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Y LeCun
The Traditional Model of Pattern Recognition

The traditional model of pattern recognition (since the late 50's)
Fixed/engineered features (or fixed kernel) + trainable classifier

Perceptron (Cornell University, 1957)

“Simple” Trainable 
Classifier

hand-crafted
Feature Extractor
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1957: The Perceptron (the first learning machine)

A simple simulated neuron with adaptive “synaptic weights”
Computes a weighted sum of inputs 
Output is +1 if the weighted sum is above a thresold, -1 otherwise.

y=sign(∑
i=1

N

W i X i+ b)
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Supervised Learning

We can train a machine on lots of examples of tables, chairs, 
dog, cars, and people
But will it recognize table, chairs, dogs, cars, and people it has 
never seen before?

CAR

PLANE

CAR
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Supervised Machine Learning = Function Optimization

It's like walking in the mountains in a fog and 
following the direction of steepest descent to 
reach the village in the valley

But each sample gives us a noisy estimate of 
the direction. So our path is a bit random. 

traffic light:  -1

Function with 
adjustable parameters

Error
Function Error

W i←W i−η
∂ L(W , X )

∂W i

Stochastic Gradient Descent (SGD)
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Large-Scale Machine Learning: the reality

Hundreds of millions of “knobs” (parameters)
Thousands of categories
Millions of training samples
Recognizing each sample may take billions of operations

But these operations are simple multiplications and additions
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Deep Learning = The Entire Machine is Trainable

Traditional Pattern Recognition: Fixed/Handcrafted Feature Extractor

Trainable 
Classifier

Feature 
Extractor

Mainstream Modern Pattern Recognition: Unsupervised mid-level features

Trainable 
Classifier

Feature 
Extractor

Mid-Level
Features

Deep Learning: Representations are hierarchical and trained

Trainable 
Classifier

Low-Level
Features

Mid-Level
Features

High-Level
Features
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Deep Learning = Learning Hierarchical Representations

It's deep if it has more than one stage of non-linear feature transformation

Trainable 
Classifier

Low-Level
Feature

Mid-Level
Feature

High-Level
Feature

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]
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Trainable Feature Hierarchy

Hierarchy of representations with increasing level of abstraction

Each stage is a kind of trainable feature transform

Image recognition
Pixel  edge  texton  motif  part  object→ → → → →

Text
Character  word  word group  clause  sentence  story→ → → → →

Speech
Sample  spectral band  sound  …  phone  phoneme  word→ → → → → →
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How does the brain interprets images?

[picture from Simon Thorpe]

[Gallant & Van Essen] 

The ventral (recognition) pathway in the visual cortex has multiple stages
Retina - LGN - V1 - V2 - V4 - PIT - AIT ....
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Multi-Layer
Neural Networks
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Multi-Layer Neural Nets

Multiple Layers of simple units

Each units computes a weighted sum of its inputs

Weighted sum is passed through a non-linear function

The learning algorithm changes the weights

Weight 
matrix

Ceci est une voiture

ReLU (x )=max (x ,0)

Hidden
Layer
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Building a Network by Assembling Modules. 
With Automatic Differentiation

● All major deep learning frameworks use modules (inspired by SN/Lush, 1991)
● Torch7, Theano, TensorFlow….

Linear

ReLU

Linear

LogSoftMax

NegativeLogLikelihood

C(X,Y,Θ)

X
input

Y
Label 

W1,B1

W2,B2
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Computing Gradients by Back-Propagation

● A practical Application of Chain Rule

● Backprop for the state gradients:
● dC/dXi-1 = dC/dXi . dXi/dXi-1 
● dC/dXi-1 = dC/dXi . dFi(Xi-1,Wi)/dXi-1 

● Backprop for the weight gradients:
● dC/dWi = dC/dXi . dXi/dWi 
● dC/dWi = dC/dXi . dFi(Xi-1,Wi)/dWi 

Cost

Fn(Xn-1,Wn)

C(X,Y,Θ)

X (input) Y (desired output)

Fi(Xi-1,Wi)

F1(X0,W1)

Xi-1

Xi

dC/dXi-1

dC/dXi

dC/dWn

Wn

dC/dWi

Wi
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Any Architecture works

Any connection graph is permissible
Directed acyclic graphs (DAG)
Networks with loops must be “unfolded in 
time”.

Any module is permissible
As long as it is continuous and differentiable 
almost everywhere with respect to the 
parameters, and with respect to non-
terminal inputs.

