Deep Learning: A Cornucopia of Applications and Mathematical Mysteries

Yann Le Cun Facebook AI Research, Center for Data Science, NYU Courant Institute of Mathematical Sciences, NYU http://yann.lecun.com

The Traditional Model of Pattern Recognition

Y LeCun

The traditional model of pattern recognition (since the late 50's)
 Fixed/engineered features (or fixed kernel) + trainable classifier

Perceptron (Cornell University, 1957)

1957: The Perceptron (the first learning machine)

Y LeCun

A simple simulated neuron with adaptive "synaptic weights"

- Computes a weighted sum of inputs
- Output is +1 if the weighted sum is above a thresold, -1 otherwise.

Retina
Associative area
Treshold element

$$w'x$$

 $y = sign(\sum_{i=1}^{N} W_i X_i + b)$

Supervised Learning

Y LeCun

Supervised Machine Learning = Function Optimization

Large-Scale Machine Learning: the reality

- Hundreds of millions of "knobs" (parameters)
- Thousands of categories
- Millions of training samples
- Recognizing each sample may take billions of operations
 - But these operations are simple multiplications and additions

Deep Learning = The Entire Machine is Trainable

Traditional Pattern Recognition: Fixed/Handcrafted Feature Extractor

Mainstream Modern Pattern Recognition: Unsupervised mid-level features

Deep Learning: Representations are hierarchical and trained

Deep Learning = Learning Hierarchical Representations

Y LeCun

It's deep if it has more than one stage of non-linear feature transformation

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

Trainable Feature Hierarchy

- Hierarchy of representations with increasing level of abstraction
- Each stage is a kind of trainable feature transform
- Image recognition
 - ▶ Pixel → edge → texton → motif → part → object
- Text
 - Character \rightarrow word \rightarrow word group \rightarrow clause \rightarrow sentence \rightarrow story
- Speech
 - Sample → spectral band → sound → ... → phone → phoneme → word

How does the brain interprets images?

The ventral (recognition) pathway in the visual cortex has multiple stages
Retina - LGN - V1 - V2 - V4 - PIT - AIT

Multi-Layer Neural Networks

Multi-Layer Neural Nets

Building a Network by Assembling Modules. With Automatic Differentiation

- All major deep learning frameworks use modules (inspired by SN/Lush, 1991)
- Torch7, Theano, TensorFlow....


```
-- sizes
ninput = 28*28 -- e.g. for MNIST
nhidden1 = 1000
noutput = 10
```

```
-- network module
net = nn.Sequential()
net:add(nn.Linear(ninput, nhidden))
net:add(nn.Threshold())
net:add(nn.Linear(nhidden, noutput))
net:add(nn.LogSoftMax()))
```

```
-- cost module
cost = nn.ClassNLLCriterion()
```

```
-- get a training sample
input = trainingset.data[k]
target = trainingset.labels[k]
```

```
-- run through the model
output = net:forward(input)
c = cost:forward(output, target)
```

Computing Gradients by Back-Propagation

• A practical Application of Chain Rule

Y LeCun

- Backprop for the state gradients:
- $dC/dX_{i-1} = dC/dX_i \cdot dX_i/dX_{i-1}$
- $dC/dX_{i-1} = dC/dX_i \cdot dF_i(X_{i-1},W_i)/dX_{i-1}$
- Backprop for the weight gradients:
- $dC/dW_i = dC/dX_i \cdot dX_i/dW_i$
- $dC/dW_i = dC/dX_i \cdot dF_i(X_{i-1},W_i)/dW_i$

Any Architecture works

Any connection graph is permissible

- Directed acyclic graphs (DAG)
- Networks with loops must be "unfolded in time".

Any module is permissible

As long as it is continuous and differentiable almost everywhere with respect to the parameters, and with respect to nonterminal inputs.

Most frameworks provide automatic differentiation

- Theano, Torch7+autograd,...
- Programs are turned into computation DAGs and automatically differentiated.

The Objective Function of Multi-layer Nets is Non Convex

Y LeCun

1-1-1 network

$$- Y = W1*W2*X$$

Objective: identity function with quadratic loss One sample: X=1, Y=1 L(W) = (1-W1*W2)^2

Backprop in Practice

- Use ReLU non-linearities
- Use cross-entropy loss for classification
- Use Stochastic Gradient Descent on minibatches
- Shuffle the training samples (\leftarrow very important)
- Normalize the input variables (zero mean, unit variance)
- Schedule to decrease the learning rate
- Use a bit of L1 or L2 regularization on the weights (or a combination)
 - But it's best to turn it on after a couple of epochs
- Use "dropout" for regularization
- Lots more in [LeCun et al. "Efficient Backprop" 1998]
- Lots, lots more in "Neural Networks, Tricks of the Trade" (2012 edition) edited by G. Montavon, G. B. Orr, and K-R Müller (Springer)

