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Collaborative
FI |te ri N g CONSUMERS PRODUCERS

To get recommendations for C, compute
similarity scores for all consumers, and
relevance scores for all producers, with
respect to C

1. Start with sim(C) = 1

2. Propagate similarity scores along graph
edges to compute relevance scores, and vice-
versa

Many propagation methods; Often, a linear system of equations




Collaborative Filter: Love or Money

How should we do this propagation? Two extremes:

LOVE: All the similarity score of a consumer X gets transferred
to each producer that X follows, and the same in the reverse

direction

Analogous to Singular Value Decompositions in the dense graph limit
(HITS)

MONEY: If X follows d producers, then a fraction 1/d of the
similarity score of X gets transferred to each producer that X
follows (SALSA)




Personalized PageRank

Given a consumer C, perform a random walk on the Follow
graph. If the walk is at node v, then the walk:

Jumps back to node C with probability o
Follows a random edge out of v with probability 1 - «

The Personalized PageRank of node Y is the weight of Y in
the stationary distribution of this random walk

SALSA/Money is just Personalized PageRank run on the
undirected consumer-producer graph




A Dark Test

Run various algorithms to predict

follows, but don't display the

results. Instead, just observe how Top 100 “Top 1000
many of the top predictions get

followed organically

—

[Bahmani, Chowdhury, Goel; 2010]
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Personalized PageRank

Given a consumer C, perform a random walk on the Follow
graph. If the walk is at node v, then the walk:

Jumps back to node C with probability o
Follows a random edge out of v with probability 1 - «

The Personalized PageRank of node Y is the weight of Y in
the stationary distribution of this random walk

SALSA/Money is just Personalized PageRank run on the
undirected consumer-producer graph







Strategic Impact

Creates billions of new follows every year

More than 1/8 of new follows are directly via the Who-to-
Follow module

More than 15% of active users (> 36 Million users) make at
least one follow every month via this module
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Impact on Revenue

“The Who-To-Follow system was crucial, in a
fundamental way, for the Promoted Accounts
product, and the Promoted Tweets product also
initially used the Who-To-Follow system’s
targeting”

- Alex Roetter (VP of Engineering, Revenue)




Need for Efficient Algorithms

1. Fast Cosine Similarity

2. Fast Incremental PageRank
3. Fast Personalized PageRank

4. Computing via Intersections
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Strategic Impact

Creates billions of new follows every year

More than 1/8 of new follows are directly via the Who-to-
Follow module

More than 15% of active users (> 36 Million users) make at
least one follow every month via this module




A Dark Test

Run various algorithms to predict

follows, but don't display the
results. Instead, just observe how

many of the top predictions get
followed organically

Top 100 “Top 1000

—

[Bahmani, Chowdhury, Goel; 2010]
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Personalized PageRank

Given a consumer C, perform a random walk on the Follow
graph. If the walk is at node v, then the walk:

Jumps back to node C with probability o
Follows a random edge out of v with probability 1 - «

The Personalized PageRank of node Y is the weight of Y in
the stationary distribution of this random walk

SALSA/Money is just Personalized PageRank run on the
undirected consumer-producer graph




Collaborative Filter: Love or Money

How should we do this propagation? Two extremes:

LOVE: All the similarity score of a consumer X gets transferred
to each producer that X follows, and the same in the reverse

direction

Analogous to Singular Value Decompositions in the dense graph limit
(HITS)

MONEY: If X follows d producers, then a fraction 1/d of the
similarity score of X gets transferred to each producer that X
follows (SALSA)




A Dark Test

Run various algorithms to predict

follows, but don't display the

results. Instead, just observe how Top 100 “Top 1000
many of the top predictions get

followed organically

e

[Bahmani, Chowdhury, Goel; 2010]
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Strategic Impact

Creates billions of new follows every year

More than 1/8 of new follows are directly via the Who-to-
Follow module

More than 15% of active users (> 36 Million users) make at
least one follow every month via this module
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Impact on Revenue

“The Who-To-Follow system was crucial, in a
fundamental way, for the Promoted Accounts
product, and the Promoted Tweets product also
initially used the Who-To-Follow system’s
targeting”

- Alex Roetter (VP of Engineering, Revenue)




Need for Efficient Algorithms

. Fast Cosine Similarity

. Fast Incremental PageRank
. Fast Personalized PageRank

. Computing via Intersections
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Keyword similarity in Tweets
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* Consider a corpus of N documents (eg. Tweets) of length L
each, and a dictionary of D words

— Typical values: N = 1B, L = 10, D = 100K
* Goal: Find cosine similarity of all pairs of words

CosineSimilarity(w1, w2) =
Count{w1, w2}/Sqrt(Count{w1} * Count{w2})

* Critically important problem; also used to identify similar
nodes in networks

* We only need cosine similarity for nodes/words that are
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Data Model: Map Reduce

* An immensely successful idea which transformed offline analytics and
bulk-data processing. Hadoop (initially from Yahoo!) is the most popular
implementation.