Most frameworks provide automatic 
differentiation 

Theano, Torch7+autograd,…
 Programs are turned into computation 
DAGs and automatically differentiated.
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The Objective Function of Multi-layer Nets is Non Convex

1-1-1 network 
– Y = W1*W2*X 

Objective: identity function with quadratic loss

One sample: X=1, Y=1  L(W) = (1-W1*W2)^2

Solution

Saddle point
Solution X

Z

Y

W2

W1
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Backprop in Practice

Use ReLU non-linearities

Use cross-entropy loss for classification

Use Stochastic Gradient Descent on minibatches

Shuffle the training samples (← very important)

Normalize the input variables (zero mean, unit variance)

Schedule to decrease the learning rate

Use a bit of L1 or L2 regularization on the weights (or a combination)
But it's best to turn it on after a couple of epochs

Use “dropout” for regularization

Lots more in [LeCun et al. “Efficient Backprop” 1998]

Lots, lots more in “Neural Networks, Tricks of the Trade” (2012 edition) 
edited by G. Montavon, G. B. Orr, and K-R Müller (Springer)
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Convolutional  Networks

(ConvNet or CNN)
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Convolutional Network (vintage 1990) 

Filters-tanh → pooling → filters-tanh → pooling → filters-tanh
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Convolutional Network Architecture

[LeCun et al. NIPS 1989]

Filter Bank +non-linearity

Filter Bank +non-linearity

Pooling

Pooling

Filter Bank +non-linearity



Y LeCun

Overall Architecture: multiple stages of 
Normalization → Filter Bank → Non-Linearity → Pooling

Normalization: variation on whitening (optional)

– Subtractive: average removal, high pass filtering
– Divisive: local contrast normalization, variance normalization
Filter Bank: dimension expansion, projection on overcomplete basis
Non-Linearity: sparsification, saturation, lateral inhibition....

– Rectification (ReLU), Component-wise shrinkage, tanh,..

Pooling: aggregation over space or feature type

– Max, Lp norm, log prob. 

MAX :Max i(X i) ; L p :
p√ X i

p ; PROB :
1
b

log(∑i e
bX i)

Classifier
feature

Pooling 

Non-

Linear

Filter

Bank 
Norm

feature

Pooling 

Non-

Linear

Filter

Bank 
Norm

ReLU (x )=max (x ,0)
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Multiple Character Recognition [Matan et al 1992]

Every layer is a convolution
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Sliding Window ConvNet + Weighted Finite-State Machine
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Sliding Window ConvNet + Weighted FSM



Y LeCun

Check Reader
(Bell Labs, 1995)

Graph transformer network trained 
to read check amounts.

Trained globally with Negative-Log-
Likelihood loss.

50% percent correct, 49% reject, 
1% error (detectable later in the 
process).

Fielded in 1996, used in many 
banks in the US and Europe.

Processed an estimated 10% to 
20% of all the checks written in the 
US in the early 2000s.
[LeCun, Bottou, Bengio, Haffner 1998]
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Simultaneous face detection and pose estimation
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Scene Parsing/Labeling

[Farabet et al. ICML 2012, PAMI 2013]
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Scene Parsing/Labeling: Multiscale ConvNet Architecture

Each output sees a large input context:
46x46 window at full rez; 92x92 at ½ rez; 184x184 at ¼ rez

[7x7conv]->[2x2pool]->[7x7conv]->[2x2pool]->[7x7conv]->

Trained supervised on fully-labeled images
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Scene Parsing/Labeling

[Farabet et al. ICML 2012, PAMI 2013]

No post-processing
Frame-by-frame
ConvNet runs at 50ms/frame on Virtex-6 FPGA hardware

But communicating the features over ethernet limits system 
performance

VIDEO: SCENE PARSING
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Scene Parsing/Labeling on RGB+Depth Images

With temporal consistency

[Couprie, Farabet, Najman, LeCun ICLR 2013, ICIP 2013]
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ConvNet for Long Range Adaptive Robot Vision 
(DARPA LAGR program 2005-2008)

Input imageInput image Stereo LabelsStereo Labels Classifier OutputClassifier Output

Input imageInput image Stereo LabelsStereo Labels Classifier OutputClassifier Output
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Then in 2012 two things happened...

