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Identical globally coupled oscillators
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• Elements are identical and subject to common force 

• Phase oscillators, one-harmonic coupling

Consider the simplest network:

The paradigmatic Kuramoto-Sakaguchi model

  attractive coupling

  repulsive coupling

|�| < ⇡/2

⇡/2 < � < 3⇡/2

� = ±⇡/2 neutral coupling

'̇k = ! + "R sin(⇥ � 'k + �), with Rei⇥ = 1
N

P
j e

i'j



The Kuramoto-Sakaguchi model
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'̇k = ! + "R sin(⇥ � 'k + �)

synchrony is stable

 splay state is stable

|�| < ⇡/2

⇡/2 < � < 3⇡/2

� = ±⇡/2 marginal stability 
(not interesting)

either full synchrony,  
or full asynchrony (splay state),

R = 1

R = 0

Notice: clusters are not possible, as follows from the Watanabe-
Strogatz theory (except for N-1,1 configuration) 



Stability of the synchronous state
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Synchronous (one-cluster) state is stable, if � = �" cos� < 0

eigenvalue�

"

|�| < ⇡/2

The Kuramoto-Sakaguchi model, identical oscillators:

For this model: stability is proportional to coupling  
==>  tendency to synchrony increases with "



Specific features of the Kuramoto-Sakaguchi model
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1) tendency to synchrony increases with the coupling strength  

2) domains of stable synchrony and asynchrony are 
complementary 

3) only full synchrony or splay state;  no clusters, no chimeras 

These properties are typical, but not general!



General phase models: 
When do we expect complex solutions?
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1) tendency to synchrony is not monotonic and/or 

2) both splay state and synchrony are unstable

The system settles at some intermediate state

We expect: clusters  
                   chimeras  
                   quasiperiodic partially synchronous states 



Quasiperiodic partial synchrony in  
the Kuramoto-Daido model
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1) continuous but not uniform distribution of phases  
                 order parameter 

2) Mean field frequency      oscillators frequency  
                  quasiperiodic dynamics

0 < R < 1

6=

To be distinguished from the case of ensembles with a 

frequency distribution, when some oscillators form a 

synchronous cluster while some are not locked to the mean field



A minimal model
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'̇k = R1 sin(⇥1 � 'k + �1) + aR2 sin(⇥2 � 2'k + �2)

Kuramoto-Daido model with two harmonics, Hansel et al, 1993

1) frequency can be removed by a transformation to a  
co-rotating frame 

2) coupling strength can be removed by rescaling of time 

3) parameter a=0.2 is fixed, parameters         are varied

Generalized order parameters Rmei⇥m = N�1
P

j e
im'j

�1,2



The biharmonic model: stability analysis

9
 P. Clusella, A. Politi, M. Rosenblum, New J. Physics 18 (2016) 093037 

0 π/2 π 3π/2
γ

2

0

π/2

π

3π/2

γ
1 Γ

+

Γ
+

Γ
-

Γ
-

e
1

e
2

e
1

e
2



The biharmonic model: stability analysis
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The biharmonic model: stability analysis
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The biharmonic model: stability analysis
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The biharmonic model: stability analysis
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The biharmonic model: numerics
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Partial synchrony
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Heteroclinic cycles as partially synchronous states
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R
1

'
�

!
t,
⇥

1
�

!
t

HC in biharmonic model: Hansel et al, 1993; Kori and Kuramoto, 2001



Heteroclinic cycles as partially synchronous states
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The biharmonic model: numerics
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domain, studied numerically
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The biharmonic model: numerics
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domain, studied numerically
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The biharmonic model: numerics

20

domain, studied numerically
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⇥ splay states two clusters

* heteroclinic 
cycles

+  synchrony

partial synchrony we go along this line �2 = ⇡

Different initial conditions!



The biharmonic model: multistability
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Rayleigh oscillators
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ẍk � ⇠(1 � ẋ

2
k)ẋk + xk = "Re

⇥
e

i�(X + iY )
⇤

X = N

�1
P

k xk, Y = N

�1
P
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Rayleigh oscillators
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General case: 
When do we expect complex solutions?
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1) tendency to synchrony is not monotonic and/or 

2) both splay state and synchrony are unstable

The system settles at some intermediate state

We expect: clusters  
                   chimeras  
                   quasiperiodic partially synchronous states 



General case: 
When do we expect complex solutions?
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1) tendency to synchrony is not monotonic and/or 

2) both splay state and synchrony are unstable

The system settles at some intermediate state

We expect: clusters  
                   chimeras  
                   quasiperiodic partially synchronous states 



Stability of the synchronous state
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Synchronous (one-cluster) state is stable, if � = �" cos� < 0

eigenvalue�

"

|�| < ⇡/2

The Kuramoto-Sakaguchi model, identical oscillators:

For this model: stability is proportional to coupling  
==>  tendency to synchrony increases with "
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Extended Kuramoto-Sakagichi model (particular case):
'̇k = ! + "R sin(⇥ � 'k + �0 + �1"

2R2)

linear coupling

nonlinear coupling

Partial synchrony and quasiperiodic dynamics after synchrony 
breaking

Kuramoto, � = �" cos�

extended Kuramoto,�

"

