lyapunov exponent (MLE) of the synchronous
state is then computed as  := max2jn  (�j), where
�1, . . . ,�n are the eigenvalues of the Laplacian matrix
eL := (eLjj0) of the monolayer network, defined as eLjj0 :=

�jj0
Pn

k=1
eAjk � eAjj0 , where �jj0 is the Kronecker delta

function. Here, �1 is the identically zero eigenvalue,
which is excluded in the definition of  for corresponding
to a mode of perturbation that does not a↵ect synchro-
nization stability. Thus, the synchronous state is asymp-
totically stable if  < 0 and unstable if  > 0. Using this
MSF analysis, we have developed a systematic method
for verifying the AISync conditions (C1) and (C2) for
our multilayer model (see SM [24], Sec. S3).

An example system exhibiting AISync is shown in
Fig. 2. The network structure is symmetric and has
N = 3 nodes and K = 2 types of links corresponding
to links in the clockwise and counterclockwise directions
in Fig. 2(a). Each node consists of L = 2 subnodes, each
of which is a chaotic Lorenz oscillator. The two subnodes
are connected by a sublink, the direction of which deter-
mines the node type. The system has two parameters, a
and b, representing the coupling strength of internal and

FIG. 1. Multilayer construction of AISync networks. (a) Example of a symmetric network of N = 4 heterogeneous oscillators
and K = 3 types of (directed) links with associated interaction functions H(1), H(2) and H(3). (b) One of many possible
multilayer networks corresponding to the network in (a), with L = 2 layers and n = LN = 8 identical subnodes. Subnodes
are labeled with node indices, with prime and double prime indicating layer 1 and 2, respectively. (c) Flattened, monolayer

representation of the multilayer network in (b). (d) Block structure of the adjacency matrix e
A for the monolayer network in

(c). Colors indicate di↵erent types of nodes (diagonal blocks) and links (o↵-diagonal blocks).

tical (di↵erent Fi), and the network can host K > 1
types of directed interactions. To overcome these chal-
lenges, below we propose a multilayer construction that
defines a large subclass of systems in the form of Eq. (1).
We show that any system in this subclass is guaranteed
to have a synchronous state, and the stability of that
state can be analyzed by applying the MSF framework
to the flattened representation of the system.

In our multilayer system, each node represents a set
of L identical subnodes, belonging to L di↵erent layers
and connected by a set of internal sublinks. The pattern
of these internal sublinks is thus considered part of the
node’s properties and can be used to represent node het-
erogeneity. For a pair of connected nodes, the type of the
connecting link is determined by the pattern of external

sublinks between the subnodes of these two nodes. This
construction yields a multilayer network [18–22] of subn-
odes and sublinks with L layers; see Fig. 1(b) for an L = 2
example. Note that in general there is more than one
possible multilayer network for a given symmetric net-
work. The multilayer networks just defined are broader
than most classes of systems used in previous studies of
synchronization on multilayer networks [24, 25], since the
links between two di↵erent layers are not constrained to
be one-to-one. The underlying hierarchical organization,
in which each node decomposes into interacting subn-
odes, is shared by many physical systems, such as the
multi-processor nodes in modern supercomputers.

Coupling the dynamics of subnodes di↵usively in this
network, the multilayer system can be described at the
subnode level as

ẋ
(i)
` = f(x(i)

` ) +
NX

i0=1

LX

`0=1

eA(ii0)
``0

⇥
h(x(i0)

`0 ) � h(x(i)
` )

⇤
, (2)

where x
(i)
` = x

(i)
` (t) is the m-dimensional state vector for

subnode ` (i.e., in layer `) of node i, the function f de-
termines the dynamics of every isolated subnode, and h
is the interaction function common to all sublinks. Here,
for all links of a given type between di↵erent nodes, the

corresponding coupling matrix eA(ii0) := ( eA(ii0)
``0 ), i 6= i0,

is the same and encodes the subnode connection pat-
tern for that link type. In contrast, the subnode connec-
tion pattern within each node i is encoded in the ma-

trix F (i) := ( eA(ii)
``0 ). The node-to-node interactions are

not necessarily di↵usive, but the subnode-to-subnode in-
teractions are di↵usive, which guarantees the existence

of a synchronous state given by x
(i)
` (t) = s(t), 8i, `

with ṡ = f (s). Thus, Eq. (2) describes a general class
of multilayer models of symmetric networks that ad-
mit a state corresponding to complete synchronization,
Xi(t) = S(t), 8i, when written in the form of Eq. (1)
(see SM [26], Sec. S2 for more details).

To facilitate the stability analysis, we flatten the mul-
tilayer network representation into a single layer (see
Fig. 1(c) for an example). We use eA = ( eAjj0) to denote
the weighted adjacency matrix that encodes the struc-
ture of the resulting monolayer network [see Fig. 1(d)
for an example]. This matrix has a block structure
in which the matrices F (i) appearing on the diagonal
blocks characterize node properties, while eA(ii0) appear-
ing on the o↵-diagonal blocks reflect the link types.
Since subnodes and sublinks are identical, we can di-
rectly apply the MSF analysis [29] to the monolayer net-
work and obtain the stability function  (�) (see SM [26],
Sec. S2 for details). The maximum Lyapunov exponent
(MLE) of the synchronous state is then computed as
 := max2jn  (�j), where �1, . . . ,�n are the eigenval-

ues of the corresponding Laplacian matrix eL := (eLjj0),

defined as eLjj0 := �jj0
Pn

k=1
eAjk � eAjj0 , where �jj0 is the

Kronecker delta function. Here, �1 is the identically zero
eigenvalue, which is excluded in the definition of  for
corresponding to a mode of perturbation that does not
a↵ect synchronization stability. Thus, the synchronous
state is asymptotically stable if  < 0 and unstable if
 > 0. Using this MSF analysis, we have developed a sys-
tematic scheme for verifying the AISync conditions (C1)
and (C2) for our multilayer system (SM [26], Sec. S4).

In the case of linear f and h, which is widely used to

node = L identical subnodes 

link types = patterns of external sublinks

node types = patterns of internal sublinks

…
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FIG. 1. Multilayer construction of AISync networks. (a) Example of a symmetric network of N = 4 heterogeneous oscillators
and K = 3 types of (directed) links with associated interaction functions H(1), H(2) and H(3). (b) One of many possible
multilayer networks corresponding to the network in (a), with L = 2 layers and n = LN = 8 identical subnodes. Subnodes
are labeled with node indices, with prime and double prime indicating layer 1 and 2, respectively. (c) Flattened, monolayer

representation of the multilayer network in (b). (d) Block structure of the adjacency matrix e
A for the monolayer network in

(c). Colors indicate di↵erent types of nodes (diagonal blocks) and links (o↵-diagonal blocks).

ing the MSF framework to the flattened representation
of the system.

In our multilayer construction, each node represents
a set of L identical subnodes, belonging to L di↵erent
layers and connected by a set of internal sublinks. The
pattern of these internal sublinks is thus considered part
of the node’s properties and can be used to represent
node heterogeneity. For a pair of connected nodes, the
type of the connecting link is determined by the pattern
of external sublinks between the subnodes of these two
nodes. This construction yields a multilayer network [18–
23] of subnodes and sublinks with L layers; see Fig. 1(b)
for an L = 2 example. Note that in general there is
more than one possible multilayer network for a given
symmetric network. Coupling the dynamics of subnodes
di↵usively in this network, Eq. (1) can be written at the
subnode level as

ẋ
(i)
` = f(x(i)

` ) +
NX

i0=1

LX

`0=1

eA(ii0)
``0

⇥
h(x(i0)

`0 ) � h(x(i)
` )

⇤
, (2)

where x
(i)
` = x

(i)
` (t) is the m-dimensional state vector for

subnode ` (i.e., in layer `) of node i, the function f de-
termines the dynamics of every isolated subnode, and h
is the interaction function common to all sublinks. Here,
for all links of a given type between di↵erent nodes, the

corresponding coupling matrix eA(ii0) := ( eA(ii0)
``0 ), i 6= i0,

is the same and encodes the subnode connection pat-
tern for that link type. In contrast, the subnode connec-
tion pattern within each node i is encoded in the matrix

F (i) := ( eA(ii)
``0 ). Note that the node-to-node interactions

are not necessarily di↵usive, but the subnode-to-subnode
interactions are di↵usive. This guarantees the existence

of a synchronous state of Eq. (2) given by x
(i)
` (t) = s(t),

8i, ` with ṡ = f (s), which corresponds to a synchronous
state of Eq. (1). Thus, we have a general class of multi-
layer models of symmetric networks that admit complete
synchronization (see SM [24], Sec. S2 for more details).

To facilitate the stability analysis, we flatten the mul-
tilayer network representation into a single layer (see
Fig. 1(c) for an example). By defining a single index

for all the n := LN subnodes, in which node i has subn-
odes j = ki1, . . . , kiL with ki` := (i � 1)L + `, we can
rewrite Eq. (2) in the standard form for a (single-layer)
di↵usively coupled network of oscillators:

ẋj = f(xj) +
nX

j0=1

eAjj0 [h(xj0) � h(xj)], (3)

where xj = x
(i)
` and eAjj0 := eA(ii0)

``0 for j = ki` and

j0 = ki0`0 . The weighted adjacency matrix eA = ( eAjj0)
thus encodes the structure of the monolayer network in
this representation (see Fig. 1(d) for an example). This
matrix has a block structure in which the matrices F (i)

appearing on the diagonal blocks characterize node prop-
erties, while eA(ii0) appearing on the o↵-diagonal blocks
reflect the link types. Since subnodes and sublinks are
identical, we can directly apply the MSF analysis [26]
to Eq. (3) and obtain the stability function  (�). The
maximum Lyapunov exponent (MLE) of the synchronous
state is then computed as  := max2jn  (�j), where
�1, . . . ,�n are the eigenvalues of the Laplacian matrix
eL := (eLjj0) of the monolayer network, defined as eLjj0 :=

�jj0
Pn

k=1
eAjk � eAjj0 , where �jj0 is the Kronecker delta

function. Here, �1 is the identically zero eigenvalue,
which is excluded in the definition of  for corresponding
to a mode of perturbation that does not a↵ect synchro-
nization stability. Thus, the synchronous state is asymp-
totically stable if  < 0 and unstable if  > 0. Using this
MSF analysis, we have developed a systematic method
for verifying the AISync conditions (C1) and (C2) for
our multilayer model (see SM [24], Sec. S3).

An example system exhibiting AISync is shown in
Fig. 2. The network structure is symmetric and has
N = 3 nodes and K = 2 types of links corresponding
to links in the clockwise and counterclockwise directions
in Fig. 2(a). Each node consists of L = 2 subnodes, each
of which is a chaotic Lorenz oscillator. The two subnodes
are connected by a sublink, the direction of which deter-
mines the node type. The system has two parameters, a
and b, representing the coupling strength of internal and

FIG. 1. Multilayer construction of AISync networks. (a) Example of a symmetric network of N = 4 heterogeneous oscillators
and K = 3 types of (directed) links with associated interaction functions H(1), H(2) and H(3). (b) One of many possible
multilayer networks corresponding to the network in (a), with L = 2 layers and n = LN = 8 identical subnodes. Subnodes
are labeled with node indices, with prime and double prime indicating layer 1 and 2, respectively. (c) Flattened, monolayer

representation of the multilayer network in (b). (d) Block structure of the adjacency matrix e
A for the monolayer network in

(c). Colors indicate di↵erent types of nodes (diagonal blocks) and links (o↵-diagonal blocks).

tical (di↵erent Fi), and the network can host K > 1
types of directed interactions. To overcome these chal-
lenges, below we propose a multilayer construction that
defines a large subclass of systems in the form of Eq. (1).
We show that any system in this subclass is guaranteed
to have a synchronous state, and the stability of that
state can be analyzed by applying the MSF framework
to the flattened representation of the system.

In our multilayer system, each node represents a set
of L identical subnodes, belonging to L di↵erent layers
and connected by a set of internal sublinks. The pattern
of these internal sublinks is thus considered part of the
node’s properties and can be used to represent node het-
erogeneity. For a pair of connected nodes, the type of the
connecting link is determined by the pattern of external

sublinks between the subnodes of these two nodes. This
construction yields a multilayer network [18–22] of subn-
odes and sublinks with L layers; see Fig. 1(b) for an L = 2
example. Note that in general there is more than one
possible multilayer network for a given symmetric net-
work. The multilayer networks just defined are broader
than most classes of systems used in previous studies of
synchronization on multilayer networks [24, 25], since the
links between two di↵erent layers are not constrained to
be one-to-one. The underlying hierarchical organization,
in which each node decomposes into interacting subn-
odes, is shared by many physical systems, such as the
multi-processor nodes in modern supercomputers.