The ImageNet dataset [Fei-Fei et al. 2012]
1.2 million training samples
1000 categories

Fast & Programmable General-Purpose GPUs
NVIDIA CUDA
Capable of over 1 trillion operations/second

Backpack

Flute

Strawberry

Bathing cap

Matchstick

Racket

Sea lion
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Very Deep ConvNet for Object Recognition

1 to 10 billion connections, 10 million to 1 billion parameters, 8 to 20 layers.
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Very Deep ConvNet Architectures

Small kernels, not much subsampling (fractional subsampling).

VGG

GoogLeNet

ResNet
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Very Deep ConvNets Trained on GPU

AlexNet [Krizhevski, Sutskever, Hinton 2012]
15% top-5 error on ImageNet

OverFeat [Sermanet et al. 2013]
13.8% 

VGG Net [Simonyan, Zisserman 2014]
7.3%

GoogLeNet [Szegedy et al. 2014]
6.6%

ResNet [He et al. 2015]
5.7%

http://torch.ch
https://github.com/torch/torch7/wiki/Cheatsheet

CONV 7x7/ReLU 96fm

MAX POOL 3x3sub

FULL 4096/ReLU
FULL 1000/Softmax

CONV 7x7/ReLU 256fm
MAX POOLING 2x2sub

CONV 3x3/ReLU 384fm
CONV 3x3ReLU 384fm

CONV 3x3/ReLU 256fm
MAX POOLING 3x3sub

FULL 4096/ReLU
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Learning in Action

● How the filters in the first layer learn
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Image captioning: generating a descriptive sentence

[Lebret, Pinheiro, Collobert 2015][Kulkarni 11][Mitchell 12][Vinyals 14][Mao 14]
[Karpathy 14][Donahue 14]...
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Deep Face

[Taigman et al. CVPR 2014]

Alignment

ConvNet

Metric Learning

Deployed at Facebook for Auto-
tagging

800 million photos per day
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Person Detection and Pose Estimation 

Tompson, Goroshin, Jain, LeCun, Bregler arXiv:1411.4280 (2014)
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Segmenting and Localizing Objects (DeepMask)

[Pinheiro, Collobert, 
Dollar ICCV 2015]

ConvNet produces 
object masks
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Results
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Results
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Results

file:///home/yann/text/Talks/videos-2015/scene-parsing.mp4
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Results
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Results
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Mistakes
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Results
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Results
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Results
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Results
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ConvNets are Everywhere
(or soon will be)
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ConvNet Chips

Currently in development at NVIDIA, Intel, Mobileye, Qualcomm, Samsung

Many startups: Movidius, Teradeep, Nervana….

Soon, a ConvNet chip will drive your car.

NeuFlow chip[Pham, Jelaca, Farabet, Martini, LeCun, Culurciello 2012] 
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NVIDIA: ConvNet-Based Driver Assistance

Drive-PX2: Open Platform for Driver Assistance

Embedded Super-Computer: 42 TOPS
– ( =150 Macbook Pros)

http://torch.ch/
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MobilEye: ConvNet-Based Driver Assistance

Deployed in the latest 

Tesla Model S and Model X
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Brain Tumor Detection

[Havaei et al. 2015]
Arxiv:1505.03540

InputCascadeCNN 
architecture

802,368 
parameters

Trained on 30 
patients.

State of the art 
results on BRAT2013



Y LeCunDeep Learning is Everywhere 
(ConvNets are Everywhere)

Lots of applications at Facebook, Google, Microsoft, Baidu, Twitter, IBM…

Image recognition for photo collection search

Image/Video Content filtering: spam, nudity, violence.

Search, Newsfeed ranking

People upload one billion photos on Facebook every day

(over 2 billion photos per day if we count Instagram, Messenger and Whatsapp)

Each photo on Facebook goes through two ConvNets within 2 seconds

One for image recognition/tagging

One for face recognition (not activated in Europe).

Soon ConvNets will really be everywhere:

self-driving cars, medical imaging, augmented reality, mobile devices, smart 
cameras, robots, toys…..
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Natural Language
Understanding
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Language Translation with LSTM networks

[Sutskever et al. NIPS 2014]
Multiple layers of very large LSTM recurrent modules
English sentence is read in and encoded
French sentence is produced after the end of the English sentence
Accuracy is very close to state of the art.