Convolutional Networks

(ConvNet or CNN)

Convolutional Network (vintage 1990)

a Filters-tanh \rightarrow pooling \rightarrow filters-tanh \rightarrow pooling \rightarrow filters-tanh

Convolutional Network Architecture

Overall Architecture: multiple stages of Normalization → Filter Bank → Non-Linearity → Pooling

Y LeCun

Normalization: variation on whitening (optional)

- Subtractive: average removal, high pass filtering
- Divisive: local contrast normalization, variance normalization
- Filter Bank: dimension expansion, projection on overcomplete basis
- Non-Linearity: sparsification, saturation, lateral inhibition....
 - Rectification (ReLU), Component-wise shrinkage, tanh,...

$$ReLU(x) = max(x, 0)$$

- Pooling: aggregation over space or feature type
 - Max, Lp norm, log prob.

$$MAX: Max_i(X_i); \ L_p: \sqrt[p]{X_i^p}; \ PROB: \frac{1}{b} \log\left(\sum_i e^{bX_i}\right)$$

Multiple Character Recognition [Matan et al 1992]

Y LeCun

Every layer is a convolution

Sliding Window ConvNet + Weighted Finite-State Machine

Sliding Window ConvNet + Weighted FSM

Check Reader (Bell Labs, 1995)

Graph transformer network trained to read check amounts.

Trained globally with Negative-Log-Likelihood loss.

50% percent correct, 49% reject, 1% error (detectable later in the process).

Fielded in 1996, used in many banks in the US and Europe.

Processed an estimated 10% to 20% of all the checks written in the US in the early 2000s. [LeCun, Bottou, Bengio, Haffner 1998]

Simultaneous face detection and pose estimation

Y LeCun

Scene Parsing/Labeling

Y LeCun

[Farabet et al. ICML 2012, PAMI 2013]

Scene Parsing/Labeling: Multiscale ConvNet Architecture

Each output sees a large input context:

46x46 window at full rez; 92x92 at ½ rez; 184x184 at ¼ rez

Y LeCun

[7x7conv]->[2x2pool]->[7x7conv]->[2x2pool]->[7x7conv]->

Trained supervised on fully-labeled images

Scene Parsing/Labeling

Y LeCun

No post-processing

VIDEO: SCENE PARSING

Frame-by-frame

ConvNet runs at 50ms/frame on Virtex-6 FPGA hardware

But communicating the features over ethernet limits system performance

[Farabet et al. ICML 2012, PAMI 2013]

Scene Parsing/Labeling on RGB+Depth Images

Y LeCun

Ground truths

Our results

[Couprie, Farabet, Najman, LeCun ICLR 2013, ICIP 2013]

ConvNet for Long Range Adaptive Robot Vision (DARPA LAGR program 2005-2008)

Y LeCun

Then in 2012 two things happened...

Y LeCun

The ImageNet dataset [Fei-Fei et al. 2012]

- 1.2 million training samples
- 1000 categories

Matchstick

Sea lion

Flute

Fast & Programmable General-Purpose GPUs

- NVIDIA CUDA
- Capable of over 1 trillion operations/second

Backpack

Strawberry

Bathing cap

Racket

Very Deep ConvNet for Object Recognition

1 to 10 billion connections, 10 million to 1 billion parameters, 8 to 20 layers.

Samoyed (16); Papillon (5.7); Pomeranian (2.7); Arctic Fox (1.0); Eskimo Dog (0.6); White Wolf (0.4); Siberian Husky (0.4)

Very Deep ConvNet Architectures

Small kernels, not much subsampling (fractional subsampling).

Y LeCun

Very Deep ConvNets Trained on GPU

- AlexNet [Krizhevski, Sutskever, Hinton 2012]
 15% top-5 error on ImageNet
 OverFeat [Sermanet et al. 2013]
 13.8%
 VGG Net [Simonyan, Zisserman 2014]
 7.3%
 GoogLeNet [Szegedy et al. 2014]
 6.6%
 ResNet [He et al. 2015]
 5.7%
 - http://torch.ch
 - https://github.com/torch/torch7/wiki/Cheatsheet

FULL 1000/Softmax

Y LeCun

FULL 4096/ReLU FULL 4096/ReLU

MAX POOLING 3x3sub

CONV 3x3/ReLU 256fm

CONV 3x3ReLU 384fm

CONV 3x3/ReLU 384fm

MAX POOLING 2x2sub

CONV 7x7/ReLU 256fm

MAX POOL 3x3sub

CONV 7x7/ReLU 96fm

Y LeCun

Learning in Action

• How the filters in the first layer learn

Image captioning: generating a descriptive sentence

Y LeCun

[Lebret, Pinheiro, Collobert 2015] [Kulkarni 11] [Mitchell 12] [Vinyals 14] [Mao 14]

A man riding skis on a snow covered ski slope. NP: a man, skis, the snow, a person, a woman, a snow covered slope, a slope, a snowboard, a skier, man. VP: wearing, riding, holding, standing on, skiing down. PP: on, in, of, with, down. A man wearing skis on the snow.