Coupling the dynamics of subnodes di↵usively in this
network, the multilayer system can be described at the
subnode level as

ẋ
(i)
` = f(x(i)

` ) +
NX

i0=1

LX

`0=1

eA(ii0)
``0

⇥
h(x(i0)

`0 ) � h(x(i)
` )

⇤
, (2)

where x
(i)
` = x

(i)
` (t) is the m-dimensional state vector for

subnode ` (i.e., in layer `) of node i, the function f de-
termines the dynamics of every isolated subnode, and h
is the interaction function common to all sublinks. Here,
for all links of a given type between di↵erent nodes, the

corresponding coupling matrix eA(ii0) := ( eA(ii0)
``0 ), i 6= i0,

is the same and encodes the subnode connection pat-
tern for that link type. In contrast, the subnode connec-
tion pattern within each node i is encoded in the ma-

trix F (i) := ( eA(ii)
``0 ). The node-to-node interactions are

not necessarily di↵usive, but the subnode-to-subnode in-
teractions are di↵usive, which guarantees the existence

of a synchronous state given by x
(i)
` (t) = s(t), 8i, `

with ṡ = f (s). Thus, Eq. (2) describes a general class
of multilayer models of symmetric networks that ad-
mit a state corresponding to complete synchronization,
Xi(t) = S(t), 8i, when written in the form of Eq. (1)
(see SM [26], Sec. S2 for more details).

To facilitate the stability analysis, we flatten the mul-
tilayer network representation into a single layer (see
Fig. 1(c) for an example). We use eA = ( eAjj0) to denote
the weighted adjacency matrix that encodes the struc-
ture of the resulting monolayer network [see Fig. 1(d)
for an example]. This matrix has a block structure
in which the matrices F (i) appearing on the diagonal
blocks characterize node properties, while eA(ii0) appear-
ing on the o↵-diagonal blocks reflect the link types.
Since subnodes and sublinks are identical, we can di-
rectly apply the MSF analysis [29] to the monolayer net-
work and obtain the stability function  (�) (see SM [26],
Sec. S2 for details). The maximum Lyapunov exponent
(MLE) of the synchronous state is then computed as
 := max2jn  (�j), where �1, . . . ,�n are the eigenval-

ues of the corresponding Laplacian matrix eL := (eLjj0),

defined as eLjj0 := �jj0
Pn

k=1
eAjk � eAjj0 , where �jj0 is the

Kronecker delta function. Here, �1 is the identically zero
eigenvalue, which is excluded in the definition of  for
corresponding to a mode of perturbation that does not
a↵ect synchronization stability. Thus, the synchronous
state is asymptotically stable if  < 0 and unstable if
 > 0. Using this MSF analysis, we have developed a sys-
tematic scheme for verifying the AISync conditions (C1)
and (C2) for our multilayer system (SM [26], Sec. S4).

In the case of linear f and h, which is widely used to
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FIG. 1. Multilayer construction of AISync networks. (a) Example of a symmetric network of N = 4 heterogeneous oscillators
and K = 3 types of (directed) links with associated interaction functions H(1), H(2) and H(3). (b) One of many possible
multilayer networks corresponding to the network in (a), with L = 2 layers and n = LN = 8 identical subnodes. Subnodes
are labeled with node indices, with prime and double prime indicating layer 1 and 2, respectively. (c) Flattened, monolayer

representation of the multilayer network in (b). (d) Block structure of the adjacency matrix e
A for the monolayer network in

(c). Colors indicate di↵erent types of nodes (diagonal blocks) and links (o↵-diagonal blocks).

ing the MSF framework to the flattened representation
of the system.

In our multilayer construction, each node represents
a set of L identical subnodes, belonging to L di↵erent
layers and connected by a set of internal sublinks. The
pattern of these internal sublinks is thus considered part
of the node’s properties and can be used to represent
node heterogeneity. For a pair of connected nodes, the
type of the connecting link is determined by the pattern
of external sublinks between the subnodes of these two
nodes. This construction yields a multilayer network [18–
23] of subnodes and sublinks with L layers; see Fig. 1(b)
for an L = 2 example. Note that in general there is
more than one possible multilayer network for a given
symmetric network. Coupling the dynamics of subnodes
di↵usively in this network, Eq. (1) can be written at the
subnode level as

ẋ
(i)
` = f(x(i)

` ) +
NX

i0=1

LX

`0=1

eA(ii0)
``0

⇥
h(x(i0)

`0 ) � h(x(i)
` )

⇤
, (2)

where x
(i)
` = x

(i)
` (t) is the m-dimensional state vector for

subnode ` (i.e., in layer `) of node i, the function f de-
termines the dynamics of every isolated subnode, and h
is the interaction function common to all sublinks. Here,
for all links of a given type between di↵erent nodes, the

corresponding coupling matrix eA(ii0) := ( eA(ii0)
``0 ), i 6= i0,

is the same and encodes the subnode connection pat-
tern for that link type. In contrast, the subnode connec-
tion pattern within each node i is encoded in the matrix

F (i) := ( eA(ii)
``0 ). Note that the node-to-node interactions

are not necessarily di↵usive, but the subnode-to-subnode
interactions are di↵usive. This guarantees the existence

of a synchronous state of Eq. (2) given by x
(i)
` (t) = s(t),

8i, ` with ṡ = f (s), which corresponds to a synchronous
state of Eq. (1). Thus, we have a general class of multi-
layer models of symmetric networks that admit complete
synchronization (see SM [24], Sec. S2 for more details).

To facilitate the stability analysis, we flatten the mul-
tilayer network representation into a single layer (see
Fig. 1(c) for an example). By defining a single index

for all the n := LN subnodes, in which node i has subn-
odes j = ki1, . . . , kiL with ki` := (i � 1)L + `, we can
rewrite Eq. (2) in the standard form for a (single-layer)
di↵usively coupled network of oscillators:

ẋj = f(xj) +
nX

j0=1

eAjj0 [h(xj0) � h(xj)], (3)

where xj = x
(i)
` and eAjj0 := eA(ii0)

``0 for j = ki` and

j0 = ki0`0 . The weighted adjacency matrix eA = ( eAjj0)
thus encodes the structure of the monolayer network in
this representation (see Fig. 1(d) for an example). This
matrix has a block structure in which the matrices F (i)

appearing on the diagonal blocks characterize node prop-
erties, while eA(ii0) appearing on the o↵-diagonal blocks
reflect the link types. Since subnodes and sublinks are
identical, we can directly apply the MSF analysis [26]
to Eq. (3) and obtain the stability function  (�). The
maximum Lyapunov exponent (MLE) of the synchronous
state is then computed as  := max2jn  (�j), where
�1, . . . ,�n are the eigenvalues of the Laplacian matrix
eL := (eLjj0) of the monolayer network, defined as eLjj0 :=

�jj0
Pn

k=1
eAjk � eAjj0 , where �jj0 is the Kronecker delta

function. Here, �1 is the identically zero eigenvalue,
which is excluded in the definition of  for corresponding
to a mode of perturbation that does not a↵ect synchro-
nization stability. Thus, the synchronous state is asymp-
totically stable if  < 0 and unstable if  > 0. Using this
MSF analysis, we have developed a systematic method
for verifying the AISync conditions (C1) and (C2) for
our multilayer model (see SM [24], Sec. S3).

An example system exhibiting AISync is shown in
Fig. 2. The network structure is symmetric and has
N = 3 nodes and K = 2 types of links corresponding
to links in the clockwise and counterclockwise directions
in Fig. 2(a). Each node consists of L = 2 subnodes, each
of which is a chaotic Lorenz oscillator. The two subnodes
are connected by a sublink, the direction of which deter-
mines the node type. The system has two parameters, a
and b, representing the coupling strength of internal and

FIG. 1. Multilayer construction of AISync networks. (a) Example of a symmetric network of N = 4 heterogeneous oscillators
and K = 3 types of (directed) links with associated interaction functions H(1), H(2) and H(3). (b) One of many possible
multilayer networks corresponding to the network in (a), with L = 2 layers and n = LN = 8 identical subnodes. Subnodes
are labeled with node indices, with prime and double prime indicating layer 1 and 2, respectively. (c) Flattened, monolayer

representation of the multilayer network in (b). (d) Block structure of the adjacency matrix e
A for the monolayer network in

(c). Colors indicate di↵erent types of nodes (diagonal blocks) and links (o↵-diagonal blocks).

tical (di↵erent Fi), and the network can host K > 1
types of directed interactions. To overcome these chal-
lenges, below we propose a multilayer construction that
defines a large subclass of systems in the form of Eq. (1).
We show that any system in this subclass is guaranteed
to have a synchronous state, and the stability of that
state can be analyzed by applying the MSF framework
to the flattened representation of the system.

In our multilayer system, each node represents a set
of L identical subnodes, belonging to L di↵erent layers
and connected by a set of internal sublinks. The pattern
of these internal sublinks is thus considered part of the
node’s properties and can be used to represent node het-
erogeneity. For a pair of connected nodes, the type of the
connecting link is determined by the pattern of external

sublinks between the subnodes of these two nodes. This
construction yields a multilayer network [18–22] of subn-
odes and sublinks with L layers; see Fig. 1(b) for an L = 2
example. Note that in general there is more than one
possible multilayer network for a given symmetric net-
work. The multilayer networks just defined are broader
than most classes of systems used in previous studies of
synchronization on multilayer networks [24, 25], since the
links between two di↵erent layers are not constrained to
be one-to-one. The underlying hierarchical organization,
in which each node decomposes into interacting subn-
odes, is shared by many physical systems, such as the
multi-processor nodes in modern supercomputers.

Coupling the dynamics of subnodes di↵usively in this
network, the multilayer system can be described at the
subnode level as

ẋ
(i)
` = f(x(i)

` ) +
NX

i0=1

LX

`0=1

eA(ii0)
``0

⇥
h(x(i0)

`0 ) � h(x(i)
` )

⇤
, (2)

where x
(i)
` = x

(i)
` (t) is the m-dimensional state vector for

subnode ` (i.e., in layer `) of node i, the function f de-
termines the dynamics of every isolated subnode, and h
is the interaction function common to all sublinks. Here,
for all links of a given type between di↵erent nodes, the

corresponding coupling matrix eA(ii0) := ( eA(ii0)
``0 ), i 6= i0,

is the same and encodes the subnode connection pat-
tern for that link type. In contrast, the subnode connec-
tion pattern within each node i is encoded in the ma-

trix F (i) := ( eA(ii)
``0 ). The node-to-node interactions are

not necessarily di↵usive, but the subnode-to-subnode in-
teractions are di↵usive, which guarantees the existence

of a synchronous state given by x
(i)
` (t) = s(t), 8i, `

with ṡ = f (s). Thus, Eq. (2) describes a general class
of multilayer models of symmetric networks that ad-
mit a state corresponding to complete synchronization,
Xi(t) = S(t), 8i, when written in the form of Eq. (1)
(see SM [26], Sec. S2 for more details).

To facilitate the stability analysis, we flatten the mul-
tilayer network representation into a single layer (see
Fig. 1(c) for an example). We use eA = ( eAjj0) to denote
the weighted adjacency matrix that encodes the struc-
ture of the resulting monolayer network [see Fig. 1(d)
for an example]. This matrix has a block structure
in which the matrices F (i) appearing on the diagonal
blocks characterize node properties, while eA(ii0) appear-
ing on the o↵-diagonal blocks reflect the link types.
Since subnodes and sublinks are identical, we can di-
rectly apply the MSF analysis [29] to the monolayer net-
work and obtain the stability function  (�) (see SM [26],
Sec. S2 for details). The maximum Lyapunov exponent
(MLE) of the synchronous state is then computed as
 := max2jn  (�j), where �1, . . . ,�n are the eigenval-

ues of the corresponding Laplacian matrix eL := (eLjj0),

defined as eLjj0 := �jj0
Pn

k=1
eAjk � eAjj0 , where �jj0 is the

Kronecker delta function. Here, �1 is the identically zero
eigenvalue, which is excluded in the definition of  for
corresponding to a mode of perturbation that does not
a↵ect synchronization stability. Thus, the synchronous
state is asymptotically stable if  < 0 and unstable if
 > 0. Using this MSF analysis, we have developed a sys-
tematic scheme for verifying the AISync conditions (C1)
and (C2) for our multilayer system (SM [26], Sec. S4).

In the case of linear f and h, which is widely used to
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and K = 3 types of (directed) links with associated interaction functions H(1), H(2) and H(3). (b) One of many possible
multilayer networks corresponding to the network in (a), with L = 2 layers and n = LN = 8 identical subnodes. Subnodes
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ing the MSF framework to the flattened representation
of the system.

In our multilayer construction, each node represents
a set of L identical subnodes, belonging to L di↵erent
layers and connected by a set of internal sublinks. The
pattern of these internal sublinks is thus considered part
of the node’s properties and can be used to represent
node heterogeneity. For a pair of connected nodes, the
type of the connecting link is determined by the pattern
of external sublinks between the subnodes of these two
nodes. This construction yields a multilayer network [18–
23] of subnodes and sublinks with L layers; see Fig. 1(b)
for an L = 2 example. Note that in general there is
more than one possible multilayer network for a given
symmetric network. Coupling the dynamics of subnodes
di↵usively in this network, Eq. (1) can be written at the
subnode level as

ẋ
(i)
` = f(x(i)

` ) +
NX

i0=1

LX

`0=1

eA(ii0)
``0

⇥
h(x(i0)

`0 ) � h(x(i)
` )

⇤
, (2)

where x
(i)
` = x

(i)
` (t) is the m-dimensional state vector for

subnode ` (i.e., in layer `) of node i, the function f de-
termines the dynamics of every isolated subnode, and h
is the interaction function common to all sublinks. Here,
for all links of a given type between di↵erent nodes, the

corresponding coupling matrix eA(ii0) := ( eA(ii0)
``0 ), i 6= i0,

is the same and encodes the subnode connection pat-
tern for that link type. In contrast, the subnode connec-
tion pattern within each node i is encoded in the matrix

F (i) := ( eA(ii)
``0 ). Note that the node-to-node interactions

are not necessarily di↵usive, but the subnode-to-subnode
interactions are di↵usive. This guarantees the existence

of a synchronous state of Eq. (2) given by x
(i)
` (t) = s(t),

8i, ` with ṡ = f (s), which corresponds to a synchronous
state of Eq. (1). Thus, we have a general class of multi-
layer models of symmetric networks that admit complete
synchronization (see SM [24], Sec. S2 for more details).

