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To find a sparse vector x,

x̂ = argminx‖x‖0 s.t. Ax = b.

This is NP-hard.

One popular trend in CS is to replace L0 by L1, i.e.,

x̂ = argminx‖x‖1 s.t. Ax = b.

The big bang of CS started when restricted isometry
property (RIP) was derived to guarantee the success of L1
minimization.

Candes-Romberg-Tao (2006)
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Coherence

Another sparse recovery guarantee is based on coherence.

‖x‖0 6
1
2
(1 + µ(A)−1),

where coherence of a matrix A = [a1, · · · , an] is defined as

µ(A) = max
i 6=j

|aT
i aj|

‖ai‖‖aj‖
.

Two extreme cases are

• µ ∼ 0⇒ incoherent matrix
• µ ∼ 1⇒ coherent matrix

What if the matrix is coherent?
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• Nonconvex regularizations: L0, Lp for p ∈ (0, 1)

• We consider L1 − L2, solved by difference of convex
algorithm (DCA)

Lipschitz continuous

Free of parameter

good for coherent compressive sensing

E. Esser, Y. Lou and J. Xin, SIAM on Imaging Sciences 2013

P. Yin, Y. Lou, Q. He and J. Xin, SIAM Sci. Comput., 2015

Y. Lou, P. Yin, Q. He and J. Xin, J. Sci. Comput., 2015
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Algorithms

We solve the L1 − L2 minimization via DCA.

min
x∈RN

F(x) =
1
2
‖A x − b‖2

2 + λ(‖x‖1 − ‖x‖2)

Decompose F(x) = G(x)− H(x), where{
G(x) = 1

2‖A x − b‖2
2 + λ‖x‖1

H(x) = λ‖x‖2

An iterative scheme is,

xn+1 = arg min
x∈RN

1
2
‖A x − b‖2

2 + λ‖x‖1 − 〈x,
λxn

‖xn‖2
〉
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We consider an over-sampled DCT matrix

A = [a1, · · · , aN ] ∈ RM×N

with
aj =

1√
N

cos(
2πjw

F
) , j = 1, · · · ,N

where w is a random vector of length M.

The larger F is, the more coherent the matrix. Take a
100× 1000 matrix for an example:

F coherence
1 0.3981

10 0.9981
20 0.9999
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Figure: Success rates of incoherent matrices, F = 1.
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Figure: Success rates of coherent matrices, F = 20.
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RIP for L1-L2

L1-L2 has RIP but more stringent than the one for L1.

Convergence
The limit point of DCA minimizing sequence is a stationary
point.

Rank property
The sparsity of any local minimizer of L1-L2 is less than or
equal to the rank of A.
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Problem setup

The super-resolution problem discussed here is different to
image zooming or magnification, but aiming to recover a
real-valued signal from its low-frequency measurements.

A mathematical model is expressed as

bk =
1√
N

N−1∑
t=0

xte−i2πkt/N , |k| ≤ fc,

where x ∈ RN is a vector of interest, and b ∈ Cn is the given
low frequency information with n = 2fc + 1 (n < N).



L1-L2
13/20

Yifei Lou

Intro. to CS

L1-L2

Super-
resolution

Conclusions

Point source with minimum separation

Theorem by Candés and Fernandez-Granda 2012
Let T = {tj} be the support of x. If the minimum distance
obeys

4(T) ≥ 2 · N/fc,

then x is the unique solution to L1 minimization. If x is
real-valued, then the minimum gap can be lowered to
1.26 · N/fc.
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Success rates
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Rank property

The sparsity of any local minimizer of L1-L2 is smaller than
or equal to the rank of A.
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Define an objective function for an unconstrained
minimization

f (x) = λ(‖x‖1 − ‖x‖2) +
1
2
‖Ax − b‖2

2

Theorem
Suppose λ < min{ ‖A

T b‖2√
N+‖A‖2 ,

‖AT b‖2√
N+1
}. Let x∗ be any limit point

of the DCA minimizing sequence. Then we have either
‖x∗‖0 ≤ n (rank property) or there exists d ∈ RN such that
F(x∗ + d) < F(x∗) and supp(d) ⊆ supp(x∗) (so we can
choose d s.t. x∗ + d is sparser than x∗.)

This theorem motivates us to study nonconvex optimization,
regarding how to jump among stationary points.
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Figure: A 2D point-source example with minimum separation.
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L1, ER=0.004 L1-L2, ER = 0.0005

Figure: Comparison of error map, i.e. the difference between
reconstruction and ground-truth.
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Conclusions

1 L1-L2 is always better than L1, and is better than Lp for
highly coherent matrices.

2 For super-resolution, non-convex methods outperform
standard L1 when a necessary condition for perfect
reconstruction is not met.

3 We can expect L1-L2 to lead to sparse solutions.
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Thank you!
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