A slice of pizza sitting on top of a white plate. **NP**: a plate, a white plate, a table, pizza, it, a pizza, food, a sandwich, top, a close. **VP**: topped with, has, is, sitting on, is on. **PP**: of, on, with, in, up.

A table with a plate of pizza on a white plate.

A man is doing skateboard tricks on a ramp. NP: a skateboard, a man, a trick, his skateboard, the air, a skateboarder, a ramp, a skate board, a person, a woman. VP: doing, riding, is doing, performing, flying through. PP: on, of, in, at, with.

A man riding a skateboard on a ramp.

A baseball player swinging a bat on a field. **NP**: the ball, a game, a baseball player, a man, a tennis court, a ball, home plate, a baseball game, a batter, a field. **VP**: swinging, to hit, playing, holding, is swinging. **PP**: on, during, in, at, of.

A baseball player swinging a bat on a baseball field.

The girl with blue hair stands under the umbrella. NP: a woman, an umbrella, a man, a person, a girl, umbrellas, that, a little girl, a cell phone. VP: holding, wearing, is holding, holds, carrying. PP: with, on, of, in, under.

A woman is holding an umbrella.

A bunch of kites flying in the sky on the beach. **NP**: the beach, a beach, a kite, kites, the ocean, the water, the sky, people, a sandy beach, a group. **VP**: flying, flies, is flying, flying in, are. **PP**: on, of, with, in, at. People flying kites on the beach.

Y LeCun

Deep Face

800 million photos per day

(f)

(g)

(h)

EPRESENTATION SFC labels 1 L4: L5: C1: M2: C3: L6: F7: F8: 32x11x11x3 32x3x3x32 16x9x9x32 16x9x9x16 16x7x7x16 16x5x5x16 4096d 4030d Frontalization: Calista Flockhart 0002.jpg @71x71 @63x63 @55x55 @25x25 @21X21 @152X152x3 @142x142 Detection & Localization

(e)

Person Detection and Pose Estimation

Y LeCun

Tompson, Goroshin, Jain, LeCun, Bregler arXiv:1411.4280 (2014)

Segmenting and Localizing Objects (DeepMask)

Y LeCun

[Pinheiro, Collobert, Dollar ICCV 2015] ConvNet produces

object masks

Mistakes

ConvNets are Everywhere (or soon will be)

ConvNet Chips

Currently in development at NVIDIA, Intel, Mobileye, Qualcomm, Samsung
Many startups: Movidius, Teradeep, Nervana....

Soon, a ConvNet chip will drive your car.

NeuFlow chip[Pham, Jelaca, Farabet, Martini, LeCun, Culurciello 2012]

NVIDIA: ConvNet-Based Driver Assistance

Drive-PX2: Open Platform for Driver Assistance Embedded Super-Computer: 42 TOPS - (=150 Macbook Pros)

Y LeCun

MobilEye: ConvNet-Based Driver Assistance

Deployed in the latest Tesla Model S and Model X

Y LeCun

Brain Tumor Detection

[[Havaei et al. 2015] Arxiv:1505.03540 InputCascadeCNN architecture ▶ 802,368 parameters Trained on 30 patients. State of the art results on BRAT2013

Y LeCun

edema, enhanced tumor, enhanced tumor.

Deep Learning is Everywhere (ConvNets are Everywhere)

Lots of applications at Facebook, Google, Microsoft, Baidu, Twitter, IBM...

Y LeCun

- Image recognition for photo collection search
- Image/Video Content filtering: spam, nudity, violence.
- Search, Newsfeed ranking

People upload one billion photos on Facebook every day

(over 2 billion photos per day if we count Instagram, Messenger and Whatsapp)

Each photo on Facebook goes through two ConvNets within 2 seconds

- One for image recognition/tagging
- One for face recognition (not activated in Europe).

Soon ConvNets will really be everywhere:

self-driving cars, medical imaging, augmented reality, mobile devices, smart cameras, robots, toys.....

Natural Language Understanding

Language Translation with LSTM networks

[Sutskever et al. NIPS 2014]

- Multiple layers of very large LSTM recurrent modules
- English sentence is read in and encoded
- French sentence is produced after the end of the English sentence
- Accuracy is very close to state of the art.