This is a sentence in English

Ceci est une phrase en anglais
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Gating and Attention

Connections at activated depending on context
(Bahdanau, Cho & Bengio, arXiv sept. 2014) 
following up on (Graves 2013) and (Larochelle & Hinton NIPS 2010)

Input of a unit is selected among several by the softmax output of a sub-
network

The unit “pays attention” to a particular location

Lower-level

Higher-level

Softmax over lower 
locations conditioned
on context at lower and
higher locations 

• Soft attention (backprop) vs
• Stochastic hard attention (RL)



IWSLT 2015 – Luong & Manning (2015)

TED talk MT, English-German

Stanford Karlsruhe Edinburgh Heidelberg PJAIT Baseline
0

5

10

15

20

25

30

35

30.85

26.18 26.02
24.96

22.51

20.08

BLEU (cased)

101

Stanford Edinburgh Karlsruhe Heidelberg PJAIT
0

5

10

15

20

25

30

16.16

21.84
22.67

23.42

28.18

HTER (HE set)

-26%

[From Bengio&LeCun tutorial NIPS 2015]
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But How can Neural Nets Remember Things?

Recurrent networks cannot remember things for very long

The cortex only remember things for 20 seconds

We need a “hippocampus” (a separate memory module)

LSTM [Hochreiter 1997], registers

Memory networks [Weston et 2014] (FAIR), associative memory

Stacked-Augmented Recurrent Neural Net [Joulin & Mikolov 2014] (FAIR)

NTM [DeepMind 2014], “tape”.

Recurrent net memory
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Differentiable Memory

Like a “soft” RAM circuit

Or a “soft” hash table

Stores Key-Value pairs (Ki,Vi)

Input (Address) X

Keys Ki

Values Vi

Dot Products

Softmax
Coefficients Ci

Sum

Y=∑
i

CiV i

Ci=
eK i

T X

∑
j

eK j
T X
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Memory/Stack-Augmented Recurrent Nets

[Joulin & Mikolov, ArXiv:1503.01007]
Stack-augmented RNN

[Sukhbataar, Szlam, Weston, Fergus NIPS 2015]
 ArXiv:1503.08895]

Weakly-supervised MemNN: 
discovers which memory location to use.
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Memory Network [Weston, Chopra, Bordes 2014]

Add a short-term memory to a network

Results on 
Question Answering
Task

http://arxiv.org/abs/1410.3916
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End-to-End Memory Network on bAbI tasks [Weston 2015]
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Non-Convex Objective
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Overall Architecture: multiple stages of 
Normalization → Filter Bank → Non-Linearity → Pooling

Normalization: variation on whitening (optional)

– Subtractive: average removal, high pass filtering
– Divisive: local contrast normalization, variance normalization
Filter Bank: dimension expansion, projection on overcomplete basis
Non-Linearity: sparsification, saturation, lateral inhibition....

– Rectification (ReLU), Component-wise shrinkage, tanh,..

Pooling: aggregation over space or feature type

– Max, Lp norm, log prob. 
MAX :Max i(X i) ; L p :

p√ X i
p ; PROB :

1
b

log(∑i e
bX i)

Classifier
feature

Pooling 

Non-

Linear

Filter

Bank 
Norm

feature

Pooling 

Non-

Linear

Filter

Bank 
Norm

ReLU (x )=max (x ,0)
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Deep Nets with ReLUs and Max Pooling

Stack of linear transforms interspersed with Max operators

Point-wise ReLUs:

Max Pooling
“switches” from one layer to the next

14

22

3

31

W14,3

W22,14

W31,22

Z3

ReLU (x )=max (x ,0)
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Loss Function for a simple network

1-1-1 network 
– Y = W1*W2*X 

trained to compute the identity function with quadratic loss
– Single sample X=1, Y=1  L(W) = (1-W1*W2)^2

Solution

Saddle point
Solution

X

X

Y

W2

W1
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Deep Nets with ReLUs

Single output:

Wij: weight from j to i

P: path in network from input to output
P=(3,(14,3),(22,14),(31,22))

di: 1 if ReLU i is linear, 0 if saturated. 

Xpstart: input unit for path P.

Ŷ=∑
P

δP (W , X )( ∏
(ij)∈P

W ij )X P start

14

22

3

31

W14,3

W22,14

W31,22

Z3
Dp(W,X): 1 if path P is “active”, 0 if inactive

Input-output function is piece-wise linear

Polynomial in W with random coefficients

Ŷ=∑
P

δP (W , X )( ∏
(ij)∈P

W ij )X P start
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Deep Convolutional Nets (and other deep neural nets)

Training sample: (Xi,Yi)  k=1 to K

Objective function (with margin-type loss = ReLU)

Polynomial in W of degree l (number of adaptive layers) 

Continuous, piece-wise polynomial with “switched” and partially random 
coefficients

