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Motivation
Goal:

parallel simulation of network

couple rainfall with the current tools of storm
surge simulation, ADCIRC

Current models:

HEC-RAS, implicit solver

GSSHA, Manning’s equation

Computational challenges:

establish an explicit method to solve the
Shallow water Equations

include physical characteristics (e.g., infiltration
rates, friction coefficients, etc.) and the
geometrical characteristics (e.g., bathymetry
and topography)

algorithmic performance, parallel simulation

River network
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Mathematical framework: flow in a single reach 1D Shallow Water Equations
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Mathematical framework: flow in a single reach 1D Shallow Water Equations

Governing equations
One-dimensional shallow water equation in the conservative form

8><
>:
@h

@t
+

@(uh)

@x
= R� I;

@(uh)

@t
+

@(u2h+ 0:5gh2)

@x
= gh(S0 � Sf )

1D Shallow Water Equation

x : distance

t : time

h = h(x; t) : height

u = u(x; t) : velocity

R : Rainfall

I : Infiltration

g : ground acceleration

z = b(x) : bottom surface elevation

S0 = �
@z

@x
: slope of the bottom

Sf =
n2ujuj

h
4
3

friction slope

n : Manning’s number
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Mathematical framework: flow in a single reach 1D Shallow Water Equations

Governing equations
In the compact form, (unknown: w(x; t))

@w(x; t)

@t
+

@f(w;x; t)

@x
= s(w;x; t)

where, w & f & s : R�R! Rm=2

w(x; t) =

�
h

uh

�
; f(w; x; t) =

�
uh

u2h+ 0:5gh2

�
; s(w; x; t) =

�
R� I

gh(S0 � Sf )

�
Using the chain rule, to linearize the system:

@f(w; x; t)

@x
=

@f(w; x; t)

@w

@w

@x
= A

@w

@x

where,

A(x; t) =

�
0 1

c2 � u2 2u

�
; c =

p
gh

Finally:
@w(x; t)

@t
= �A

@w

@x
+ s(w; x; t)
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Mathematical framework: flow in a single reach 1D Shallow Water Equations

Finite Volume Method
Uniform discretization of the x� t domain: �x = xi+1 � xi, �t = tn+1 � tn
A mesh cell Ci denoted by (xi; tn), bounded by xi�1=2, xi+1=2 (xi+1=2 = xi +

�x
2
)

Discretize the eq. by integrating it over space-time rectangle [xi�1=2; xi+1=2], [tn; tn+1]:Z
t

Z
x

(
@w

@t
+

@f

@x
= s)dxdt

Z
x

w(x; tn+1)dx =

Z
x

w(x; tn)dx+

Z
t

(f(xi+1=2; tn)� f(xi�1=2; tn))dt+

Z
t

Z
x

sdxdt

Finite volume discretization a single reach

Poursartip & Dawson Network simulation March 11, 2019 7 / 31



Mathematical framework: flow in a single reach 1D Shallow Water Equations

Finite Volume Method

Now, we express the variables in terms of spatial and temporal mean value of w and f :

Un
i =

1

�x

Z xi+1=2

xi�1=2

w(x; tn)dx;

F(Un
i ; i+ 1=2) =

1

�t

Z tn+1

tn

f(xi+1=2; tn)dt:

@U

@t
= �

@F

@x
+ S = �A

@U

@x
+ S

Final equation based on fluxes:

Un+1
i = Un

i �
�t

�x

�
F(U; i+ 1=2)�F(U; i� 1=2)

�
+ S

How to choose F?
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Mathematical framework: flow in a single reach 1D Shallow Water Equations

First-order method

Upwind method (Low resolution)
Flow to the right:

FL
i+1=2 = Fi

Un+1
i = Un

i �
�t

�x

�
AUn

i �AUn
i�1

�
Flow to the left:

FL
i+1=2 = Fi+1

Un+1
i = Un

i �
�t

�x

�
AUn

i+1 �AUn
i

�
Pros: no oscillation near a discontinuity, convergence

Cons: only a first-order method, highly diffusive, less accurate

various flow conditions
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Mathematical framework: flow in a single reach 1D Shallow Water Equations

Second-order method
Pros: High-resolution method,
Cons: Solution is oscillatory at the discontinuities.

