L1-L2 1/20

Intro. to CS

 $L_1 = L_2$

Superresolutior

Conclusions

The Difference of *L*₁ and *L*₂ norms for Compressive Sensing and Image Processing

Yifei Lou

Department of Mathematical Sciences University of Texas Dallas

May 25, 2016

Joint with Penghang Yin and Jack Xin Partially supported by NSF DMS 1522786 L1-L2 2/20 Vifei Lou

Intro. to CS

L1=L2

Superresolution

Conclusions

Outline

1 Introduction to Compressive Sensing

2 A non-convex approach to promote sparsity: L_1 - L_2

3 One application: point-source super-resolution

④ Conclusions and future works

L1-L2 3/20 Yifei Lou

Intro. to CS

L1=L2

Superresolution

Conclusions

To find a sparse vector *x*,

 $\hat{x} = \operatorname{argmin}_{x} ||x||_{0}$ s.t. Ax = b.

▲□▶ < □▶ < □▶ < □▶ < □▶ < □▶

L₁-L₂ 3/20 Yifei Lou

Intro. to CS

L1=L2

Superresolution

Conclusions

To find a sparse vector x,

```
\hat{x} = \operatorname{argmin}_{x} ||x||_{0} s.t. Ax = b.
```

This is NP-hard.

L₁-L₂ 3/20 Yifei Lou

Intro. to CS

 $L_1 = L_2$

Superresolution

Conclusions

To find a sparse vector *x*,

```
\hat{x} = \operatorname{argmin}_{x} \|x\|_{0} s.t. Ax = b.
```

This is NP-hard.

One popular trend in CS is to replace L_0 by L_1 , i.e.,

 $\hat{x} = \operatorname{argmin}_{x} \|x\|_{1}$ s.t. Ax = b.

L₁-L₂ 3/20 Yifei Lou

Intro. to CS

 $L_1 = L_2$

Superresolution

Conclusions

To find a sparse vector *x*,

```
\hat{x} = \operatorname{argmin}_{x} ||x||_{0} s.t. Ax = b.
```

This is NP-hard.

One popular trend in CS is to replace L_0 by L_1 , i.e.,

 $\hat{x} = \operatorname{argmin}_{x} \|x\|_{1}$ s.t. Ax = b.

The big bang of CS started when restricted isometry property (RIP) was derived to guarantee the success of L_1 minimization.

Candes-Romberg-Tao (2006)

*L*₁-*L*₂ 4/20 Yifei Lou

Coherence

Intro. to CS

L₁-L₂ Super-

Conclusions

Another sparse recovery guarantee is based on coherence.

$$||x||_0 \leq \frac{1}{2}(1+\mu(A)^{-1}),$$

where coherence of a matrix $A = [a_1, \cdots, a_n]$ is defined as

$$\mu(A) = \max_{i \neq j} \frac{|a_i^T a_j|}{\|a_i\| \|a_j\|} .$$

*L*₁-*L*₂ 4/20 Yifei Lou

Intro. to CS

L₁-L₂ Superresolution

Conclusions

Coherence

Another sparse recovery guarantee is based on coherence.

$$||x||_0 \leq \frac{1}{2}(1+\mu(A)^{-1}),$$

where coherence of a matrix $A = [a_1, \cdots, a_n]$ is defined as

$$\mu(A) = \max_{i \neq j} \frac{|a_i^T a_j|}{\|a_i\| \|a_j\|} \; .$$

Two extreme cases are

- $\mu \sim 0 \Rightarrow$ incoherent matrix
- $\mu \sim 1 \Rightarrow$ coherent matrix

*L*₁-*L*₂ 4/20 Yifei Lou

Intro. to CS

L₁-L₂ Superresolution

Conclusions

Coherence

Another sparse recovery guarantee is based on coherence.

$$||x||_0 \leq \frac{1}{2}(1+\mu(A)^{-1}),$$

where coherence of a matrix $A = [a_1, \dots, a_n]$ is defined as

$$\mu(A) = \max_{i \neq j} \frac{|a_i^T a_j|}{\|a_i\| \|a_j\|} \; .$$

Two extreme cases are

- $\mu \sim 0 \Rightarrow$ incoherent matrix
- $\mu \sim 1 \Rightarrow$ coherent matrix

What if the matrix is coherent?