Coefficients are switched in an out depending on W

L (W )=∑
k

ReLU (1−Y k∑
P

δP(W , X k
)( ∏

(ij)∈P

W ij )X P start

k
)

L (W )=∑
k
∑
P

(X P start

k Y k
)δP (W , X k

)(∏
(ij)∈P

W ij)

L (W )=∑
P

[∑
k

(X P start

k Y k )δP (W , X k )]( ∏
(ij)∈P

W ij )

L (W )=∑
P

C p(X ,Y ,W )( ∏
(ij)∈P

W ij )
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Deep Nets with ReLUs: 
Objective Function is Piecewise Polynomial

If we use a hinge loss, delta now depends on label Yk:

Piecewise polynomial in W with random 
coefficients

A lot is known about the distribution of critical 
points of polynomials on the sphere with random 
(Gaussian) coefficients [Ben Arous et al.]

High-order spherical spin glasses
Random matrix theory

14

22

3

31

W14,3

W22,14

W31,22

Z3

L(W)

Histogram of minima

L (W )=∑
P

C p(X ,Y ,W )( ∏
(ij)∈P

W ij )
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Deep Nets with ReLUs: 
Objective Function is Piecewise Polynomial

Train 2-layer nets on scaled-down MNIST (10x10) from multiple initial 
conditions. Measure loss on test set.

[Choromanska, Henaff, Mathieu, Ben Arous, LeCun 2015]
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Spherical Spin Glass theory

Critical Points

Distribution of critical points (saddle points, minima, maxima)
K=number of negative eigenvalues of Hessian (K=0  minimum)→

Zoomed:
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Elastic Average SGD
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Distributing SGD over multiple CPU/GPU nodes

Expected loss

Distributed form

Update formulas

Reparameterization: 

Deep Learning withElastic Average SGD: [Zhang, Choromanska, LeCun arXiv:1412.6651]
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Elastic Average SGD & Elastic Average Momentum SGD

Asynchronous algorithms. Sync between node every Tau updates.

– Every Tau steps: move workers toward center, and vice versa
– Momentum form uses Nesterov accelerated gradient
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Downpour algorithm: send gradient, receive parameter vector

Asynchronous algorithm. Sync between node every Tau updates.

– Every Tau steps: 
• node sends accumulated gradient to server
• Server sends updated parameter vector to node.

– Momentum form uses Nesterov accelerated gradient
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Like ADMM without the constraint term

But ADMM is unstable under a round robin scheme for synchronization
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Results on CIFAR-10 dataset , 7-layer ConvNet, 4 nodes

Tau=1

Tau=16

Tau=64
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Results: CIFAR-10, 7-layer ConvNet, Tau=10 (Tau=1 for Downpour)

P=16

P=4

P=8
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Results: ImageNet, ConvNet, Tau=10 (Tau=1 for Downpour)
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Results: Performance comparison on CIFAR-10 and ImageNet
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How Learning Can Help 
With Optimization:

LISTA
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Sparse Modeling: Sparse Coding + Dictionary Learning

Sparse linear reconstruction

Energy  = reconstruction_error + code_prediction_error + code_sparsity

E (Y i , Z )=∥Y i
−W d Z∥

2
+ λ∑ j

∣z j∣

[Olshausen & Field 1997]

INPUT Y Z

∥Y i
− Y∥

2

∣z j∣

W d Z

FEATURES 

∑ j
.

Y → Ẑ=argmin Z E (Y , Z )

Inference is expensive: ISTA/FISTA, CGIHT, coordinate descent....

DETERMINISTIC

FUNCTION
FACTOR

VARIABLE
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ISTA/FISTA: iterative algorithm that converges to optimal sparse code

INPUT Y ZW e sh()

S

+

[Gregor & LeCun, ICML 2010], [Bronstein et al. ICML 2012], [Rolfe & LeCun ICLR 2013]

Lateral Inhibition

Better Idea: Give the “right” structure to the encoder

ISTA/FISTA reparameterized:

LISTA (Learned ISTA): learn the We and S matrices to get fast solutions
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Think of the FISTA flow graph as a recurrent neural net where We and S are 
trainable parameters

INPUT Y ZW e sh()

S

+

Time-Unfold the flow graph for K iterations

Learn the We and S matrices with “backprop-through-time”

Get the best approximate solution within K iterations

Y

Z

W e

sh()+ S sh()+ S

LISTA: Train the We and S matrices 
to give a good approximation quickly
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Learning ISTA (LISTA) vs ISTA/FISTA