To facilitate the stability analysis, we flatten the mul-
tilayer network representation into a single layer (see
Fig. 1(c) for an example). By defining a single index

for all the n := LN subnodes, in which node i has subn-
odes j = ki1, . . . , kiL with ki` := (i � 1)L + `, we can
rewrite Eq. (2) in the standard form for a (single-layer)
di↵usively coupled network of oscillators:

ẋj = f(xj) +
nX

j0=1

eAjj0 [h(xj0) � h(xj)], (3)

where xj = x
(i)
` and eAjj0 := eA(ii0)

``0 for j = ki` and

j0 = ki0`0 . The weighted adjacency matrix eA = ( eAjj0)
thus encodes the structure of the monolayer network in
this representation (see Fig. 1(d) for an example). This
matrix has a block structure in which the matrices F (i)

appearing on the diagonal blocks characterize node prop-
erties, while eA(ii0) appearing on the o↵-diagonal blocks
reflect the link types. Since subnodes and sublinks are
identical, we can directly apply the MSF analysis [26]
to Eq. (3) and obtain the stability function  (�). The
maximum Lyapunov exponent (MLE) of the synchronous
state is then computed as  := max2jn  (�j), where
�1, . . . ,�n are the eigenvalues of the Laplacian matrix
eL := (eLjj0) of the monolayer network, defined as eLjj0 :=

�jj0
Pn

k=1
eAjk � eAjj0 , where �jj0 is the Kronecker delta

function. Here, �1 is the identically zero eigenvalue,
which is excluded in the definition of  for corresponding
to a mode of perturbation that does not a↵ect synchro-
nization stability. Thus, the synchronous state is asymp-
totically stable if  < 0 and unstable if  > 0. Using this
MSF analysis, we have developed a systematic method
for verifying the AISync conditions (C1) and (C2) for
our multilayer model (see SM [24], Sec. S3).

An example system exhibiting AISync is shown in
Fig. 2. The network structure is symmetric and has
N = 3 nodes and K = 2 types of links corresponding
to links in the clockwise and counterclockwise directions
in Fig. 2(a). Each node consists of L = 2 subnodes, each
of which is a chaotic Lorenz oscillator. The two subnodes
are connected by a sublink, the direction of which deter-
mines the node type. The system has two parameters, a
and b, representing the coupling strength of internal and

FIG. 1. Multilayer construction of AISync networks. (a) Example of a symmetric network of N = 4 heterogeneous oscillators
and K = 3 types of (directed) links with associated interaction functions H(1), H(2) and H(3). (b) One of many possible
multilayer networks corresponding to the network in (a), with L = 2 layers and n = LN = 8 identical subnodes. Subnodes
are labeled with node indices, with prime and double prime indicating layer 1 and 2, respectively. (c) Flattened, monolayer

representation of the multilayer network in (b). (d) Block structure of the adjacency matrix e
A for the monolayer network in

(c). Colors indicate di↵erent types of nodes (diagonal blocks) and links (o↵-diagonal blocks).

tical (di↵erent Fi), and the network can host K > 1
types of directed interactions. To overcome these chal-
lenges, below we propose a multilayer construction that
defines a large subclass of systems in the form of Eq. (1).
We show that any system in this subclass is guaranteed
to have a synchronous state, and the stability of that
state can be analyzed by applying the MSF framework
to the flattened representation of the system.

In our multilayer system, each node represents a set
of L identical subnodes, belonging to L di↵erent layers
and connected by a set of internal sublinks. The pattern
of these internal sublinks is thus considered part of the
node’s properties and can be used to represent node het-
erogeneity. For a pair of connected nodes, the type of the
connecting link is determined by the pattern of external

sublinks between the subnodes of these two nodes. This
construction yields a multilayer network [18–22] of subn-
odes and sublinks with L layers; see Fig. 1(b) for an L = 2
example. Note that in general there is more than one
possible multilayer network for a given symmetric net-
work. The multilayer networks just defined are broader
than most classes of systems used in previous studies of
synchronization on multilayer networks [24, 25], since the
links between two di↵erent layers are not constrained to
be one-to-one. The underlying hierarchical organization,
in which each node decomposes into interacting subn-
odes, is shared by many physical systems, such as the
multi-processor nodes in modern supercomputers.

Coupling the dynamics of subnodes di↵usively in this
network, the multilayer system can be described at the
subnode level as

ẋ
(i)
` = f(x(i)

` ) +
NX

i0=1

LX

`0=1

eA(ii0)
``0

⇥
h(x(i0)

`0 ) � h(x(i)
` )

⇤
, (2)

where x
(i)
` = x

(i)
` (t) is the m-dimensional state vector for

subnode ` (i.e., in layer `) of node i, the function f de-
termines the dynamics of every isolated subnode, and h
is the interaction function common to all sublinks. Here,
for all links of a given type between di↵erent nodes, the

corresponding coupling matrix eA(ii0) := ( eA(ii0)
``0 ), i 6= i0,

is the same and encodes the subnode connection pat-
tern for that link type. In contrast, the subnode connec-
tion pattern within each node i is encoded in the ma-

trix F (i) := ( eA(ii)
``0 ). The node-to-node interactions are

not necessarily di↵usive, but the subnode-to-subnode in-
teractions are di↵usive, which guarantees the existence

of a synchronous state given by x
(i)
` (t) = s(t), 8i, `

with ṡ = f (s). Thus, Eq. (2) describes a general class
of multilayer models of symmetric networks that ad-
mit a state corresponding to complete synchronization,
Xi(t) = S(t), 8i, when written in the form of Eq. (1)
(see SM [26], Sec. S2 for more details).

To facilitate the stability analysis, we flatten the mul-
tilayer network representation into a single layer (see
Fig. 1(c) for an example). We use eA = ( eAjj0) to denote
the weighted adjacency matrix that encodes the struc-
ture of the resulting monolayer network [see Fig. 1(d)
for an example]. This matrix has a block structure
in which the matrices F (i) appearing on the diagonal
blocks characterize node properties, while eA(ii0) appear-
ing on the o↵-diagonal blocks reflect the link types.
Since subnodes and sublinks are identical, we can di-
rectly apply the MSF analysis [29] to the monolayer net-
work and obtain the stability function  (�) (see SM [26],
Sec. S2 for details). The maximum Lyapunov exponent
(MLE) of the synchronous state is then computed as
 := max2jn  (�j), where �1, . . . ,�n are the eigenval-

ues of the corresponding Laplacian matrix eL := (eLjj0),

defined as eLjj0 := �jj0
Pn

k=1
eAjk � eAjj0 , where �jj0 is the

Kronecker delta function. Here, �1 is the identically zero
eigenvalue, which is excluded in the definition of  for
corresponding to a mode of perturbation that does not
a↵ect synchronization stability. Thus, the synchronous
state is asymptotically stable if  < 0 and unstable if
 > 0. Using this MSF analysis, we have developed a sys-
tematic scheme for verifying the AISync conditions (C1)
and (C2) for our multilayer system (SM [26], Sec. S4).

In the case of linear f and h, which is widely used to
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FIG. 1. Multilayer construction of AISync networks. (a) Example of a symmetric network of N = 4 heterogeneous oscillators
and K = 3 types of (directed) links with associated interaction functions H(1), H(2) and H(3). (b) One of many possible
multilayer networks corresponding to the network in (a), with L = 2 layers and n = LN = 8 identical subnodes. Subnodes
are labeled with node indices, with prime and double prime indicating layer 1 and 2, respectively. (c) Flattened, monolayer

representation of the multilayer network in (b). (d) Block structure of the adjacency matrix e
A for the monolayer network in

(c). Colors indicate di↵erent types of nodes (diagonal blocks) and links (o↵-diagonal blocks).

ing the MSF framework to the flattened representation
of the system.

In our multilayer construction, each node represents
a set of L identical subnodes, belonging to L di↵erent
layers and connected by a set of internal sublinks. The
pattern of these internal sublinks is thus considered part
of the node’s properties and can be used to represent
node heterogeneity. For a pair of connected nodes, the
type of the connecting link is determined by the pattern
of external sublinks between the subnodes of these two
nodes. This construction yields a multilayer network [18–
23] of subnodes and sublinks with L layers; see Fig. 1(b)
for an L = 2 example. Note that in general there is
more than one possible multilayer network for a given
symmetric network. Coupling the dynamics of subnodes
di↵usively in this network, Eq. (1) can be written at the
subnode level as

ẋ
(i)
` = f(x(i)

` ) +
NX

i0=1

LX

`0=1

eA(ii0)
``0

⇥
h(x(i0)

`0 ) � h(x(i)
` )

⇤
, (2)

where x
(i)
` = x

(i)
` (t) is the m-dimensional state vector for

subnode ` (i.e., in layer `) of node i, the function f de-
termines the dynamics of every isolated subnode, and h
is the interaction function common to all sublinks. Here,
for all links of a given type between di↵erent nodes, the

corresponding coupling matrix eA(ii0) := ( eA(ii0)
``0 ), i 6= i0,

is the same and encodes the subnode connection pat-
tern for that link type. In contrast, the subnode connec-
tion pattern within each node i is encoded in the matrix

F (i) := ( eA(ii)
``0 ). Note that the node-to-node interactions

are not necessarily di↵usive, but the subnode-to-subnode
interactions are di↵usive. This guarantees the existence

of a synchronous state of Eq. (2) given by x
(i)
` (t) = s(t),

8i, ` with ṡ = f (s), which corresponds to a synchronous
state of Eq. (1). Thus, we have a general class of multi-
layer models of symmetric networks that admit complete
synchronization (see SM [24], Sec. S2 for more details).

To facilitate the stability analysis, we flatten the mul-
tilayer network representation into a single layer (see
Fig. 1(c) for an example). By defining a single index

for all the n := LN subnodes, in which node i has subn-
odes j = ki1, . . . , kiL with ki` := (i � 1)L + `, we can
rewrite Eq. (2) in the standard form for a (single-layer)
di↵usively coupled network of oscillators:

ẋj = f(xj) +
nX

j0=1

eAjj0 [h(xj0) � h(xj)], (3)

where xj = x
(i)
` and eAjj0 := eA(ii0)

``0 for j = ki` and

j0 = ki0`0 . The weighted adjacency matrix eA = ( eAjj0)
thus encodes the structure of the monolayer network in
this representation (see Fig. 1(d) for an example). This
matrix has a block structure in which the matrices F (i)

appearing on the diagonal blocks characterize node prop-
erties, while eA(ii0) appearing on the o↵-diagonal blocks
reflect the link types. Since subnodes and sublinks are
identical, we can directly apply the MSF analysis [26]
to Eq. (3) and obtain the stability function  (�). The
maximum Lyapunov exponent (MLE) of the synchronous
state is then computed as  := max2jn  (�j), where
�1, . . . ,�n are the eigenvalues of the Laplacian matrix
eL := (eLjj0) of the monolayer network, defined as eLjj0 :=

�jj0
Pn

k=1
eAjk � eAjj0 , where �jj0 is the Kronecker delta

function. Here, �1 is the identically zero eigenvalue,
which is excluded in the definition of  for corresponding
to a mode of perturbation that does not a↵ect synchro-
nization stability. Thus, the synchronous state is asymp-
totically stable if  < 0 and unstable if  > 0. Using this
MSF analysis, we have developed a systematic method
for verifying the AISync conditions (C1) and (C2) for
our multilayer model (see SM [24], Sec. S3).

An example system exhibiting AISync is shown in
Fig. 2. The network structure is symmetric and has
N = 3 nodes and K = 2 types of links corresponding
to links in the clockwise and counterclockwise directions
in Fig. 2(a). Each node consists of L = 2 subnodes, each
of which is a chaotic Lorenz oscillator. The two subnodes
are connected by a sublink, the direction of which deter-
mines the node type. The system has two parameters, a
and b, representing the coupling strength of internal and

FIG. 1. Multilayer construction of AISync networks. (a) Example of a symmetric network of N = 4 heterogeneous oscillators
and K = 3 types of (directed) links with associated interaction functions H(1), H(2) and H(3). (b) One of many possible
multilayer networks corresponding to the network in (a), with L = 2 layers and n = LN = 8 identical subnodes. Subnodes
are labeled with node indices, with prime and double prime indicating layer 1 and 2, respectively. (c) Flattened, monolayer

representation of the multilayer network in (b). (d) Block structure of the adjacency matrix e
A for the monolayer network in

(c). Colors indicate di↵erent types of nodes (diagonal blocks) and links (o↵-diagonal blocks).

tical (di↵erent Fi), and the network can host K > 1
types of directed interactions. To overcome these chal-
lenges, below we propose a multilayer construction that
defines a large subclass of systems in the form of Eq. (1).
We show that any system in this subclass is guaranteed
to have a synchronous state, and the stability of that
state can be analyzed by applying the MSF framework
to the flattened representation of the system.