Ceci est une phrase en anglais

Gating and Attention

Connections at activated depending on context

- Þ (Bahdanau, Cho & Bengio, arXiv sept. 2014)
- following up on (Graves 2013) and (Larochelle & Hinton NIPS 2010)
- Input of a unit is selected among several by the softmax output of a subnetwork
 - The unit "pays attention" to a particular location

IWSLT 2015 – Luong & Manning (2015) TED talk MT, English-German

[From Bengio&LeCun tutorial NIPS 2015]

But How can Neural Nets Remember Things?

Recurrent networks cannot remember things for very long

- The cortex only remember things for 20 seconds
- We need a "hippocampus" (a separate memory module)
 - LSTM [Hochreiter 1997], registers
 - Memory networks [Weston et 2014] (FAIR), associative memory
 - Stacked-Augmented Recurrent Neural Net [Joulin & Mikolov 2014] (FAIR)
 - NTM [DeepMind 2014], "tape".

Differentiable Memory

Like a "soft" RAM circuit
 Or a "soft" hash table
 Stores Key-Value pairs (Ki,Vi)

$$Y = \sum_{i} C_{i} V_{i}$$

Y LeCun

Memory/Stack-Augmented Recurrent Nets

Memory Network [Weston, Chopra, Bordes 2014]

Add a short-term memory to a network

http://arxiv.org/abs/1410.3916

Method

- I: (input feature map) converts the incoming input to the internal feature representation.
- G: (generalization) updates old memories given the new input.
- O: (output feature map) produces a new output (in the feature representation space), given the new input and the current memory.
- R: (response) converts the output into the response format desired. For example, a textual response or an action.

Bilbo travelled to the cave.
Gollum dropped the ring there.
Bilbo took the ring.
Bilbo went back to the Shire.
Bilbo left the ring there.
Frodo got the ring.
Frodo journeyed to Mount-Doom.
Frodo dropped the ring there.
Sauron died.
Frodo went back to the Shire.
Bilbo travelled to the Grey-havens.
The End.
Where is the ring? A: Mount-Doom
Where is Bilbo now? A: Grey-havens
Where is Frodo now? A: Shire

F1(Fader et al., 2013) 4 0.54(Bordes et al., 2014) 3 0.73MemNN 0.71MemNN (with BoW features) 0.79

Results on **Question Answering** Task

Fig. 2. An example story with questions correctly answered by a MemNN. The MemNN was trained on the simulation described in Section 4.2 and had never seen many of these words before, e.g. Bilbo, Frodo and Gollum.

End-to-End Memory Network on bAbI tasks [Weston 2015]

Y LeCun

Sam walks into the kitchen.	Brian is a lion.	Mary journeyed to the den.
Sam picks up an apple.	Julius is a lion.	Mary went back to the kitchen.
Sam walks into the bedroom.	Julius is white.	John journeyed to the bedroom.
Sam drops the apple.	Bernhard is green.	Mary discarded the milk.
Q: Where is the apple?	Q: What color is Brian?	Q: Where was the milk before the den?
A. Bedroom	A. White	A. Hallway
'	·	