Number of LISTA or FISTA iterations

R
ec

on
st

ru
ct

io
n 

Er
ro

r
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LISTA with partial mutual inhibition matrix

Proportion of S matrix elements that are non zero

R
ec

on
st

ru
ct

io
n 

Er
ro

r

Smallest elements
removed
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Learning Coordinate Descent (LcoD): faster than LISTA

Number of LISTA or FISTA iterations

R
ec

on
st

ru
ct

io
n 

Er
ro

r
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Architecture

 Rectified linear units

Classification loss: cross-entropy

Reconstruction loss: squared error

Sparsity penalty: L1 norm of last hidden layer

Rows of Wd and columns of We constrained in unit sphere

W e

()
+ S +

W c

W d

Can be repeated

Encoding

Filters

Lateral

Inhibition
Decoding

Filters

X̄

Ȳ

X

L1 Z̄

X

Y

0

()
+

[Rolfe & LeCun ICLR 2013]

Discriminative Recurrent Sparse Auto-Encoder (DrSAE)
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Image = prototype + sparse sum of “parts” (to move around the manifold)

DrSAE Discovers manifold structure of handwritten digits



Y LeCun

Learning in the 
Presence of Uncertainty:

Adversarial Training



Y LeCun
The Hard Part: Prediction Under Uncertainty

Invariant prediction: The training samples are merely representatives of a whole 
set of possible outputs (e.g. a manifold of outputs).

Percepts

Hidden State
Of the World
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Adversarial Training: A Trainable Objective Function

Adversarial Training [Goodfellow et al. NIPS 2014]

Energy-based view of adversarial training: generator picks points to push up

Generator
G(X,Z)

Discriminator
F(X,Y)

Dataset
T(X)

Discriminator
F(X,Y)

X

X X

X

Y

Y

Y

YZ F: maximize

F: minimize

F(X,Y)

F(X,Y)
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● [Goodfellow et al. NIPS 2014]

● Generator net maps random numbers to image

● Discriminator learns to tell real from fake images.

● Generator can cheat: it knows the gradient of the output of the 
discriminator with respect to its input

Generative Adversarial Networks

Generator
Network

Discriminator
Network

Fake
Image

Real/Fake

Real
Image

Training
Set

Random
Vector

Random
Index ● Discriminator is a 

trainable loss function
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Discovering 
Regularities

DCGAN:  adversarial training to generate images. 

[Radford, Metz, Chintala 2015]
– Input: random numbers;  output: bedrooms.
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Navigating
the Manifold

DCGAN:  adversarial 
training to generate 
images. 

Trained on Manga 
characters

Interpolates between 
characters
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Face Algebra (in DCGAN space)

DCGAN:  adversarial training to generate images.
– [Radford, Metz, Chintala 2015]
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Video Prediction
(with adversarial training)

[Mathieu, Couprie, LeCun ICLR 2016] 
arXiv:1511:05440
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Unsupervised Learning is the “Dark Matter” of AI

Unsupervised learning is the only form of learning that can provide enough 
information to train large neural nets with billions of parameters.

– Supervised learning would take too much labeling effort
– Reinforcement learning would take too many trials

But we don't know how to do unsupervised learning (or even formulate it)
– We have lots of ideas and methods
– They just don't work that well yet.

Why is it so hard?   The world is unpredictable!
– Predictors produce an average of all 

possible futures  → Blurry image.

Predictor (multiscale ConvNet Encoder-Decoder)



Y LeCun
Multi-Scale ConvNet for Video Prediction

4 to 8 frames input → ConvNet with no pooling → 1 to 8 frames output



Y LeCun
Can't Use Squared Error: blurry predictions

The world is unpredictable

MSE training predicts 

the average of possible 

futures: 

blurry images.



Y LeCun
Multi-Scale ConvNet for Video Prediction

Architectures



Y LeCun
Multi-Scale ConvNet for Video Prediction

Results on UCF101 (10% of test images)

8 frames input → 8 frames output

Results on UCF101 (10% of test images)

4 frames input → 1 frames output



Y LeCun
Multi-Scale ConvNet for Video Prediction

Examples

Input frames



Y LeCun
Multi-Scale ConvNet for Video Prediction

Examples

Input frames



Y LeCun
Predictive Learning: Video Prediction

Our brains are “prediction machines”

Can we train machines to predict the future?

Some success with “adversarial training” 
– [Mathieu, Couprie, LeCun ICLR’16, 

arXiv:1511:05440]

But we are far from a complete solution.
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