In our multilayer system, each node represents a set
of L identical subnodes, belonging to L di↵erent layers
and connected by a set of internal sublinks. The pattern
of these internal sublinks is thus considered part of the
node’s properties and can be used to represent node het-
erogeneity. For a pair of connected nodes, the type of the
connecting link is determined by the pattern of external

sublinks between the subnodes of these two nodes. This
construction yields a multilayer network [18–22] of subn-
odes and sublinks with L layers; see Fig. 1(b) for an L = 2
example. Note that in general there is more than one
possible multilayer network for a given symmetric net-
work. The multilayer networks just defined are broader
than most classes of systems used in previous studies of
synchronization on multilayer networks [24, 25], since the
links between two di↵erent layers are not constrained to
be one-to-one. The underlying hierarchical organization,
in which each node decomposes into interacting subn-
odes, is shared by many physical systems, such as the
multi-processor nodes in modern supercomputers.

Coupling the dynamics of subnodes di↵usively in this
network, the multilayer system can be described at the
subnode level as

ẋ
(i)
` = f(x(i)

` ) +
NX

i0=1

LX

`0=1

eA(ii0)
``0

⇥
h(x(i0)

`0 ) � h(x(i)
` )

⇤
, (2)

where x
(i)
` = x

(i)
` (t) is the m-dimensional state vector for

subnode ` (i.e., in layer `) of node i, the function f de-
termines the dynamics of every isolated subnode, and h
is the interaction function common to all sublinks. Here,
for all links of a given type between di↵erent nodes, the

corresponding coupling matrix eA(ii0) := ( eA(ii0)
``0 ), i 6= i0,

is the same and encodes the subnode connection pat-
tern for that link type. In contrast, the subnode connec-
tion pattern within each node i is encoded in the ma-

trix F (i) := ( eA(ii)
``0 ). The node-to-node interactions are

not necessarily di↵usive, but the subnode-to-subnode in-
teractions are di↵usive, which guarantees the existence

of a synchronous state given by x
(i)
` (t) = s(t), 8i, `

with ṡ = f (s). Thus, Eq. (2) describes a general class
of multilayer models of symmetric networks that ad-
mit a state corresponding to complete synchronization,
Xi(t) = S(t), 8i, when written in the form of Eq. (1)
(see SM [26], Sec. S2 for more details).

To facilitate the stability analysis, we flatten the mul-
tilayer network representation into a single layer (see
Fig. 1(c) for an example). We use eA = ( eAjj0) to denote
the weighted adjacency matrix that encodes the struc-
ture of the resulting monolayer network [see Fig. 1(d)
for an example]. This matrix has a block structure
in which the matrices F (i) appearing on the diagonal
blocks characterize node properties, while eA(ii0) appear-
ing on the o↵-diagonal blocks reflect the link types.
Since subnodes and sublinks are identical, we can di-
rectly apply the MSF analysis [29] to the monolayer net-
work and obtain the stability function  (�) (see SM [26],
Sec. S2 for details). The maximum Lyapunov exponent
(MLE) of the synchronous state is then computed as
 := max2jn  (�j), where �1, . . . ,�n are the eigenval-

ues of the corresponding Laplacian matrix eL := (eLjj0),

defined as eLjj0 := �jj0
Pn

k=1
eAjk � eAjj0 , where �jj0 is the

Kronecker delta function. Here, �1 is the identically zero
eigenvalue, which is excluded in the definition of  for
corresponding to a mode of perturbation that does not
a↵ect synchronization stability. Thus, the synchronous
state is asymptotically stable if  < 0 and unstable if
 > 0. Using this MSF analysis, we have developed a sys-
tematic scheme for verifying the AISync conditions (C1)
and (C2) for our multilayer system (SM [26], Sec. S4).

In the case of linear f and h, which is widely used to
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FIG. 1. Multilayer construction of AISync networks. (a) Example of a symmetric network of N = 4 heterogeneous oscillators
and K = 3 types of (directed) links with associated interaction functions H(1), H(2) and H(3). (b) One of many possible
multilayer networks corresponding to the network in (a), with L = 2 layers and n = LN = 8 identical subnodes. Subnodes
are labeled with node indices, with prime and double prime indicating layer 1 and 2, respectively. (c) Flattened, monolayer

representation of the multilayer network in (b). (d) Block structure of the adjacency matrix e
A for the monolayer network in

(c). Colors indicate di↵erent types of nodes (diagonal blocks) and links (o↵-diagonal blocks).

ing the MSF framework to the flattened representation
of the system.

In our multilayer construction, each node represents
a set of L identical subnodes, belonging to L di↵erent
layers and connected by a set of internal sublinks. The
pattern of these internal sublinks is thus considered part
of the node’s properties and can be used to represent
node heterogeneity. For a pair of connected nodes, the
type of the connecting link is determined by the pattern
of external sublinks between the subnodes of these two
nodes. This construction yields a multilayer network [18–
23] of subnodes and sublinks with L layers; see Fig. 1(b)
for an L = 2 example. Note that in general there is
more than one possible multilayer network for a given
symmetric network. Coupling the dynamics of subnodes
di↵usively in this network, Eq. (1) can be written at the
subnode level as

ẋ
(i)
` = f(x(i)

` ) +
NX

i0=1

LX

`0=1

eA(ii0)
``0

⇥
h(x(i0)

`0 ) � h(x(i)
` )

⇤
, (2)

where x
(i)
` = x

(i)
` (t) is the m-dimensional state vector for

subnode ` (i.e., in layer `) of node i, the function f de-
termines the dynamics of every isolated subnode, and h
is the interaction function common to all sublinks. Here,
for all links of a given type between di↵erent nodes, the

corresponding coupling matrix eA(ii0) := ( eA(ii0)
``0 ), i 6= i0,

is the same and encodes the subnode connection pat-
tern for that link type. In contrast, the subnode connec-
tion pattern within each node i is encoded in the matrix

F (i) := ( eA(ii)
``0 ). Note that the node-to-node interactions

are not necessarily di↵usive, but the subnode-to-subnode
interactions are di↵usive. This guarantees the existence

of a synchronous state of Eq. (2) given by x
(i)
` (t) = s(t),

8i, ` with ṡ = f (s), which corresponds to a synchronous
state of Eq. (1). Thus, we have a general class of multi-
layer models of symmetric networks that admit complete
synchronization (see SM [24], Sec. S2 for more details).

To facilitate the stability analysis, we flatten the mul-
tilayer network representation into a single layer (see
Fig. 1(c) for an example). By defining a single index

for all the n := LN subnodes, in which node i has subn-
odes j = ki1, . . . , kiL with ki` := (i � 1)L + `, we can
rewrite Eq. (2) in the standard form for a (single-layer)
di↵usively coupled network of oscillators:

ẋj = f(xj) +
nX

j0=1

eAjj0 [h(xj0) � h(xj)], (3)

where xj = x
(i)
` and eAjj0 := eA(ii0)

``0 for j = ki` and

j0 = ki0`0 . The weighted adjacency matrix eA = ( eAjj0)
thus encodes the structure of the monolayer network in
this representation (see Fig. 1(d) for an example). This
matrix has a block structure in which the matrices F (i)

appearing on the diagonal blocks characterize node prop-
erties, while eA(ii0) appearing on the o↵-diagonal blocks
reflect the link types. Since subnodes and sublinks are
identical, we can directly apply the MSF analysis [26]
to Eq. (3) and obtain the stability function  (�). The
maximum Lyapunov exponent (MLE) of the synchronous
state is then computed as  := max2jn  (�j), where
�1, . . . ,�n are the eigenvalues of the Laplacian matrix
eL := (eLjj0) of the monolayer network, defined as eLjj0 :=

�jj0
Pn

k=1
eAjk � eAjj0 , where �jj0 is the Kronecker delta

function. Here, �1 is the identically zero eigenvalue,
which is excluded in the definition of  for corresponding
to a mode of perturbation that does not a↵ect synchro-
nization stability. Thus, the synchronous state is asymp-
totically stable if  < 0 and unstable if  > 0. Using this
MSF analysis, we have developed a systematic method
for verifying the AISync conditions (C1) and (C2) for
our multilayer model (see SM [24], Sec. S3).

An example system exhibiting AISync is shown in
Fig. 2. The network structure is symmetric and has
N = 3 nodes and K = 2 types of links corresponding
to links in the clockwise and counterclockwise directions
in Fig. 2(a). Each node consists of L = 2 subnodes, each
of which is a chaotic Lorenz oscillator. The two subnodes
are connected by a sublink, the direction of which deter-
mines the node type. The system has two parameters, a
and b, representing the coupling strength of internal and

FIG. 1. Multilayer construction of AISync networks. (a) Example of a symmetric network of N = 4 heterogeneous oscillators
and K = 3 types of (directed) links with associated interaction functions H(1), H(2) and H(3). (b) One of many possible
multilayer networks corresponding to the network in (a), with L = 2 layers and n = LN = 8 identical subnodes. Subnodes
are labeled with node indices, with prime and double prime indicating layer 1 and 2, respectively. (c) Flattened, monolayer

representation of the multilayer network in (b). (d) Block structure of the adjacency matrix e
A for the monolayer network in

(c). Colors indicate di↵erent types of nodes (diagonal blocks) and links (o↵-diagonal blocks).

tical (di↵erent Fi), and the network can host K > 1
types of directed interactions. To overcome these chal-
lenges, below we propose a multilayer construction that
defines a large subclass of systems in the form of Eq. (1).
We show that any system in this subclass is guaranteed
to have a synchronous state, and the stability of that
state can be analyzed by applying the MSF framework
to the flattened representation of the system.

In our multilayer system, each node represents a set
of L identical subnodes, belonging to L di↵erent layers
and connected by a set of internal sublinks. The pattern
of these internal sublinks is thus considered part of the
node’s properties and can be used to represent node het-
erogeneity. For a pair of connected nodes, the type of the
connecting link is determined by the pattern of external

sublinks between the subnodes of these two nodes. This
construction yields a multilayer network [18–22] of subn-
odes and sublinks with L layers; see Fig. 1(b) for an L = 2
example. Note that in general there is more than one
possible multilayer network for a given symmetric net-
work. The multilayer networks just defined are broader
than most classes of systems used in previous studies of
synchronization on multilayer networks [24, 25], since the
links between two di↵erent layers are not constrained to
be one-to-one. The underlying hierarchical organization,
in which each node decomposes into interacting subn-
odes, is shared by many physical systems, such as the
multi-processor nodes in modern supercomputers.

Coupling the dynamics of subnodes di↵usively in this
network, the multilayer system can be described at the
subnode level as

ẋ
(i)
` = f(x(i)

` ) +
NX

i0=1

LX

`0=1

eA(ii0)
``0

⇥
h(x(i0)

`0 ) � h(x(i)
` )

⇤
, (2)

where x
(i)
` = x

(i)
` (t) is the m-dimensional state vector for

subnode ` (i.e., in layer `) of node i, the function f de-
termines the dynamics of every isolated subnode, and h
is the interaction function common to all sublinks. Here,
for all links of a given type between di↵erent nodes, the

corresponding coupling matrix eA(ii0) := ( eA(ii0)
``0 ), i 6= i0,

is the same and encodes the subnode connection pat-
tern for that link type. In contrast, the subnode connec-
tion pattern within each node i is encoded in the ma-

trix F (i) := ( eA(ii)
``0 ). The node-to-node interactions are

not necessarily di↵usive, but the subnode-to-subnode in-
teractions are di↵usive, which guarantees the existence

of a synchronous state given by x
(i)
` (t) = s(t), 8i, `

with ṡ = f (s). Thus, Eq. (2) describes a general class
of multilayer models of symmetric networks that ad-
mit a state corresponding to complete synchronization,
Xi(t) = S(t), 8i, when written in the form of Eq. (1)
(see SM [26], Sec. S2 for more details).

To facilitate the stability analysis, we flatten the mul-
tilayer network representation into a single layer (see
Fig. 1(c) for an example). We use eA = ( eAjj0) to denote
the weighted adjacency matrix that encodes the struc-
ture of the resulting monolayer network [see Fig. 1(d)
for an example]. This matrix has a block structure
in which the matrices F (i) appearing on the diagonal
blocks characterize node properties, while eA(ii0) appear-
ing on the o↵-diagonal blocks reflect the link types.
Since subnodes and sublinks are identical, we can di-
rectly apply the MSF analysis [29] to the monolayer net-
work and obtain the stability function  (�) (see SM [26],
Sec. S2 for details). The maximum Lyapunov exponent
(MLE) of the synchronous state is then computed as
 := max2jn  (�j), where �1, . . . ,�n are the eigenval-

ues of the corresponding Laplacian matrix eL := (eLjj0),

defined as eLjj0 := �jj0
Pn

k=1
eAjk � eAjj0 , where �jj0 is the

Kronecker delta function. Here, �1 is the identically zero
eigenvalue, which is excluded in the definition of  for
corresponding to a mode of perturbation that does not
a↵ect synchronization stability. Thus, the synchronous
state is asymptotically stable if  < 0 and unstable if
 > 0. Using this MSF analysis, we have developed a sys-
tematic scheme for verifying the AISync conditions (C1)
and (C2) for our multilayer system (SM [26], Sec. S4).