Outline

1 Introduction to Compressive Sensing

A non-convex approach to promote sparsity: L_1 - L_2 2

3 One application: point-source super-resolution

4 Conclusions and future works *L*₁-*L*₂ 6/20

Yifei Lou

Intro. to CS

 L_1 - L_2

Superresolutio

Conclusions

• Nonconvex regularizations: L_0, L_p for $p \in (0, 1)$

▲□▶▲圖▶▲콜▶▲콜▶ '릴' '의익여

*L*₁-*L*₂ 6/20

Yifei Lou

Intro. to CS

 L_1 - L_2

Superresolution

Conclusions

Nonconvex regularizations: L_0 , L_p for $p \in (0, 1)$

• We consider $L_1 - L_2$, solved by difference of convex algorithm (DCA)

E. Esser, Y. Lou and J. Xin, SIAM on Imaging Sciences 2013 P. Yin, Y. Lou, Q. He and J. Xin, SIAM Sci. Comput., 2015 Y. Lou, P. Yin, Q. He and J. Xin, J. Sci. Comput., 2015 *L*₁-*L*₂ 6/20

Yifei Lou

Intro. to CS

 L_1 - L_2

Superresolution

Conclusions

Nonconvex regularizations: L_0 , L_p for $p \in (0, 1)$

• We consider $L_1 - L_2$, solved by difference of convex algorithm (DCA)

Lipschitz continuous

Free of parameter

good for coherent compressive sensing

E. Esser, Y. Lou and J. Xin, SIAM on Imaging Sciences 2013 P. Yin, Y. Lou, Q. He and J. Xin, SIAM Sci. Comput., 2015 Y. Lou, P. Yin, Q. He and J. Xin, J. Sci. Comput., 2015

*L*₁-*L*₂ 7/20 Vifei Lou

Intro. to CS

$L_1 = L_2$

Superresolutior

Conclusions

Algorithms

We solve the $L_1 - L_2$ minimization via DCA.

$$\min_{x \in \mathbb{R}^N} F(x) = \frac{1}{2} \|Ax - b\|_2^2 + \lambda(\|x\|_1 - \|x\|_2)$$

Decompose F(x) = G(x) - H(x), where

$$\begin{cases} G(x) = \frac{1}{2} ||Ax - b||_2^2 + \lambda ||x||_1 \\ H(x) = \lambda ||x||_2 \end{cases}$$

An iterative scheme is,

$$x^{n+1} = \arg\min_{x \in \mathbb{R}^N} \frac{1}{2} \|Ax - b\|_2^2 + \lambda \|x\|_1 - \langle x, \frac{\lambda x^n}{\|x^n\|_2} \rangle$$

*L*₁-*L*₂ 8/20

Yifei Lou

Intro. to CS

L1=L2

Superresolutio

Conclusions

with

We consider an over-sampled DCT matrix

$$A = [\mathbf{a}_1, \cdots, \mathbf{a}_N] \in \mathbb{R}^{M \times N}$$

$$\mathbf{a}_j = \frac{1}{\sqrt{N}} \cos(\frac{2\pi j \mathbf{w}}{F}), j = 1, \cdots, N$$

where w is a random vector of length M.

The larger *F* is, the more coherent the matrix. Take a 100×1000 matrix for an example:

F	coherence
1	0.3981
10	0.9981
20	0.9999

*L*₁*-L*₂ 9/20

Yifei Lou

Intro. to CS

 $L_1 = L_2$

Superresolutior

Conclusions

Figure: Success rates of incoherent matrices, F = 1.

*L*₁-*L*₂ 9/20

Yifei Lou

Intro. to CS

L1=L2

Superresolutior

Conclusions

Figure: Success rates of coherent matrices, F = 20.