	E	Baseline		MemN2N								
	Strongly						PE	1 hop	2 hops	3 hops	PE	PE LS
	Supervised	LSTM	MemNN			PE	LS	PE LS	PE LS	PE LS	LS RN	LW
Task	MemNN 21	21	WSH	BoW	PE	LS	RN	joint	joint	joint	joint	joint
1: 1 supporting fact	0.0	50.0	0.1	0.6	0.1	0.2	0.0	0.8	0.0	0.1	0.0	0.1
2: 2 supporting facts	0.0	80.0	42.8	17.6	21.6	12.8	8.3	62.0	15.6	14.0	11.4	18.8
3: 3 supporting facts	0.0	80.0	76.4	71.0	64.2	58.8	40.3	76.9	31.6	33.1	21.9	31.7
4: 2 argument relations	0.0	39.0	40.3	32.0	3.8	11.6	2.8	22.8	2.2	5.7	13.4	17.5
5: 3 argument relations	2.0	30.0	16.3	18.3	14.1	15.7	13.1	11.0	13.4	14.8	14.4	12.9
6: yes/no questions	0.0	52.0	51.0	8.7	7.9	8.7	7.6	7.2	2.3	3.3	2.8	2.0
7: counting	15.0	51.0	36.1	23.5	21.6	20.3	17.3	15.9	25.4	17.9	18.3	10.1
8: lists/sets	9.0	55.0	37.8	11.4	12.6	12.7	10.0	13.2	11.7	10.1	9.3	6.1
9: simple negation	0.0	36.0	35.9	21.1	23.3	17.0	13.2	5.1	2.0	3.1	1.9	1.5
10: indefinite knowledge	2.0	56.0	68.7	22.8	17.4	18.6	15.1	10.6	5.0	6.6	6.5	2.6
11: basic coreference	0.0	38.0	30.0	4.1	4.3	0.0	0.9	8.4	1.2	0.9	0.3	3.3
12: conjunction	0.0	26.0	10.1	0.3	0.3	0.1	0.2	0.4	0.0	0.3	0.1	0.0
13: compound coreference	0.0	6.0	19.7	10.5	9.9	0.3	0.4	6.3	0.2	1.4	0.2	0.5
14: time reasoning	1.0	73.0	18.3	1.3	1.8	2.0	1.7	36.9	8.1	8.2	6.9	2.0
15: basic deduction	0.0	79.0	64.8	24.3	0.0	0.0	0.0	46.4	0.5	0.0	0.0	1.8
16: basic induction	0.0	77.0	50.5	52.0	52.1	1.6	1.3	47.4	51.3	3.5	2.7	51.0
17: positional reasoning	35.0	49.0	50.9	45.4	50.1	49.0	51.0	44.4	41.2	44.5	40.4	42.6
18: size reasoning	5.0	48.0	51.3	48.1	13.6	10.1	11.1	9.6	10.3	9.2	9.4	9.2
19: path finding	64.0	92.0	100.0	89.7	87.4	85.6	82.8	90.7	89.9	90.2	88.0	90.6
20: agent's motivation	0.0	9.0	3.6	0.1	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.2
Mean error (%)	6.7	51.3	40.2	25.1	20.3	16.3	13.9	25.8	15.6	13.3	12.4	15.2
Failed tasks (err. $> 5\%$)	4	20	18	15	13	12	11	17	11	11	11	10
On 10k training data												
Mean error (%)	3.2	36.4	39.2	15.4	9.4	7.2	6.6	24.5	10.9	7.9	7.5	11.0
Failed tasks (err. $> 5\%$)	2	16	17	9	6	4	4	16	7	6	6	6

Non-Convex Objective

Overall Architecture: multiple stages of Normalization → Filter Bank → Non-Linearity → Pooling

Y LeCun

Normalization: variation on whitening (optional)

- Subtractive: average removal, high pass filtering

Divisive: local contrast normalization, variance normalization

Filter Bank: dimension expansion, projection on overcomplete basis

Non-Linearity: sparsification, saturation, lateral inhibition....

Rectification (ReLU), Component-wise shrinkage, tanh,

$$ReLU(x) = max(x, 0)$$

Pooling: aggregation over space or feature type

- Max, Lp norm, log prob.

$$MAX: Max_i(X_i); L_p: \sqrt[p]{X_i^p}; PROB: \frac{1}{b} \log \left(\sum_i e^{bX_i} \right)$$

Deep Nets with ReLUs and Max Pooling

Y LeCun

Stack of linear transforms interspersed with Max operators
Point-wise ReLUs:

Loss Function for a simple network

$$- Y = W1*W2*X$$

trained to compute the identity function with quadratic loss

- Single sample X=1, Y=1 L(W) = (1-W1*W2)^2

Deep Nets with ReLUs

Single output:

$$\widehat{Y} = \sum_{P} \delta_{P}(W, X) (\prod_{(ij) \in P} W_{ij}) X_{P_{start}}$$

Wij: weight from j to i

P: path in network from input to output
P=(3,(14,3),(22,14),(31,22))

di: 1 if ReLU i is linear, 0 if saturated.

Xpstart: input unit for path P.

$$\widehat{Y} = \sum_{P} \delta_{P}(W, X) (\prod_{(ij) \in P} W_{ij}) X_{P_{start}}$$

Dp(W,X): 1 if path P is "active", 0 if inactive
Input-output function is piece-wise linear
Polynomial in W with random coefficients

Deep Convolutional Nets (and other deep neural nets)

Y LeCun

Training sample: (Xi,Yi) k=1 to K

Objective function (with margin-type loss = ReLU)

$$L(W) = \sum_{k} ReLU(1 - Y^{k} \sum_{P} \delta_{P}(W, X^{k}) (\prod_{(ij) \in P} W_{ij}) X_{P_{start}}^{k})$$
$$L(W) = \sum_{k} \sum_{P} (X_{P_{start}}^{k} Y^{k}) \delta_{P}(W, X^{k}) (\prod_{(ij) \in P} W_{ij})$$
$$L(W) = \sum_{P} [\sum_{k} (X_{P_{start}}^{k} Y^{k}) \delta_{P}(W, X^{k})] (\prod_{(ij) \in P} W_{ij})$$
$$L(W) = \sum_{P} C_{P}(X, Y, W) (\prod_{(ij) \in P} W_{ij})$$