In the case of linear f and h, which is widely used to
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FIG. 1. Multilayer construction of AISync networks. (a) Example of a symmetric network of N = 4 heterogeneous oscillators
and K = 3 types of (directed) links with associated interaction functions H(1), H(2) and H(3). (b) One of many possible
multilayer networks corresponding to the network in (a), with L = 2 layers and n = LN = 8 identical subnodes. Subnodes
are labeled with node indices, with prime and double prime indicating layer 1 and 2, respectively. (c) Flattened, monolayer

representation of the multilayer network in (b). (d) Block structure of the adjacency matrix e
A for the monolayer network in

(c). Colors indicate di↵erent types of nodes (diagonal blocks) and links (o↵-diagonal blocks).

ing the MSF framework to the flattened representation
of the system.

In our multilayer construction, each node represents
a set of L identical subnodes, belonging to L di↵erent
layers and connected by a set of internal sublinks. The
pattern of these internal sublinks is thus considered part
of the node’s properties and can be used to represent
node heterogeneity. For a pair of connected nodes, the
type of the connecting link is determined by the pattern
of external sublinks between the subnodes of these two
nodes. This construction yields a multilayer network [18–
23] of subnodes and sublinks with L layers; see Fig. 1(b)
for an L = 2 example. Note that in general there is
more than one possible multilayer network for a given
symmetric network. Coupling the dynamics of subnodes
di↵usively in this network, Eq. (1) can be written at the
subnode level as

ẋ
(i)
` = f(x(i)

` ) +
NX

i0=1

LX

`0=1

eA(ii0)
``0

⇥
h(x(i0)

`0 ) � h(x(i)
` )

⇤
, (2)

where x
(i)
` = x

(i)
` (t) is the m-dimensional state vector for

subnode ` (i.e., in layer `) of node i, the function f de-
termines the dynamics of every isolated subnode, and h
is the interaction function common to all sublinks. Here,
for all links of a given type between di↵erent nodes, the

corresponding coupling matrix eA(ii0) := ( eA(ii0)
``0 ), i 6= i0,

is the same and encodes the subnode connection pat-
tern for that link type. In contrast, the subnode connec-
tion pattern within each node i is encoded in the matrix

F (i) := ( eA(ii)
``0 ). Note that the node-to-node interactions

are not necessarily di↵usive, but the subnode-to-subnode
interactions are di↵usive. This guarantees the existence

of a synchronous state of Eq. (2) given by x
(i)
` (t) = s(t),

8i, ` with ṡ = f (s), which corresponds to a synchronous
state of Eq. (1). Thus, we have a general class of multi-
layer models of symmetric networks that admit complete
synchronization (see SM [24], Sec. S2 for more details).

To facilitate the stability analysis, we flatten the mul-
tilayer network representation into a single layer (see
Fig. 1(c) for an example). By defining a single index

for all the n := LN subnodes, in which node i has subn-
odes j = ki1, . . . , kiL with ki` := (i � 1)L + `, we can
rewrite Eq. (2) in the standard form for a (single-layer)
di↵usively coupled network of oscillators:

ẋj = f(xj) +
nX

j0=1

eAjj0 [h(xj0) � h(xj)], (3)

where xj = x
(i)
` and eAjj0 := eA(ii0)

``0 for j = ki` and

j0 = ki0`0 . The weighted adjacency matrix eA = ( eAjj0)
thus encodes the structure of the monolayer network in
this representation (see Fig. 1(d) for an example). This
matrix has a block structure in which the matrices F (i)

appearing on the diagonal blocks characterize node prop-
erties, while eA(ii0) appearing on the o↵-diagonal blocks
reflect the link types. Since subnodes and sublinks are
identical, we can directly apply the MSF analysis [26]
to Eq. (3) and obtain the stability function  (�). The
maximum Lyapunov exponent (MLE) of the synchronous
state is then computed as  := max2jn  (�j), where
�1, . . . ,�n are the eigenvalues of the Laplacian matrix
eL := (eLjj0) of the monolayer network, defined as eLjj0 :=

�jj0
Pn

k=1
eAjk � eAjj0 , where �jj0 is the Kronecker delta

function. Here, �1 is the identically zero eigenvalue,
which is excluded in the definition of  for corresponding
to a mode of perturbation that does not a↵ect synchro-
nization stability. Thus, the synchronous state is asymp-
totically stable if  < 0 and unstable if  > 0. Using this
MSF analysis, we have developed a systematic method
for verifying the AISync conditions (C1) and (C2) for
our multilayer model (see SM [24], Sec. S3).

An example system exhibiting AISync is shown in
Fig. 2. The network structure is symmetric and has
N = 3 nodes and K = 2 types of links corresponding
to links in the clockwise and counterclockwise directions
in Fig. 2(a). Each node consists of L = 2 subnodes, each
of which is a chaotic Lorenz oscillator. The two subnodes
are connected by a sublink, the direction of which deter-
mines the node type. The system has two parameters, a
and b, representing the coupling strength of internal and

FIG. 1. Multilayer construction of AISync networks. (a) Example of a symmetric network of N = 4 heterogeneous oscillators
and K = 3 types of (directed) links with associated interaction functions H(1), H(2) and H(3). (b) One of many possible
multilayer networks corresponding to the network in (a), with L = 2 layers and n = LN = 8 identical subnodes. Subnodes
are labeled with node indices, with prime and double prime indicating layer 1 and 2, respectively. (c) Flattened, monolayer

representation of the multilayer network in (b). (d) Block structure of the adjacency matrix e
A for the monolayer network in

(c). Colors indicate di↵erent types of nodes (diagonal blocks) and links (o↵-diagonal blocks).

tical (di↵erent Fi), and the network can host K > 1
types of directed interactions. To overcome these chal-
lenges, below we propose a multilayer construction that
defines a large subclass of systems in the form of Eq. (1).
We show that any system in this subclass is guaranteed
to have a synchronous state, and the stability of that
state can be analyzed by applying the MSF framework
to the flattened representation of the system.

In our multilayer system, each node represents a set
of L identical subnodes, belonging to L di↵erent layers
and connected by a set of internal sublinks. The pattern
of these internal sublinks is thus considered part of the
node’s properties and can be used to represent node het-
erogeneity. For a pair of connected nodes, the type of the
connecting link is determined by the pattern of external

sublinks between the subnodes of these two nodes. This
construction yields a multilayer network [18–22] of subn-
odes and sublinks with L layers; see Fig. 1(b) for an L = 2
example. Note that in general there is more than one
possible multilayer network for a given symmetric net-
work. The multilayer networks just defined are broader
than most classes of systems used in previous studies of
synchronization on multilayer networks [24, 25], since the
links between two di↵erent layers are not constrained to
be one-to-one. The underlying hierarchical organization,
in which each node decomposes into interacting subn-
odes, is shared by many physical systems, such as the
multi-processor nodes in modern supercomputers.

Coupling the dynamics of subnodes di↵usively in this
network, the multilayer system can be described at the
subnode level as

ẋ
(i)
` = f(x(i)

` ) +
NX

i0=1

LX

`0=1

eA(ii0)
``0

⇥
h(x(i0)

`0 ) � h(x(i)
` )

⇤
, (2)

where x
(i)
` = x

(i)
` (t) is the m-dimensional state vector for

subnode ` (i.e., in layer `) of node i, the function f de-
termines the dynamics of every isolated subnode, and h
is the interaction function common to all sublinks. Here,
for all links of a given type between di↵erent nodes, the

corresponding coupling matrix eA(ii0) := ( eA(ii0)
``0 ), i 6= i0,

is the same and encodes the subnode connection pat-
tern for that link type. In contrast, the subnode connec-
tion pattern within each node i is encoded in the ma-

trix F (i) := ( eA(ii)
``0 ). The node-to-node interactions are

not necessarily di↵usive, but the subnode-to-subnode in-
teractions are di↵usive, which guarantees the existence

of a synchronous state given by x
(i)
` (t) = s(t), 8i, `

with ṡ = f (s). Thus, Eq. (2) describes a general class
of multilayer models of symmetric networks that ad-
mit a state corresponding to complete synchronization,
Xi(t) = S(t), 8i, when written in the form of Eq. (1)
(see SM [26], Sec. S2 for more details).

To facilitate the stability analysis, we flatten the mul-
tilayer network representation into a single layer (see
Fig. 1(c) for an example). We use eA = ( eAjj0) to denote
the weighted adjacency matrix that encodes the struc-
ture of the resulting monolayer network [see Fig. 1(d)
for an example]. This matrix has a block structure
in which the matrices F (i) appearing on the diagonal
blocks characterize node properties, while eA(ii0) appear-
ing on the o↵-diagonal blocks reflect the link types.
Since subnodes and sublinks are identical, we can di-
rectly apply the MSF analysis [29] to the monolayer net-
work and obtain the stability function  (�) (see SM [26],
Sec. S2 for details). The maximum Lyapunov exponent
(MLE) of the synchronous state is then computed as
 := max2jn  (�j), where �1, . . . ,�n are the eigenval-

ues of the corresponding Laplacian matrix eL := (eLjj0),

defined as eLjj0 := �jj0
Pn

k=1
eAjk � eAjj0 , where �jj0 is the

Kronecker delta function. Here, �1 is the identically zero
eigenvalue, which is excluded in the definition of  for
corresponding to a mode of perturbation that does not
a↵ect synchronization stability. Thus, the synchronous
state is asymptotically stable if  < 0 and unstable if
 > 0. Using this MSF analysis, we have developed a sys-
tematic scheme for verifying the AISync conditions (C1)
and (C2) for our multilayer system (SM [26], Sec. S4).

In the case of linear f and h, which is widely used to

22

1

23

4

H(1)

H(2)

H(3)

(a)

1�4�

3� 2�

1��4��

3�� 2��

(b)
4��

3� 2��

1�

4�

3�� 2�

1��

(c) 0 1

0 0

1 0

0 0

00

10

10

10

0 1

0 1

0 0

1 0

01

00

00

10

0 1

0 0

0 1

0 1

01

00

00

01

0 0

1 0

0 1

0 0

10

10

00

00

(d)

FIG. 1. Multilayer construction of AISync networks. (a) Example of a symmetric network of N = 4 heterogeneous oscillators
and K = 3 types of (directed) links with associated interaction functions H(1), H(2) and H(3). (b) One of many possible
multilayer networks corresponding to the network in (a), with L = 2 layers and n = LN = 8 identical subnodes. Subnodes
are labeled with node indices, with prime and double prime indicating layer 1 and 2, respectively. (c) Flattened, monolayer

representation of the multilayer network in (b). (d) Block structure of the adjacency matrix e
A for the monolayer network in

(c). Colors indicate di↵erent types of nodes (diagonal blocks) and links (o↵-diagonal blocks).

ing the MSF framework to the flattened representation
of the system.

In our multilayer construction, each node represents
a set of L identical subnodes, belonging to L di↵erent
layers and connected by a set of internal sublinks. The
pattern of these internal sublinks is thus considered part
of the node’s properties and can be used to represent
node heterogeneity. For a pair of connected nodes, the
type of the connecting link is determined by the pattern
of external sublinks between the subnodes of these two
nodes. This construction yields a multilayer network [18–
23] of subnodes and sublinks with L layers; see Fig. 1(b)
for an L = 2 example. Note that in general there is
more than one possible multilayer network for a given
symmetric network. Coupling the dynamics of subnodes
di↵usively in this network, Eq. (1) can be written at the
subnode level as

ẋ
(i)
` = f(x(i)

` ) +
NX

i0=1

LX

`0=1

eA(ii0)
``0

⇥
h(x(i0)

`0 ) � h(x(i)
` )

⇤
, (2)

where x
(i)
` = x

(i)
` (t) is the m-dimensional state vector for

subnode ` (i.e., in layer `) of node i, the function f de-
termines the dynamics of every isolated subnode, and h
is the interaction function common to all sublinks. Here,
for all links of a given type between di↵erent nodes, the

corresponding coupling matrix eA(ii0) := ( eA(ii0)
``0 ), i 6= i0,

is the same and encodes the subnode connection pat-
tern for that link type. In contrast, the subnode connec-
tion pattern within each node i is encoded in the matrix

F (i) := ( eA(ii)
``0 ). Note that the node-to-node interactions

are not necessarily di↵usive, but the subnode-to-subnode
interactions are di↵usive. This guarantees the existence

of a synchronous state of Eq. (2) given by x
(i)
` (t) = s(t),

8i, ` with ṡ = f (s), which corresponds to a synchronous
state of Eq. (1). Thus, we have a general class of multi-
layer models of symmetric networks that admit complete
synchronization (see SM [24], Sec. S2 for more details).