Taylor expansion of U for each cell Ci = (xi�1=2; xi+1=2):

Un+1
i = Un

i +�t(
@U

@t
)ni +

�t2

2
(
@2U

@t2
)ni + : : :

We have from the SWE:
@U

@t
= �A

@U

@x
+ S

@2U

@t2
=

@

@t
(
@U

@t
) =

@

@t
(�

@F

@x
+ S) = �

@2F

@x@t
+

@S

@t

= �
@

@x
(
@F

@U

@U

@t
) +

@S

@t

=
@

@x
(A2 @U

@x
)�

@(AS)

@x
+

@S

@t
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Mathematical framework: flow in a single reach 1D Shallow Water Equations

Second-order method
Substituting in back in the Taylor expansion, and dropping the third- and higher-order terms:

Un+1
i = Un

i +�t(�A
@U

@x
)ni +

�t2

2
(
@

@x
(A2 @U

@x
))ni

+�tSni �
�t2

2

@

@x
(AS)ni +

�t2

2

@Sni
@t

Let’s drop the terms corresponding to S for a moment, substitute:

Un+1
i = Un

i �
�t

2�x
A(Un

i+1 �Un
i�1) +

�t2

2�x2
A2(Un

i+1 � 2Un
i +Un

i�1)

Rearrange to find the fluxes-Lax-Wendroff method:

Un+1
i = Un

i �
�t

�x

��1
2
A(Un

i+1 +Un
i )�

�t

2�x
A2(Un

i+1 �Un
i )
�

�
�1
2
A(Un

i +Un
i�1)�

�t

2�x
A2(Un

i �Un
i�1)

�	
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Mathematical framework: flow in a single reach 1D Shallow Water Equations

Flux limiter

To combine the advantages of both first- and second-order methods:

Un+1
i = Un

i �
�t

�x

n
Fn
i+1=2 �Fn

i�1=2

o
Rewrite the high-resolution flux:

F
H
i+1=2 = F

L
i+1=2+

�
F
H
i+1=2 � F

L
i+1=2

�
F
H
i+1=2 = F

L
i+1=2 + �i+1=2

�
F
H
i+1=2 � F

L
i+1=2

� F
H
i�1=2 = F

L
i�1=2+

�
F
H
i�1=2 � F

L
i�1=2

�
F
H
i�1=2 = F

L
i�1=2 + �i�1=2

�
F
H
i�1=2 � F

L
i�1=2

�
The flux limiter term:

�(U) =

�
1 high-order method (Lax-Wendroff)

0 low-order method (upwind)
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Mathematical framework: flow in a single reach Source term

Source term
Now let’s focus on the second part of Un+1

i (source term)

Un+1
i = Un

i +�t(�A
@U

@x
)ni +

�t2

2
(
@

@x
(A2 @U

@x
))ni

+�tSni �
�t2

2

@

@x
(AS)ni +

�t2

2

@Sni
@t

The second part of the equation:

�tSni �
�t2

2

@

@x
(AS)ni +

�t2

2

@Sni
@t

= �t(Sni +
�t

2

@Sni
@t

)�
�t2

2

@

@x
(AS)ni

Taylor expansion of Sni :

Sn+1i = Sni +�t(
@S

@t
)ni + : : :) Sn+1i + Sni = 2(Sni +

�t

2
(
@S

@t
)ni )

The second part of the equation:

�t

2
(Sni + Sn+1i )�

�t2

2

(AS)ni+1=2 � (AS)ni�1=2
�x

The issue here is Sn+1i
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Mathematical framework: flow in a single reach Source term

Final equations
Final equation:

Un+1
i = (I�

�t2

2
Bn
i )
�1(Un

i �
�t

�x
(A��Ui+1=2 +A+Ui�1=2)�

�t

�x
( ~Fi+1=2 � ~Fi�1=2)

+ �t(Sni �
1

2
Bn
i U

n
i )�

�t2

2

(AS)ni+1=2 � (AS)ni�1=2
�x

)

where,

~Fi�1=2 =
1

2

m=2X
p=1

js
p
i�1=2j(1�

�t

�x
js
p
i�1=2j)