- Polynomial in W of degree l (number of adaptive layers)
- Continuous, piece-wise polynomial with "switched" and partially random coefficients
 - Coefficients are switched in an out depending on W

Deep Nets with ReLUs: Objective Function is Piecewise Polynomia

If we use a hinge loss, delta now depends on label Yk:

$$L(W) = \sum_{P} C_{p}(X, Y, W) (\prod_{(ij) \in P} W_{ij})$$

Piecewise polynomial in W with random coefficients

- A lot is known about the distribution of critical points of polynomials on the sphere with random (Gaussian) coefficients [Ben Arous et al.]
 - High-order spherical spin glasses
 - Random matrix theory

Histogram of minima

Y LeCun
Deep Nets with ReLUs: Objective Function is Piecewise Polynomia

Train 2-layer nets on scaled-down MNIST (10x10) from multiple initial conditions. Measure loss on test set.

[Choromanska, Henaff, Mathieu, Ben Arous, LeCun 2015]

Spherical Spin Glass theory

Distribution of critical points (saddle points, minima, maxima)

Elastic Average SGD

Distributing SGD over multiple CPU/GPU nodes

Deep Learning withElastic Average SGD: [Zhang, Choromanska, LeCun arXiv:1412.6651]

Expected loss

$$\min_{x} F(x) := \mathbb{E}[f(x,\xi)],$$
$$\min_{x^1,\dots,x^p,\tilde{x}} \sum_{i=1}^p \mathbb{E}[f(x^i,\xi^i)] + \frac{\rho}{2} ||x^i - \frac{\rho}{2}||x^i| + \frac{\rho}{2} ||x^i| + \frac{\rho}{2} ||x^i|$$

Update formulas

Reparameterization:

 $\alpha = \eta \rho$ and $\beta = p \alpha$

Distributed form

$$\begin{aligned}
x_{t+1}^{i} &= x_{t}^{i} - \eta(g_{t}^{i}(x_{t}^{i}) + \rho(x_{t}^{i} - \tilde{x}_{t})) \\
\tilde{x}_{t+1} &= \tilde{x}_{t} + \eta \sum_{i=1}^{p} \rho(x_{t}^{i} - \tilde{x}_{t}),
\end{aligned}$$

 $\tilde{x} \|^2$

$$\begin{aligned} x_{t+1}^i &= x_t^i - \eta g_t^i(x_t^i) - \alpha(x_t^i - \tilde{x}_t) \\ \tilde{x}_{t+1} &= (1 - \beta)\tilde{x}_t + \beta\left(\frac{1}{p}\sum_{i=1}^p x_t^i\right) \end{aligned}$$

Elastic Average SGD & Elastic Average Momentum SGD

Y LeCun

Asynchronous algorithms. Sync between node every Tau updates.

- Every Tau steps: move workers toward center, and vice versa
- Momentum form uses Nesterov accelerated gradient

Until forever

Downpour algorithm: send gradient, receive parameter vector

Y LeCun

Asynchronous algorithm. Sync between node every Tau updates.

– Every Tau steps:

- node sends accumulated gradient to server
- Server sends updated parameter vector to node.
- Momentum form uses Nesterov accelerated gradient

Algorithm 3: DOWNPOUR: Processing by worker *i* and the master

Input: learning rate η , communication period $\tau \in \mathbb{N}$ **Initialize:** \tilde{x} is initialized randomly, $x^i = \tilde{x}, v^i = 0, t^i = 0$

Repeat

```
if (\tau \text{ divides } t^i) then

\tilde{x} \leftarrow \tilde{x} + v^i

x^i \leftarrow \tilde{x}

v^i \leftarrow 0

end

x^i \leftarrow x^i - \eta g^i_{t^i}(x^i)

v^i \leftarrow v^i - \eta g^i_{t^i}(x^i)

t^i \leftarrow t^i + 1

Until forever
```

Like ADMM without the constraint term

But ADMM is unstable under a round robin scheme for synchronization

$$\max_{\lambda^{1},...,\lambda^{p}} \min_{x^{1},...,x^{p},\tilde{x}} \sum_{i=1}^{p} F(x^{i}) - \lambda^{i}(x^{i} - \tilde{x}) + \frac{\rho}{2} \|x^{i} - \tilde{x}\|^{2}$$

Figure 1: The largest absolute eigenvalue of the linear map $\mathcal{F} = F_3^p \circ F_2^p \circ F_1^p \circ \ldots \circ F_3^1 \circ F_2^1 \circ F_1^1$ as a function of $\eta \in (0, 10^{-2})$ and $\rho \in (0, 10)$ when p = 3 and p = 8. To simulate the chaotic behavior of the *ADMM* algorithm, one may pick $\eta = 0.001$ and $\rho = 2.5$ and initialize the state s_0 either randomly or with $\lambda_0^1 = 0, x_0^1 = 1000, \lambda_0^2 = 0, x_0^2 = 1000, \lambda_0^3 = 0, x_0^3 = 1000, \tilde{x}_0 = 1000$. Figure should be read in color.