To facilitate the stability analysis, we flatten the mul-
tilayer network representation into a single layer (see
Fig. 1(c) for an example). By defining a single index

for all the n := LN subnodes, in which node i has subn-
odes j = ki1, . . . , kiL with ki` := (i � 1)L + `, we can
rewrite Eq. (2) in the standard form for a (single-layer)
di↵usively coupled network of oscillators:

ẋj = f(xj) +
nX

j0=1

eAjj0 [h(xj0) � h(xj)], (3)

where xj = x
(i)
` and eAjj0 := eA(ii0)

``0 for j = ki` and

j0 = ki0`0 . The weighted adjacency matrix eA = ( eAjj0)
thus encodes the structure of the monolayer network in
this representation (see Fig. 1(d) for an example). This
matrix has a block structure in which the matrices F (i)

appearing on the diagonal blocks characterize node prop-
erties, while eA(ii0) appearing on the o↵-diagonal blocks
reflect the link types. Since subnodes and sublinks are
identical, we can directly apply the MSF analysis [26]
to Eq. (3) and obtain the stability function  (�). The
maximum Lyapunov exponent (MLE) of the synchronous
state is then computed as  := max2jn  (�j), where
�1, . . . ,�n are the eigenvalues of the Laplacian matrix
eL := (eLjj0) of the monolayer network, defined as eLjj0 :=

�jj0
Pn

k=1
eAjk � eAjj0 , where �jj0 is the Kronecker delta

function. Here, �1 is the identically zero eigenvalue,
which is excluded in the definition of  for corresponding
to a mode of perturbation that does not a↵ect synchro-
nization stability. Thus, the synchronous state is asymp-
totically stable if  < 0 and unstable if  > 0. Using this
MSF analysis, we have developed a systematic method
for verifying the AISync conditions (C1) and (C2) for
our multilayer model (see SM [24], Sec. S3).

An example system exhibiting AISync is shown in
Fig. 2. The network structure is symmetric and has
N = 3 nodes and K = 2 types of links corresponding
to links in the clockwise and counterclockwise directions
in Fig. 2(a). Each node consists of L = 2 subnodes, each
of which is a chaotic Lorenz oscillator. The two subnodes
are connected by a sublink, the direction of which deter-
mines the node type. The system has two parameters, a
and b, representing the coupling strength of internal and

FIG. 1. Multilayer construction of AISync networks. (a) Example of a symmetric network of N = 4 heterogeneous oscillators
and K = 3 types of (directed) links with associated interaction functions H(1), H(2) and H(3). (b) One of many possible
multilayer networks corresponding to the network in (a), with L = 2 layers and n = LN = 8 identical subnodes. Subnodes
are labeled with node indices, with prime and double prime indicating layer 1 and 2, respectively. (c) Flattened, monolayer

representation of the multilayer network in (b). (d) Block structure of the adjacency matrix e
A for the monolayer network in

(c). Colors indicate di↵erent types of nodes (diagonal blocks) and links (o↵-diagonal blocks).

tical (di↵erent Fi), and the network can host K > 1
types of directed interactions. To overcome these chal-
lenges, below we propose a multilayer construction that
defines a large subclass of systems in the form of Eq. (1).
We show that any system in this subclass is guaranteed
to have a synchronous state, and the stability of that
state can be analyzed by applying the MSF framework
to the flattened representation of the system.

In our multilayer system, each node represents a set
of L identical subnodes, belonging to L di↵erent layers
and connected by a set of internal sublinks. The pattern
of these internal sublinks is thus considered part of the
node’s properties and can be used to represent node het-
erogeneity. For a pair of connected nodes, the type of the
connecting link is determined by the pattern of external

sublinks between the subnodes of these two nodes. This
construction yields a multilayer network [18–22] of subn-
odes and sublinks with L layers; see Fig. 1(b) for an L = 2
example. Note that in general there is more than one
possible multilayer network for a given symmetric net-
work. The multilayer networks just defined are broader
than most classes of systems used in previous studies of
synchronization on multilayer networks [24, 25], since the
links between two di↵erent layers are not constrained to
be one-to-one. The underlying hierarchical organization,
in which each node decomposes into interacting subn-
odes, is shared by many physical systems, such as the
multi-processor nodes in modern supercomputers.

Coupling the dynamics of subnodes di↵usively in this
network, the multilayer system can be described at the
subnode level as

ẋ
(i)
` = f(x(i)

` ) +
NX

i0=1

LX

`0=1

eA(ii0)
``0

⇥
h(x(i0)

`0 ) � h(x(i)
` )

⇤
, (2)

where x
(i)
` = x

(i)
` (t) is the m-dimensional state vector for

subnode ` (i.e., in layer `) of node i, the function f de-
termines the dynamics of every isolated subnode, and h
is the interaction function common to all sublinks. Here,
for all links of a given type between di↵erent nodes, the

corresponding coupling matrix eA(ii0) := ( eA(ii0)
``0 ), i 6= i0,

is the same and encodes the subnode connection pat-
tern for that link type. In contrast, the subnode connec-
tion pattern within each node i is encoded in the ma-

trix F (i) := ( eA(ii)
``0 ). The node-to-node interactions are

not necessarily di↵usive, but the subnode-to-subnode in-
teractions are di↵usive, which guarantees the existence

of a synchronous state given by x
(i)
` (t) = s(t), 8i, `

with ṡ = f (s). Thus, Eq. (2) describes a general class
of multilayer models of symmetric networks that ad-
mit a state corresponding to complete synchronization,
Xi(t) = S(t), 8i, when written in the form of Eq. (1)
(see SM [26], Sec. S2 for more details).

To facilitate the stability analysis, we flatten the mul-
tilayer network representation into a single layer (see
Fig. 1(c) for an example). We use eA = ( eAjj0) to denote
the weighted adjacency matrix that encodes the struc-
ture of the resulting monolayer network [see Fig. 1(d)
for an example]. This matrix has a block structure
in which the matrices F (i) appearing on the diagonal
blocks characterize node properties, while eA(ii0) appear-
ing on the o↵-diagonal blocks reflect the link types.
Since subnodes and sublinks are identical, we can di-
rectly apply the MSF analysis [29] to the monolayer net-
work and obtain the stability function  (�) (see SM [26],
Sec. S2 for details). The maximum Lyapunov exponent
(MLE) of the synchronous state is then computed as
 := max2jn  (�j), where �1, . . . ,�n are the eigenval-

ues of the corresponding Laplacian matrix eL := (eLjj0),

defined as eLjj0 := �jj0
Pn

k=1
eAjk � eAjj0 , where �jj0 is the

Kronecker delta function. Here, �1 is the identically zero
eigenvalue, which is excluded in the definition of  for
corresponding to a mode of perturbation that does not
a↵ect synchronization stability. Thus, the synchronous
state is asymptotically stable if  < 0 and unstable if
 > 0. Using this MSF analysis, we have developed a sys-
tematic scheme for verifying the AISync conditions (C1)
and (C2) for our multilayer system (SM [26], Sec. S4).

In the case of linear f and h, which is widely used to
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A scenario has recently been reported in which in order to stabilize complete synchronization of
an oscillator network—a symmetric state—the symmetry of the system itself has to be broken by
making the oscillators nonidentical. But how often does such behavior—which we term asymmetry-
induced synchronization (AISync)—occur in oscillator networks? Here we present a general scheme
for constructing AISync systems and demonstrate that this behavior is the norm rather than the
exception in a wide class of physical systems that can be seen as multilayer networks. Since a
symmetric network in complete synchrony is the basic building block of cluster synchronization in
more general networks, AISync should be common also in facilitating cluster synchronization by
breaking the symmetry of the cluster subnetworks.

A common assumption in the field of network dy-
namics is that homogeneity in the local dynamics [1, 2]
and interaction network [3–5]—or in the combination of
both [6, 7]—can facilitate complete synchronization. It
has been recently shown, however, that structural hetero-
geneity in networks of identical oscillators [8] or oscillator
heterogeneity in structurally symmetric networks [9] can
stabilize otherwise unstable synchronous states, thus ef-
fectively breaking the symmetry of a system to stabilize
a symmetric state. These scenarios, which we refer to
as asymmetry-induced synchronization (AISync), can be
interpreted as the converse of symmetry breaking, and
hence as a converse of chimera states [10, 11]. Perhaps
the most physically relevant form of AISync is the one
in which identically coupled oscillators (thus playing ex-
actly the same structural role) can converge to identical
dynamics only when they themselves are nonidentical;
this has been demonstrated, however, exclusively for ro-
tationally symmetric networks and one type of periodic
oscillators [9]. Whether such AISync behavior can be
shown to be common across many systems, including ex-
perimentally testable ones, has been an open question.

In this Letter we introduce and analyze a broad class of
AISync systems that can have general symmetric network
structure with multiple link types and general oscillator
dynamics (which can be chaotic, periodic, continuous-
time, discrete-time, etc.). This in particular includes
physical systems previously used in network synchro-
nization experiments, thus providing a recipe for future
empirical studies. For this class, we demonstrate that
AISync is indeed common and provide a full characteri-
zation of those networks that support AISync behavior,
showing that the fraction of such networks is significant
over a range of network sizes and link densities.

We start with networks of N (not necessarily identical)
oscillators coupled through K di↵erent types of interac-
tions. The network dynamics is described by

Ẋi = Fi(Xi) +
KX

↵=1

NX

i0=1
i0 6=i

A(↵)
ii0 H(↵)(Xi, Xi0), (1)

where Xi = Xi(t) is the M -dimensional state vector of
node i, the function Fi governs the intrinsic dynamics

of node i, the (binary) adjacency matrix A(↵) = (A(↵)
ii0 )

represents the topology of interactions through links of
type ↵, and H(↵) is the interaction function associated
with the link type ↵. A completely synchronous state of
the network is defined by X1(t) = X2(t) = · · · = XN (t).

To study the possibility of AISync, we assume that the
adjacency matrices A(↵) represents a symmetric network,
defined as a network in which every node can be mapped
to any other node by some permutation of nodes without
changing any A(↵). Thus, the set of links of any given
type must couple every node identically (see Fig. 1(a) for
an example). When restricted to undirected networks
with a single link type, our definition of symmetric net-
works yields the class of vertex-transitive graphs from
graph theory [12]. This rich class encompasses Cayley
graphs (defined as a network of relations between ele-
ments of a finite group; see SM, Sec. S1) and circulant
graphs (defined as a network whose nodes can be ar-
ranged in a ring so that the network is invariant under
rotations), which have previously been used to study
chimera states [13]. Enumerating all vertex-transitive
graphs of a given size N becomes challenging as N grows
and has so far been completed only for N < 32 [14]. The
symmetric networks we consider here generalizes vertex-
transitive graphs to the even richer class of networks that
can be directed and include multiple link types.

Given a symmetric network structure, the system in
Eq. (1) exhibits AISync if it satisfies the following two
conditions: (C1) there are no stable synchronous states
for any homogeneous system (i.e., with F1 = · · · = FN ),
and (C2) there is a heterogeneous system (i.e., with
Fi 6= Fi0 , for some i 6= i0) for which a stable synchronous
state exists. A challenge in establishing AISync is that
the form of Eq. (1) does not guarantee the existence of
a completely synchronous state. Another challenge con-
cerns the stability analysis of such a state, since Eq. (1) is
beyond the framework normally used in the master sta-
bility function (MSF) approach and its generalizations
currently available [2, 15–17]: oscillators can be noniden-
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FIG. 1. Multilayer construction of AISync networks. (a) Example of a symmetric network of N = 4 heterogeneous oscillators
and K = 3 types of (directed) links with associated interaction functions H(1), H(2) and H(3). (b) One of many possible
multilayer networks corresponding to the network in (a), with L = 2 layers and n = LN = 8 identical subnodes. Subnodes
are labeled with node indices, with prime and double prime indicating layer 1 and 2, respectively. (c) Flattened, monolayer

representation of the multilayer network in (b). (d) Block structure of the adjacency matrix e
A for the monolayer network in

(c). Colors indicate di↵erent types of nodes (diagonal blocks) and links (o↵-diagonal blocks).

ing the MSF framework to the flattened representation
of the system.

In our multilayer construction, each node represents
a set of L identical subnodes, belonging to L di↵erent
layers and connected by a set of internal sublinks. The
pattern of these internal sublinks is thus considered part
of the node’s properties and can be used to represent
node heterogeneity. For a pair of connected nodes, the
type of the connecting link is determined by the pattern
of external sublinks between the subnodes of these two
nodes. This construction yields a multilayer network [18–
23] of subnodes and sublinks with L layers; see Fig. 1(b)
for an L = 2 example. Note that in general there is
more than one possible multilayer network for a given
symmetric network. Coupling the dynamics of subnodes
di↵usively in this network, Eq. (1) can be written at the
subnode level as

ẋ
(i)
` = f(x(i)

` ) +
NX

i0=1

LX

`0=1

eA(ii0)
``0

⇥
h(x(i0)

`0 ) � h(x(i)
` )

⇤
, (2)

where x
(i)
` = x

(i)
` (t) is the m-dimensional state vector for

subnode ` (i.e., in layer `) of node i, the function f de-
termines the dynamics of every isolated subnode, and h
is the interaction function common to all sublinks. Here,
for all links of a given type between di↵erent nodes, the

corresponding coupling matrix eA(ii0) := ( eA(ii0)
``0 ), i 6= i0,

is the same and encodes the subnode connection pat-
tern for that link type. In contrast, the subnode connec-
tion pattern within each node i is encoded in the matrix

F (i) := ( eA(ii)
``0 ). Note that the node-to-node interactions

are not necessarily di↵usive, but the subnode-to-subnode
interactions are di↵usive. This guarantees the existence

of a synchronous state of Eq. (2) given by x
(i)
` (t) = s(t),

8i, ` with ṡ = f (s), which corresponds to a synchronous
state of Eq. (1). Thus, we have a general class of multi-
layer models of symmetric networks that admit complete
synchronization (see SM [24], Sec. S2 for more details).