� = �" cos(�0 + �1"
2
)

synchrony breaking

Linear vs nonlinear coupling
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ȧk = (1 + i!0)ak � (1 + i)|ak|2ak

A = N�1
X

j

aj

complex mean field:  

Nonlinearly coupled Stuart-Landau oscillators:

linear and nonlinear  
mean field coupling 

A solvable model for Quasiperiodic Partial Synchrony

+("1 + i"2)A � (⌘1 + i⌘2)|A|2A ,
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ȧk = (1 + i!0)ak � (1 + i)|ak|2ak

A = N�1
X

j

aj

complex mean field:  

Nonlinearly coupled Stuart-Landau oscillators:

linear and nonlinear  
mean field coupling 

The solvable model: phase approximation

+("1 + i"2)A � (⌘1 + i⌘2)|A|2A ,

Phase approximation: nonlinear Kuramoto-Sakagichi model

'̇k = ! + E(R; "1,2, ⌘1,2)R sin[⇥ � 'k + �(R; "1,2, ⌘1,2)]

'̇k = ! + "R sin(⇥ � 'k + �0 + �1"
2R2)

A solvable particular case:
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ȧk = (1 + i!0)ak � (1 + i)|ak|2ak

A = N�1
X

j

aj

complex mean field:  

Nonlinearly coupled Stuart-Landau oscillators:

linear and nonlinear  
mean field coupling 

The solvable model: beyond phase approximation

+("1 + i"2)A � (⌘1 + i⌘2)|A|2A ,

Stability of the synchronous state

witha1 = a2 = . . . = aN = rei' = A

r2 =
1 + "1

1 + ⌘1
'̇ = ⌦ = !0 + "2 �

( + ⌘2)(1 + "1)

1 + ⌘1
and
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The solvable model: beyond phase approximation
Stability of the synchronous state

a1 = a2 = . . . = aN = rei' = A

Eigenvalues:
�1,2 = (1 � 2r2) ±

p
(1 � 32)r4 + 4(!0 � ⌦)r2 � (!0 � ⌦)2

A special case:

�1,2 = (1 � 2r2) ±
p

r4 � "2

4 6 8 10
η
1

0

1

2

3

ε 2
 = 0, ⌘2 = 0, "1 = 3, "2 � 0



4 6 8 10
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1
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ε 2
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Synchrony stable Synchrony unstable

Neutrally stable bunch state, r = 1,⌦ = !0, R =
p
"1/⌘1

Stability diagram

Asynchrony 
always unstable

Partial synchrony



Numerics
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quasiperiodicity due to amplitude modulation



Numerics
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mean field amplitude

Transition for large

frequency difference

std of instantaneous frequency

std of instantaneous amplitude

(red: field, blue: oscillators)
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Globally coupled Hindmarsh-Rose neurons
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where mean field X = N

�1
NX

j

xj

ẋk = yk � x

3
k + 3x2

k � zk + 5 + "(X � xk)

ẏk = 1 � 5x2
k � yk

żk = 0.006 [4(xk + 1.56) � zk]

multipliers

"

|µ| = e�T |µ
1
,2
|

transversal LE



Globally coupled Hindmarsh-Rose neurons: results II
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" = 0.04

" = 0.13

⇢ = rms(X)/rms(x) , 0  ⇢  1



Illustrative example of collective synchrony: 
The Millennium Bridge
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Bridge vibrations without synchrony
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Bridge vibrations without synchrony
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An example of  quasiperiodic partial synchrony?



Qualitative discussion: frequency difference 
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'̇k = ! + "R sin(⇥ � 'k + �0 + �1"
2R2)

In the partially synchronous state R < 1

Watanabe-Strogatz theory: cluster states are not possible

Hence, all phases are different

Hence, instantaneous frequencies

are all different as well

We denote: h�̇i = ⌦ , h⇥̇i = ⌫

oscillator frequency               mean field frequency 

We argue that ⌦ 6= ⌫



Qualitative discussion: frequency difference II
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Suppose the contrary,              ,  and consider the motion in the  
frame, rotating with the mean field  

⌦ = ⌫

Then, depending on their phase, some 
oscillators are faster than mean field, 
and some are slower

There must be points where relative 
velocity is zero             the points should 
cluster

Clusters are not possible, hence oscillators are either always 

faster, or always slower than the mean field, thus ⌦ 6= ⌫

Theory:  

Quasiperiodic dynamics

⌫ = ! + "2+"2
crit

2"
⌦ = ! + "2

crit

"
,
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Conclusions

• Partially synchronous quasiperiodic dynamics appears at the 
border of stability of the synchronous state 

• It appears in phase and full models, also for (weakly) 
inhomogeneous  ensembles  

• Further examples: van Vreeswijk model of coupled leaky 
integrate-and-fire neurons, electronic circuits (experiment) 

• At least two non-trivial forms of quasiperiodicity 

• Exact conditions for emergence of these states is not yet clear
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" = 0.04

mean fieldoscillator

snapshot

zoomed snapshot

t=0 t=20T

t=40T t=60T t=80T

Different scenario of synchrony breaking (Hopf-like),  
another type of quasiperiodic partial synchrony