L₁-L₂ 10/20

Intro. to CS

L1=L2

Superresolution

Conclusions

RIP for L_1 - L_2

 L_1 - L_2 has RIP but more stringent than the one for L_1 .

Convergence

The limit point of DCA minimizing sequence is a stationary point.

Rank property

The sparsity of any local minimizer of L_1 - L_2 is less than or equal to the rank of A.

Intro. to CS

 $L_1 = L_2$

Superresolution

Conclusions

Outline

Introduction to Compressive Sensing

2 A non-convex approach to promote sparsity: L_1 - L_2

3 One application: point-source super-resolution

④ Conclusions and future works

しちゃ (四)・ (山)・ (山)・ (日)・ (日)・

Intro. to CS

 $L_1 = L_2$

Superresolution

Conclusions

Problem setup

The super-resolution problem discussed here is different to image zooming or magnification, but aiming to recover a real-valued signal from its low-frequency measurements.

A mathematical model is expressed as

$$b_k = rac{1}{\sqrt{N}} \sum_{t=0}^{N-1} x_t e^{-i2\pi kt/N}, \qquad |k| \le f_c,$$

where $x \in \mathbb{R}^N$ is a vector of interest, and $b \in \mathbb{C}^n$ is the given low frequency information with $n = 2f_c + 1$ (n < N).

*L*₁-*L*₂ 13/20 Yifei Lou

Intro. to CS

 $L_1 = L_2$

Superresolution

Conclusions

Point source with minimum separation

Theorem by Candés and Fernandez-Granda 2012 Let $T = \{t_j\}$ be the support of *x*. If the minimum distance obeys

$$\triangle(T) \geq 2 \cdot N/f_c,$$

then *x* is the unique solution to L_1 minimization. If *x* is real-valued, then the minimum gap can be lowered to $1.26 \cdot N/f_c$.

L₁-L₂ 14/20 (ifei Lou

Success rates

Intro. to CS

 $L_1 = L_2$

Superresolution

Conclusions

Y. Lou, P. Yin and J. Xin, J. Sci. Comput., 2016 to appea

*L*₁-*L*₂ 15/20 Yifei Lou

Intro. to CS

 L_1 = L_2

Superresolution

Conclusions

Rank property

The sparsity of any local minimizer of L_1 - L_2 is smaller than or equal to the rank of A.

L₁-L₂ 16/20

/ifei Lou

Intro. to CS

 $L_1 = L_2$

Superresolution

Conclusions

Define an objective function for an unconstrained minimization

$$f(x) = \lambda(\|x\|_1 - \|x\|_2) + \frac{1}{2}\|Ax - b\|_2^2$$

Theorem

Suppose $\lambda < \min\{\frac{\|A^T b\|_2}{\sqrt{N} + \|A\|^2}, \frac{\|A^T b\|_2}{\sqrt{N} + 1}\}$. Let x^* be any limit point of the DCA minimizing sequence. Then we have either $\|x^*\|_0 \le n$ (rank property) or there exists $d \in \mathbb{R}^N$ such that $F(x^* + d) < F(x^*)$ and $\operatorname{supp}(d) \subseteq \operatorname{supp}(x^*)$ (so we can choose d s.t. $x^* + d$ is sparser than x^* .)

This theorem motivates us to study nonconvex optimization, regarding how to jump among stationary points.

L₁-L₂ 17/20 Yifei Lou

Intro. to CS

L1=L2

Superresolution

Conclusions

Figure: A 2D point-source example with minimum separation.

Figure: Comparison of error map, i.e. the difference between reconstruction and ground-truth.

Intro. to CS

 $L_1 = L_2$

Superresolution

Conclusions

Conclusions

1 L_1 - L_2 is always better than L_1 , and is better than L_p for highly coherent matrices.

Por super-resolution, non-convex methods outperform standard L₁ when a necessary condition for perfect reconstruction is not met.

3 We can expect L_1 - L_2 to lead to sparse solutions.

Intro. to CS

L1=L2

Superresolution

Conclusions

Thank you!