To facilitate the stability analysis, we flatten the mul-
tilayer network representation into a single layer (see
Fig. 1(c) for an example). By defining a single index

for all the n := LN subnodes, in which node i has subn-
odes j = ki1, . . . , kiL with ki` := (i � 1)L + `, we can
rewrite Eq. (2) in the standard form for a (single-layer)
di↵usively coupled network of oscillators:

ẋj = f(xj) +
nX

j0=1

eAjj0 [h(xj0) � h(xj)], (3)

where xj = x
(i)
` and eAjj0 := eA(ii0)

``0 for j = ki` and

j0 = ki0`0 . The weighted adjacency matrix eA = ( eAjj0)
thus encodes the structure of the monolayer network in
this representation (see Fig. 1(d) for an example). This
matrix has a block structure in which the matrices F (i)

appearing on the diagonal blocks characterize node prop-
erties, while eA(ii0) appearing on the o↵-diagonal blocks
reflect the link types. Since subnodes and sublinks are
identical, we can directly apply the MSF analysis [26]
to Eq. (3) and obtain the stability function  (�). The
maximum Lyapunov exponent (MLE) of the synchronous
state is then computed as  := max2jn  (�j), where
�1, . . . ,�n are the eigenvalues of the Laplacian matrix
eL := (eLjj0) of the monolayer network, defined as eLjj0 :=

�jj0
Pn

k=1
eAjk � eAjj0 , where �jj0 is the Kronecker delta

function. Here, �1 is the identically zero eigenvalue,
which is excluded in the definition of  for corresponding
to a mode of perturbation that does not a↵ect synchro-
nization stability. Thus, the synchronous state is asymp-
totically stable if  < 0 and unstable if  > 0. Using this
MSF analysis, we have developed a systematic method
for verifying the AISync conditions (C1) and (C2) for
our multilayer model (see SM [24], Sec. S3).

An example system exhibiting AISync is shown in
Fig. 2. The network structure is symmetric and has
N = 3 nodes and K = 2 types of links corresponding
to links in the clockwise and counterclockwise directions
in Fig. 2(a). Each node consists of L = 2 subnodes, each
of which is a chaotic Lorenz oscillator. The two subnodes
are connected by a sublink, the direction of which deter-
mines the node type. The system has two parameters, a
and b, representing the coupling strength of internal and

FIG. 1. Multilayer construction of AISync networks. (a) Example of a symmetric network of N = 4 heterogeneous oscillators
and K = 3 types of (directed) links with associated interaction functions H(1), H(2) and H(3). (b) One of many possible
multilayer networks corresponding to the network in (a), with L = 2 layers and n = LN = 8 identical subnodes. Subnodes
are labeled with node indices, with prime and double prime indicating layer 1 and 2, respectively. (c) Flattened, monolayer

representation of the multilayer network in (b). (d) Block structure of the adjacency matrix e
A for the monolayer network in

(c). Colors indicate di↵erent types of nodes (diagonal blocks) and links (o↵-diagonal blocks).

tical (di↵erent Fi), and the network can host K > 1
types of directed interactions. To overcome these chal-
lenges, below we propose a multilayer construction that
defines a large subclass of systems in the form of Eq. (1).
We show that any system in this subclass is guaranteed
to have a synchronous state, and the stability of that
state can be analyzed by applying the MSF framework
to the flattened representation of the system.

In our multilayer system, each node represents a set
of L identical subnodes, belonging to L di↵erent layers
and connected by a set of internal sublinks. The pattern
of these internal sublinks is thus considered part of the
node’s properties and can be used to represent node het-
erogeneity. For a pair of connected nodes, the type of the
connecting link is determined by the pattern of external

sublinks between the subnodes of these two nodes. This
construction yields a multilayer network [18–22] of subn-
odes and sublinks with L layers; see Fig. 1(b) for an L = 2
example. Note that in general there is more than one
possible multilayer network for a given symmetric net-
work. The multilayer networks just defined are broader
than most classes of systems used in previous studies of
synchronization on multilayer networks [24, 25], since the
links between two di↵erent layers are not constrained to
be one-to-one. The underlying hierarchical organization,
in which each node decomposes into interacting subn-
odes, is shared by many physical systems, such as the
multi-processor nodes in modern supercomputers.

Coupling the dynamics of subnodes di↵usively in this
network, the multilayer system can be described at the
subnode level as

ẋ
(i)
` = f(x(i)

` ) +
NX

i0=1

LX

`0=1

eA(ii0)
``0

⇥
h(x(i0)

`0 ) � h(x(i)
` )

⇤
, (2)

where x
(i)
` = x

(i)
` (t) is the m-dimensional state vector for

subnode ` (i.e., in layer `) of node i, the function f de-
termines the dynamics of every isolated subnode, and h
is the interaction function common to all sublinks. Here,
for all links of a given type between di↵erent nodes, the

corresponding coupling matrix eA(ii0) := ( eA(ii0)
``0 ), i 6= i0,

is the same and encodes the subnode connection pat-
tern for that link type. In contrast, the subnode connec-
tion pattern within each node i is encoded in the ma-

trix F (i) := ( eA(ii)
``0 ). The node-to-node interactions are

not necessarily di↵usive, but the subnode-to-subnode in-
teractions are di↵usive, which guarantees the existence

of a synchronous state given by x
(i)
` (t) = s(t), 8i, `

with ṡ = f (s). Thus, Eq. (2) describes a general class
of multilayer models of symmetric networks that ad-
mit a state corresponding to complete synchronization,
Xi(t) = S(t), 8i, when written in the form of Eq. (1)
(see SM [26], Sec. S2 for more details).

To facilitate the stability analysis, we flatten the mul-
tilayer network representation into a single layer (see
Fig. 1(c) for an example). We use eA = ( eAjj0) to denote
the weighted adjacency matrix that encodes the struc-
ture of the resulting monolayer network [see Fig. 1(d)
for an example]. This matrix has a block structure
in which the matrices F (i) appearing on the diagonal
blocks characterize node properties, while eA(ii0) appear-
ing on the o↵-diagonal blocks reflect the link types.
Since subnodes and sublinks are identical, we can di-
rectly apply the MSF analysis [29] to the monolayer net-
work and obtain the stability function  (�) (see SM [26],
Sec. S2 for details). The maximum Lyapunov exponent
(MLE) of the synchronous state is then computed as
 := max2jn  (�j), where �1, . . . ,�n are the eigenval-

ues of the corresponding Laplacian matrix eL := (eLjj0),

defined as eLjj0 := �jj0
Pn

k=1
eAjk � eAjj0 , where �jj0 is the

Kronecker delta function. Here, �1 is the identically zero
eigenvalue, which is excluded in the definition of  for
corresponding to a mode of perturbation that does not
a↵ect synchronization stability. Thus, the synchronous
state is asymptotically stable if  < 0 and unstable if
 > 0. Using this MSF analysis, we have developed a sys-
tematic scheme for verifying the AISync conditions (C1)
and (C2) for our multilayer system (SM [26], Sec. S4).

In the case of linear f and h, which is widely used to
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FIG. 1. Multilayer construction of AISync networks. (a) Example of a symmetric network of N = 4 heterogeneous oscillators
and K = 3 types of (directed) links with associated interaction functions H(1), H(2) and H(3). (b) One of many possible
multilayer networks corresponding to the network in (a), with L = 2 layers and n = LN = 8 identical subnodes. Subnodes
are labeled with node indices, with prime and double prime indicating layer 1 and 2, respectively. (c) Flattened, monolayer

representation of the multilayer network in (b). (d) Block structure of the adjacency matrix e
A for the monolayer network in

(c). Colors indicate di↵erent types of nodes (diagonal blocks) and links (o↵-diagonal blocks).

ing the MSF framework to the flattened representation
of the system.

In our multilayer construction, each node represents
a set of L identical subnodes, belonging to L di↵erent
layers and connected by a set of internal sublinks. The
pattern of these internal sublinks is thus considered part
of the node’s properties and can be used to represent
node heterogeneity. For a pair of connected nodes, the
type of the connecting link is determined by the pattern
of external sublinks between the subnodes of these two
nodes. This construction yields a multilayer network [18–
23] of subnodes and sublinks with L layers; see Fig. 1(b)
for an L = 2 example. Note that in general there is
more than one possible multilayer network for a given
symmetric network. Coupling the dynamics of subnodes
di↵usively in this network, Eq. (1) can be written at the
subnode level as

ẋ
(i)
` = f(x(i)

` ) +
NX

i0=1

LX

`0=1

eA(ii0)
``0

⇥
h(x(i0)

`0 ) � h(x(i)
` )

⇤
, (2)

where x
(i)
` = x

(i)
` (t) is the m-dimensional state vector for

subnode ` (i.e., in layer `) of node i, the function f de-
termines the dynamics of every isolated subnode, and h
is the interaction function common to all sublinks. Here,
for all links of a given type between di↵erent nodes, the

corresponding coupling matrix eA(ii0) := ( eA(ii0)
``0 ), i 6= i0,

is the same and encodes the subnode connection pat-
tern for that link type. In contrast, the subnode connec-
tion pattern within each node i is encoded in the matrix

F (i) := ( eA(ii)
``0 ). Note that the node-to-node interactions

are not necessarily di↵usive, but the subnode-to-subnode
interactions are di↵usive. This guarantees the existence

of a synchronous state of Eq. (2) given by x
(i)
` (t) = s(t),

8i, ` with ṡ = f (s), which corresponds to a synchronous
state of Eq. (1). Thus, we have a general class of multi-
layer models of symmetric networks that admit complete
synchronization (see SM [24], Sec. S2 for more details).

To facilitate the stability analysis, we flatten the mul-
tilayer network representation into a single layer (see
Fig. 1(c) for an example). By defining a single index

for all the n := LN subnodes, in which node i has subn-
odes j = ki1, . . . , kiL with ki` := (i � 1)L + `, we can
rewrite Eq. (2) in the standard form for a (single-layer)
di↵usively coupled network of oscillators:

ẋj = f(xj) +
nX

j0=1

eAjj0 [h(xj0) � h(xj)], (3)

where xj = x
(i)
` and eAjj0 := eA(ii0)

``0 for j = ki` and

j0 = ki0`0 . The weighted adjacency matrix eA = ( eAjj0)
thus encodes the structure of the monolayer network in
this representation (see Fig. 1(d) for an example). This
matrix has a block structure in which the matrices F (i)

appearing on the diagonal blocks characterize node prop-
erties, while eA(ii0) appearing on the o↵-diagonal blocks
reflect the link types. Since subnodes and sublinks are
identical, we can directly apply the MSF analysis [26]
to Eq. (3) and obtain the stability function  (�). The
maximum Lyapunov exponent (MLE) of the synchronous
state is then computed as  := max2jn  (�j), where
�1, . . . ,�n are the eigenvalues of the Laplacian matrix
eL := (eLjj0) of the monolayer network, defined as eLjj0 :=

�jj0
Pn

k=1
eAjk � eAjj0 , where �jj0 is the Kronecker delta

function. Here, �1 is the identically zero eigenvalue,
which is excluded in the definition of  for corresponding
to a mode of perturbation that does not a↵ect synchro-
nization stability. Thus, the synchronous state is asymp-
totically stable if  < 0 and unstable if  > 0. Using this
MSF analysis, we have developed a systematic method
for verifying the AISync conditions (C1) and (C2) for
our multilayer model (see SM [24], Sec. S3).

An example system exhibiting AISync is shown in
Fig. 2. The network structure is symmetric and has
N = 3 nodes and K = 2 types of links corresponding
to links in the clockwise and counterclockwise directions
in Fig. 2(a). Each node consists of L = 2 subnodes, each
of which is a chaotic Lorenz oscillator. The two subnodes
are connected by a sublink, the direction of which deter-
mines the node type. The system has two parameters, a
and b, representing the coupling strength of internal and

FIG. 1. Multilayer construction of AISync networks. (a) Example of a symmetric network of N = 4 heterogeneous oscillators
and K = 3 types of (directed) links with associated interaction functions H(1), H(2) and H(3). (b) One of many possible
multilayer networks corresponding to the network in (a), with L = 2 layers and n = LN = 8 identical subnodes. Subnodes
are labeled with node indices, with prime and double prime indicating layer 1 and 2, respectively. (c) Flattened, monolayer

representation of the multilayer network in (b). (d) Block structure of the adjacency matrix e
A for the monolayer network in

(c). Colors indicate di↵erent types of nodes (diagonal blocks) and links (o↵-diagonal blocks).

tical (di↵erent Fi), and the network can host K > 1
types of directed interactions. To overcome these chal-
lenges, below we propose a multilayer construction that
defines a large subclass of systems in the form of Eq. (1).
We show that any system in this subclass is guaranteed
to have a synchronous state, and the stability of that
state can be analyzed by applying the MSF framework
to the flattened representation of the system.