~W
p
i�1=2

A��Un
i+1=2 =

m=2X
p=1

(s
p
i+1=2)

��
p
i�1=2r

p

Bn
i =

"
0 0

g(S0 +
7

3
Sf ) �

2gSf
u

#n
i
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Mathematical framework: flow in a single reach Source term

Boundary conditions
Periodic boundary condition: (

Un
�1 = Un

N�1; Un
0 = Un

N

Un
N+1 = Un

1 ; Un
N+2 = Un

2

Zero-order extrapolating from the interior solution:(
Un
�1 = Un

1 ; Un
0 = Un

1

Un
n+1 = Un

N ; Un
N+2 = Un

N

First-order extrapolating from the interior solution.

Ghost cells
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Verification Flow over a bump
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Verification Flow over a bump

Flow over a bump

Example 1: Smooth subcritical flow
Domain: 0m < x < 25m

Bathymetry:

z(x; y) =

(
�0:2 + 0:05(x� 10)2 8m < x < 12m

0 else

Manning’s n: 0

Initial condition:
Surface elevation: h = 2m

Flux: Q = 0m3=s

Boundary conditions:
at x = 0m Q = 4:42m3=s

at x = 25m h = 2m
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Verification Flow over a bump

Example 1: Smooth subcritical flow
Upwind method (� = 0)
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Verification Flow over a bump

Flow over a bump

Example 1: Smooth subcritical flow
Lax-Wendroff method (� = 1)
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Verification Flow over a bump

Flow over a bump

Example 1: Smooth subcritical flow
minmod limiter, most diffusive (� = ::::)
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Verification Flow over a bump

Flow over a bump

18.65 18.85 19.05 19.25 19.45 19.65

x

1.9

2.1875

2.475

2.7625

3.05
h

Comparison btw various limiters

Domain

Upwind

Lax

minmod

Superbee
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River network simulation Junction simulation
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River network simulation Junction simulation

Network/Junction simulation

Network simulation
Junction simulation in HEC-RAS
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River network simulation Junction simulation

Junction simulation

Energy-based method for flow combination in HEC-RAS

Reach 3

Junction

Reach 1 Reach 2

Reach 1 & 2:
h from the energy balance,
uh from cell n.

Reach 3:
h from cell 1,
uh from conservation of mass.

Reach 1 Reach 2

Reach 3

n+2n+2

n+1 n+1

-1

0

n

n-1 n-1

n

1

2

hu +
�2V 2

u

2g
= hd +

�2V 2
d

2g

Q3 = Q1 +Q2

Poursartip & Dawson Network simulation March 11, 2019 25 / 31



River network simulation Junction simulation

Parallel implementation

Partitioner:
based on METIS 4.0,
creates input file for each rank separately,
creates geometry files for visualization.

Parallel engine (simulator):
hybrid parallelization: MPI and OpenMP,
reach and junction simulation.

Visualization
based on XDMF and PHDF5,
partitioner code: geometry data,
simulator creates the results file for each rank.
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River network simulation Flow in a synthetic channels
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River network simulation Flow in a synthetic channels

Synthetic channel
Network:

no. of reaches: 16

no. of junctions: 15

no. of cells: 2395

duration: 3600 sec

time step: 0.1 sec

total steps: 36000

total length: 9650 m

longest reach: 4350 m

initial height: 4 m

initial velocity: 0 m/s

flow: 8 m/s

Scalability of the model for HPC:

No. rank Simulation time
2 200 sec
4 134 sec
8 95 sec

Synthetic network

Poursartip & Dawson Network simulation March 11, 2019 28 / 31



River network simulation Flow in a synthetic channels

Synthetic channel

Animation water height/velocity
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Conclusions and remarks

Conclusions
The developed model is:

Explicit,

Scalable,

Flow in in a single reach or river network,

Coupled with storm surge models (ADCIRC)

The code is:

Fortran,

OOP,

Parallal (OMP/MPI)
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Conclusions and remarks

The End
Thanks for your attention
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