Results on CIFAR-10 dataset , 7-layer ConvNet, 4 nodes

Results: CIFAR-10, 7-layer ConvNet, Tau=10 (Tau=1 for Downpour)

Results: ImageNet, ConvNet, Tau=10 (Tau=1 for Downpour)

Results: Performance comparison on CIFAR-10 and ImageNet

Figure 10: The wall clock time needed to achieve the same level of the test error thr as a function of the number of local workers p on the *CIFAR* dataset. From left to right: $thr = \{21\%, 20\%, 19\%, 18\%\}$. Missing bars denote that the method never achieved specified level of test error.

Figure 11: The wall clock time needed to achieve the same level of the test error thr as a function of the number of local workers p on the *ImageNet* dataset. From left to right: $thr = \{49\%, 47\%, 45\%, 43\%\}$. Missing bars denote that the method never achieved specified level of test error.

How Learning Can Help With Optimization: LISTA

Y LeCun

[Olshausen & Field 1997]

Sparse linear reconstruction

Energy = reconstruction_error + code_prediction_error + code_sparsity

$$E(Y^{i}, Z) = ||Y^{i} - W_{d}Z||^{2} + \lambda \sum_{j} |z_{j}|$$

Inference is expensive: ISTA/FISTA, CGIHT, coordinate descent....

$$Y \rightarrow \hat{Z} = argmin_{Z} E(Y, Z)$$

Better Idea: Give the "right" structure to the encoder

Y LeCun

ISTA/FISTA: iterative algorithm that converges to optimal sparse code

INPUT
$$Y \rightarrow W_{e} \rightarrow + sh() \rightarrow Z$$

Lateral Inhibition
 $Z(t+1) = \text{Shrinkage}_{\lambda/L} \left[Z(t) - \frac{1}{L} W_{d}^{T}(W_{d}Z(t) - Y) \right]$

ISTA/FISTA reparameterized:

$$Z(t+1) = \text{Shrinkage}_{\lambda/L} \left[W_e^T Y + SZ(t) \right]; \quad W_e = \frac{1}{L} W_d; \quad S = I - \frac{1}{L} W_d^T W_d$$

LISTA (Learned ISTA): learn the We and S matrices to get fast solutions

[Gregor & LeCun, ICML 2010], [Bronstein et al. ICML 2012], [Rolfe & LeCun ICLR 2013]

LISTA: Train the We and S matrices to give a good approximation quickly

Ζ

Think of the FISTA flow graph as a recurrent neural net where We and S are trainable parameters

C

sh

S

sh

Time-Unfold the flow graph for K iterations

INPU7

Y

- Learn the We and S matrices with "backprop-through-time"
- Get the best approximate solution within K iterations

sh

Learning ISTA (LISTA) vs ISTA/FISTA

Y LeCun

Number of LISTA or FISTA iterations

LISTA with partial mutual inhibition matrix

Y LeCun

Proportion of S matrix elements that are non zero

Learning Coordinate Descent (LcoD): faster than LISTA

Y LeCun

Number of LISTA or FISTA iterations

Discriminative Recurrent Sparse Auto-Encoder (DrSAE)

Y LeCun

[Rolfe & LeCun ICLR 2013]

Rectified linear units
 Classification loss: cross-entropy
 Reconstruction loss: squared error
 Sparsity penalty: L1 norm of last hidden layer
 Rows of Wd and columns of We constrained in unit sphere

DrSAE Discovers manifold structure of handwritten digits

Y LeCun

Image = prototype + sparse sum of "parts" (to move around the manifold)

Learning in the Presence of Uncertainty: Adversarial Training

The Hard Part: Prediction Under Uncertainty

Invariant prediction: The training samples are merely representatives of a whole set of possible outputs (e.g. a manifold of outputs).

Adversarial Training: A Trainable Objective Function

Y LeCun

Adversarial Training [Goodfellow et al. NIPS 2014]

Energy-based view of adversarial training: generator picks points to push up

Generative Adversarial Networks

- [Goodfellow et al. NIPS 2014]
- Generator net maps random numbers to image
- Discriminator learns to tell real from fake images.
- Generator can cheat: it knows the gradient of the output of the discriminator with respect to its input

DCGAN: adversarial training to generate images. [Radford, Metz, Chintala 2015]

- Input: random numbers; output: bedrooms.