In our multilayer system, each node represents a set
of L identical subnodes, belonging to L di↵erent layers
and connected by a set of internal sublinks. The pattern
of these internal sublinks is thus considered part of the
node’s properties and can be used to represent node het-
erogeneity. For a pair of connected nodes, the type of the
connecting link is determined by the pattern of external

sublinks between the subnodes of these two nodes. This
construction yields a multilayer network [18–22] of subn-
odes and sublinks with L layers; see Fig. 1(b) for an L = 2
example. Note that in general there is more than one
possible multilayer network for a given symmetric net-
work. The multilayer networks just defined are broader
than most classes of systems used in previous studies of
synchronization on multilayer networks [24, 25], since the
links between two di↵erent layers are not constrained to
be one-to-one. The underlying hierarchical organization,
in which each node decomposes into interacting subn-
odes, is shared by many physical systems, such as the
multi-processor nodes in modern supercomputers.

Coupling the dynamics of subnodes di↵usively in this
network, the multilayer system can be described at the
subnode level as

ẋ
(i)
` = f(x(i)

` ) +
NX

i0=1

LX

`0=1

eA(ii0)
``0

⇥
h(x(i0)

`0 ) � h(x(i)
` )

⇤
, (2)

where x
(i)
` = x

(i)
` (t) is the m-dimensional state vector for

subnode ` (i.e., in layer `) of node i, the function f de-
termines the dynamics of every isolated subnode, and h
is the interaction function common to all sublinks. Here,
for all links of a given type between di↵erent nodes, the

corresponding coupling matrix eA(ii0) := ( eA(ii0)
``0 ), i 6= i0,

is the same and encodes the subnode connection pat-
tern for that link type. In contrast, the subnode connec-
tion pattern within each node i is encoded in the ma-

trix F (i) := ( eA(ii)
``0 ). The node-to-node interactions are

not necessarily di↵usive, but the subnode-to-subnode in-
teractions are di↵usive, which guarantees the existence

of a synchronous state given by x
(i)
` (t) = s(t), 8i, `

with ṡ = f (s). Thus, Eq. (2) describes a general class
of multilayer models of symmetric networks that ad-
mit a state corresponding to complete synchronization,
Xi(t) = S(t), 8i, when written in the form of Eq. (1)
(see SM [26], Sec. S2 for more details).

To facilitate the stability analysis, we flatten the mul-
tilayer network representation into a single layer (see
Fig. 1(c) for an example). We use eA = ( eAjj0) to denote
the weighted adjacency matrix that encodes the struc-
ture of the resulting monolayer network [see Fig. 1(d)
for an example]. This matrix has a block structure
in which the matrices F (i) appearing on the diagonal
blocks characterize node properties, while eA(ii0) appear-
ing on the o↵-diagonal blocks reflect the link types.
Since subnodes and sublinks are identical, we can di-
rectly apply the MSF analysis [29] to the monolayer net-
work and obtain the stability function  (�) (see SM [26],
Sec. S2 for details). The maximum Lyapunov exponent
(MLE) of the synchronous state is then computed as
 := max2jn  (�j), where �1, . . . ,�n are the eigenval-

ues of the corresponding Laplacian matrix eL := (eLjj0),

defined as eLjj0 := �jj0
Pn

k=1
eAjk � eAjj0 , where �jj0 is the

Kronecker delta function. Here, �1 is the identically zero
eigenvalue, which is excluded in the definition of  for
corresponding to a mode of perturbation that does not
a↵ect synchronization stability. Thus, the synchronous
state is asymptotically stable if  < 0 and unstable if
 > 0. Using this MSF analysis, we have developed a sys-
tematic scheme for verifying the AISync conditions (C1)
and (C2) for our multilayer system (SM [26], Sec. S4).

In the case of linear f and h, which is widely used to
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FIG. 1. Multilayer construction of AISync networks. (a) Example of a symmetric network of N = 4 heterogeneous oscillators
and K = 3 types of (directed) links with associated interaction functions H(1), H(2) and H(3). (b) One of many possible
multilayer networks corresponding to the network in (a), with L = 2 layers and n = LN = 8 identical subnodes. Subnodes
are labeled with node indices, with prime and double prime indicating layer 1 and 2, respectively. (c) Flattened, monolayer

representation of the multilayer network in (b). (d) Block structure of the adjacency matrix e
A for the monolayer network in

(c). Colors indicate di↵erent types of nodes (diagonal blocks) and links (o↵-diagonal blocks).

ing the MSF framework to the flattened representation
of the system.

In our multilayer construction, each node represents
a set of L identical subnodes, belonging to L di↵erent
layers and connected by a set of internal sublinks. The
pattern of these internal sublinks is thus considered part
of the node’s properties and can be used to represent
node heterogeneity. For a pair of connected nodes, the
type of the connecting link is determined by the pattern
of external sublinks between the subnodes of these two
nodes. This construction yields a multilayer network [18–
23] of subnodes and sublinks with L layers; see Fig. 1(b)
for an L = 2 example. Note that in general there is
more than one possible multilayer network for a given
symmetric network. Coupling the dynamics of subnodes
di↵usively in this network, Eq. (1) can be written at the
subnode level as

ẋ
(i)
` = f(x(i)

` ) +
NX

i0=1

LX

`0=1

eA(ii0)
``0

⇥
h(x(i0)

`0 ) � h(x(i)
` )

⇤
, (2)

where x
(i)
` = x

(i)
` (t) is the m-dimensional state vector for

subnode ` (i.e., in layer `) of node i, the function f de-
termines the dynamics of every isolated subnode, and h
is the interaction function common to all sublinks. Here,
for all links of a given type between di↵erent nodes, the

corresponding coupling matrix eA(ii0) := ( eA(ii0)
``0 ), i 6= i0,

is the same and encodes the subnode connection pat-
tern for that link type. In contrast, the subnode connec-
tion pattern within each node i is encoded in the matrix

F (i) := ( eA(ii)
``0 ). Note that the node-to-node interactions

are not necessarily di↵usive, but the subnode-to-subnode
interactions are di↵usive. This guarantees the existence

of a synchronous state of Eq. (2) given by x
(i)
` (t) = s(t),

8i, ` with ṡ = f (s), which corresponds to a synchronous
state of Eq. (1). Thus, we have a general class of multi-
layer models of symmetric networks that admit complete
synchronization (see SM [24], Sec. S2 for more details).

To facilitate the stability analysis, we flatten the mul-
tilayer network representation into a single layer (see
Fig. 1(c) for an example). By defining a single index

for all the n := LN subnodes, in which node i has subn-
odes j = ki1, . . . , kiL with ki` := (i � 1)L + `, we can
rewrite Eq. (2) in the standard form for a (single-layer)
di↵usively coupled network of oscillators:

ẋj = f(xj) +
nX

j0=1

eAjj0 [h(xj0) � h(xj)], (3)

where xj = x
(i)
` and eAjj0 := eA(ii0)

``0 for j = ki` and

j0 = ki0`0 . The weighted adjacency matrix eA = ( eAjj0)
thus encodes the structure of the monolayer network in
this representation (see Fig. 1(d) for an example). This
matrix has a block structure in which the matrices F (i)

appearing on the diagonal blocks characterize node prop-
erties, while eA(ii0) appearing on the o↵-diagonal blocks
reflect the link types. Since subnodes and sublinks are
identical, we can directly apply the MSF analysis [26]
to Eq. (3) and obtain the stability function  (�). The
maximum Lyapunov exponent (MLE) of the synchronous
state is then computed as  := max2jn  (�j), where
�1, . . . ,�n are the eigenvalues of the Laplacian matrix
eL := (eLjj0) of the monolayer network, defined as eLjj0 :=

�jj0
Pn

k=1
eAjk � eAjj0 , where �jj0 is the Kronecker delta

function. Here, �1 is the identically zero eigenvalue,
which is excluded in the definition of  for corresponding
to a mode of perturbation that does not a↵ect synchro-
nization stability. Thus, the synchronous state is asymp-
totically stable if  < 0 and unstable if  > 0. Using this
MSF analysis, we have developed a systematic method
for verifying the AISync conditions (C1) and (C2) for
our multilayer model (see SM [24], Sec. S3).

An example system exhibiting AISync is shown in
Fig. 2. The network structure is symmetric and has
N = 3 nodes and K = 2 types of links corresponding
to links in the clockwise and counterclockwise directions
in Fig. 2(a). Each node consists of L = 2 subnodes, each
of which is a chaotic Lorenz oscillator. The two subnodes
are connected by a sublink, the direction of which deter-
mines the node type. The system has two parameters, a
and b, representing the coupling strength of internal and

FIG. 1. Multilayer construction of AISync networks. (a) Example of a symmetric network of N = 4 heterogeneous oscillators
and K = 3 types of (directed) links with associated interaction functions H(1), H(2) and H(3). (b) One of many possible
multilayer networks corresponding to the network in (a), with L = 2 layers and n = LN = 8 identical subnodes. Subnodes
are labeled with node indices, with prime and double prime indicating layer 1 and 2, respectively. (c) Flattened, monolayer

representation of the multilayer network in (b). (d) Block structure of the adjacency matrix e
A for the monolayer network in

(c). Colors indicate di↵erent types of nodes (diagonal blocks) and links (o↵-diagonal blocks).

tical (di↵erent Fi), and the network can host K > 1
types of directed interactions. To overcome these chal-
lenges, below we propose a multilayer construction that
defines a large subclass of systems in the form of Eq. (1).
We show that any system in this subclass is guaranteed
to have a synchronous state, and the stability of that
state can be analyzed by applying the MSF framework
to the flattened representation of the system.

In our multilayer system, each node represents a set
of L identical subnodes, belonging to L di↵erent layers
and connected by a set of internal sublinks. The pattern
of these internal sublinks is thus considered part of the
node’s properties and can be used to represent node het-
erogeneity. For a pair of connected nodes, the type of the
connecting link is determined by the pattern of external

sublinks between the subnodes of these two nodes. This
construction yields a multilayer network [18–22] of subn-
odes and sublinks with L layers; see Fig. 1(b) for an L = 2
example. Note that in general there is more than one
possible multilayer network for a given symmetric net-
work. The multilayer networks just defined are broader
than most classes of systems used in previous studies of
synchronization on multilayer networks [24, 25], since the
links between two di↵erent layers are not constrained to
be one-to-one. The underlying hierarchical organization,
in which each node decomposes into interacting subn-
odes, is shared by many physical systems, such as the
multi-processor nodes in modern supercomputers.

Coupling the dynamics of subnodes di↵usively in this
network, the multilayer system can be described at the
subnode level as

ẋ
(i)
` = f(x(i)

` ) +
NX

i0=1

LX

`0=1

eA(ii0)
``0

⇥
h(x(i0)

`0 ) � h(x(i)
` )

⇤
, (2)

where x
(i)
` = x

(i)
` (t) is the m-dimensional state vector for

subnode ` (i.e., in layer `) of node i, the function f de-
termines the dynamics of every isolated subnode, and h
is the interaction function common to all sublinks. Here,
for all links of a given type between di↵erent nodes, the

corresponding coupling matrix eA(ii0) := ( eA(ii0)
``0 ), i 6= i0,

is the same and encodes the subnode connection pat-
tern for that link type. In contrast, the subnode connec-
tion pattern within each node i is encoded in the ma-

trix F (i) := ( eA(ii)
``0 ). The node-to-node interactions are

not necessarily di↵usive, but the subnode-to-subnode in-
teractions are di↵usive, which guarantees the existence

of a synchronous state given by x
(i)
` (t) = s(t), 8i, `

with ṡ = f (s). Thus, Eq. (2) describes a general class
of multilayer models of symmetric networks that ad-
mit a state corresponding to complete synchronization,
Xi(t) = S(t), 8i, when written in the form of Eq. (1)
(see SM [26], Sec. S2 for more details).

To facilitate the stability analysis, we flatten the mul-
tilayer network representation into a single layer (see
Fig. 1(c) for an example). We use eA = ( eAjj0) to denote
the weighted adjacency matrix that encodes the struc-
ture of the resulting monolayer network [see Fig. 1(d)
for an example]. This matrix has a block structure
in which the matrices F (i) appearing on the diagonal
blocks characterize node properties, while eA(ii0) appear-
ing on the o↵-diagonal blocks reflect the link types.
Since subnodes and sublinks are identical, we can di-
rectly apply the MSF analysis [29] to the monolayer net-
work and obtain the stability function  (�) (see SM [26],
Sec. S2 for details). The maximum Lyapunov exponent
(MLE) of the synchronous state is then computed as
 := max2jn  (�j), where �1, . . . ,�n are the eigenval-

ues of the corresponding Laplacian matrix eL := (eLjj0),

defined as eLjj0 := �jj0
Pn

k=1
eAjk � eAjj0 , where �jj0 is the

Kronecker delta function. Here, �1 is the identically zero
eigenvalue, which is excluded in the definition of  for
corresponding to a mode of perturbation that does not
a↵ect synchronization stability. Thus, the synchronous
state is asymptotically stable if  < 0 and unstable if
 > 0. Using this MSF analysis, we have developed a sys-
tematic scheme for verifying the AISync conditions (C1)
and (C2) for our multilayer system (SM [26], Sec. S4).

In the case of linear f and h, which is widely used to

Diffusive coupling

Identical subnodes

Stability of complete synchronization can be  
readily computed for arbitrary f and h  

(including experimentally realizable systems)
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