Navigating the Manifold

DCGAN: adversarial training to generate images.

Trained on Manga characters

Interpolates between characters

Face Algebra (in DCGAN space)

DCGAN: adversarial training to generate images. – [Radford, Metz, Chintala 2015]

Video Prediction (with adversarial training) [Mathieu, Couprie, LeCun ICLR 2016] arXiv:1511:05440

Unsupervised Learning is the "Dark Matter" of Al

Y LeCun

Unsupervised learning is the only form of learning that can provide enough information to train large neural nets with billions of parameters.

- Supervised learning would take too much labeling effort
- Reinforcement learning would take too many trials

But we don't know how to do unsupervised learning (or even formulate it)

- We have lots of ideas and methods
- They just don't work that well yet.

Why is it so hard? The world is unpredictable!

Predictors produce an average of all possible futures → Blurry image.

Predictor (multiscale ConvNet Encoder-Decoder)

4 to 8 frames input \rightarrow ConvNet with no pooling \rightarrow 1 to 8 frames output

Can't Use Squared Error: blurry predictions

- The world is unpredictable
- MSE training predicts
 - the average of possible
 - futures:
 - blurry images.

Ground truth

 ℓ_2 result

Y LeCun

Input

Ground truth

 ℓ_1

 ℓ_2

 ℓ_1 recursive

ℓ_2 recursive

Multi-Scale ConvNet for Video Prediction

Architectures

Models 4 frames in input – 1 frame in output							
Generative network scales	G_1	G_2	2	G_3		G_4	
Number of feature maps	128, 256, 1	128 128, 25	6, 128	128, 256, 512, 256, 128		128, 256, 512, 256, 128	
Conv. kernel size	3, 3, 3, 3	3 5, 3, 2	3, 5	5, 3, 3, 3, 5		7, 5, 5, 5, 5, 7	
Adversarial network scales	D_1	D_2	2	D_3		D_4	
Number of feature maps	64	64, 128	64, 128, 128 128,		256, 256	128, 256, 512, 128	
Conv. kernel size (no padding)	3	3, 3,	, 3	5	5, 5, 5	7, 7, 5,	5
Fully connected	512, 250	1024, 512		10	24, 512	1024, 5	12
Models 8 frames in input – 8 frames in output							
Generative network scales		G_1	C	\tilde{z}_2	G_3	($\tilde{\mathbf{x}}_4$
Number of feature maps		16, 32, 64	16, 3	32, 64	32, 64, 128	32, 64,	128, 128
Conv. kernel size		3, 3, 3, 3	5, 3	, 3, 3	5, 5, 5, 5	7, 5,	5, 5, 5
Adversarial network scales		D_1	I	\mathcal{D}_2	D_3	I	\mathcal{D}_4
Number of feature maps		16	16, 3	32, 32	32, 64, 64	32, 64,	128, 128
Conv. kernel size (no padding)		3	3, 1	3, 3	5, 5, 5	7, 7	, 5, 5
Fully connected		128, 64	256	, 128	256, 128	256	, 128

Results on UCF101 (10% of test images)

> 8 frames input \rightarrow 8 frames output

	1 st fram	e prediction scores	8 th frame prediction scores		
	PSNR	Sharpness	PSNR	Sharpness	
ℓ_2	18.3	0.47	16.4	0.36	
Adv	21.0	0.65	18.9	0.54	
ℓ_1	21.2	0.57	18.3	0.51	
$\text{GDL}\;\ell_1$	21.8	0.87	19.2	0.79	

Y LeCun

Results on UCF101 (10% of test images)

> 4 frames input \rightarrow 1 frames output

	1 st frame prediction scores		2 nd frame prediction scores			
	PSNR	Sharpness	PSNR	Sharpness		
ℓ_2	20.1	0.48	14.1	0.29		
ℓ_1	22.2	0.58	16.0	0.48		
GDL ℓ_1	23.9	0.69	18.5	0.60		
Adv	24.4	0.95	18.9	1.00		
Adv+GDL	27.2	0.77	22.6	0.68		

Multi-Scale ConvNet for Video Prediction

Examples

Input frames

Ground truth

 ℓ_2 result

 ℓ_1 result

GDL ℓ_1 result

Adversarial result

Adversarial+GDL result

Multi-Scale ConvNet for Video Prediction

Examples

Input frames

Ground truth

 ℓ_2 result

GDL ℓ_1 result

Adversarial result

Adversarial+GDL result

Predictive Learning: Video Prediction

Our brains are "prediction machines" Can we train machines to predict the future?

Some success with "adversarial training"

 [Mathieu, Couprie, LeCun ICLR'16, arXiv:1511:05440]

But we are far from a complete solution.