" lam

(

* MAP: Transforms a (key, value) pair into other (key, value) pairs using a
UDF (User Defined Function) called Map. Many mappers can run in
parallel on vast amounts of data in a distributed file system

* SHUFFLE: The infrastructure then transfers data from the mapper nodes
to the “reducer” nodes so that all the (key, value) pairs with the same key
golto th)e same reducer and get grouped into a single large (key, <val ,
val,, ..>) pair
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Data Model: Map Reduce

An immensely successful idea which transformed offline analytics and
bulk-data processing. Hadoop (initially from Yahoo!) is the most popular
implementation.

MAP: Transforms a (key, value) pair into other (key, value) pairs using a
UDF (User Defined Function) called Map. Many mappers can run in
parallel on vast amounts of data in a distributed file system

SHUFFLE: The infrastructure then transfers data from the mapper nodes
to the “reducer” nodes so that all the (key, value) pairs with the same key
go to the same reducer and get grouped into a single large (key, <val,,
val,, ..>) pair

REDUCE: A UDF that processes this grouped (key, <val,, val,, ..>) pair for a
single key. Many reducers can run in parallel.



Complexity Measures

* Key-Complexity:
— The maximum size of a key-value pair
— The amount of time taken to process each key
— The memory required to process each key

* Sequential Complexity:
— The total time needed by all the mappers and reducers together

— The total output produced by all the mappers and reducers
together

* Number of MapReduce phases

[Goel, Munagala; 2012]



WE HAD INFINITELY MANY COMPUTERS

* Key-Complexity:
— The maximum size of a key-value pair
— The amount of time taken to process each key
— The memory required to process each key

* Sequential Complexity:

— The total time needed by all the mappers and reducers
together

— The total output produced by all the mappers and
reducers together

[Goel, Munagala; 2012]
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Complexity Measures
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* Key-Complexity: THE AMOUNT OF WORK
I— DONE ON A SINGLE

COMPUTER
— The amount of ti

* Sequential Complexity:

— The total time needed by all the mappers and reducers
together

— The total output produced by all the mappers and
reducers together

[Goel, Munagala; 2012]



Complexity Measures

* Key-Complexity:
— The maximum size of a key-value pair
— The amount of time taken to process each key

— The memory required to process each

* Sequential Complexity: i SHUFFIE SO
— The total time needed by all the mapy
together

— The total output produced by all the mappers and
reducers together

[Goel, Munagala; 2012]
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" THEAMOUNT OF WORK

* Key-Complexity DONE TO AGGREGATE ALL
_ THE VALUES FOR A SINGLE
— The maximum KEY (SORTING) IS NOT A

— The amount of ti COMPLEXITY MEASURE
— The memory required
* Sequential Complexity:

— The total time needed by all the mappers and reducers
together

ocess each key

— The total output produced by all the mappers and
reducers together

[Goel, Munagala; 2012]



Keyword similarity in Tweets

Consider a corpus of N documents (eg. Tweets) of length L
each, and a dictionary of D words

— Typical values: N = 1B, L =10, D = 100K
Goal: Find cosine similarity of all pairs of words

CosineSimilarity(wl, w2) =
Count{w1, w2}/Sqgrt(Count{w1} * Count{w2})

Critically important problem; also used to identify similar
nodes in networks

We only need cosine similarity for nodes/words that are
indeed very similar (say CosineSimilarity > €, for e=0.1)
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Cosine Similarity [Brute Force]

Assumption: The tweet corpus is annotated with word counts, so every
occurrence of every word is tagged with the frequency of that word as
well

— Need this for other reasons anyway (eg. trends, search)
Count all co-occurrences between all words
— MAP(tweet): for every pair of words w1, w2 in the tweet, EMIT({w1, w2}, 1)

— REDUCE({w1, w2}, <1, 1, ....>): If the size of the value vector(i.e. number of 1’s)
is larger than € Sqrt(Count{w1} * Count{w2}) then EMIT({w1l, w2})

Sequential complexity: Requires shuffling N*L*L data across in Hadoop, =
100 Billion records

Reduce-key complexity: Could be as large as N, or with combining, K (the
number of mappers)

Observation: most of the data shuffled by brute force algorithm was being
wasted



Cosine Similarity [Random Sampling]

CosineSimilarity(wl, w2) =
Count{w1, w2}/Sqrt(Count{w1} * Count{w2})

* MAP(tweet): for every pair of words w1, w2 in the tweet, EMIT({w1, w2},
1) with probability

R/(Sqart(Count{w1l} * Count{w2}),
where R = (log D)/e = 100
« REDUCE({w1, w2}, <1, 1, ....>): EMIT({w1, w2}, (size of value-vector)/R)

* Unbiased estimate of CosineSimilarity, and accurate whp when
CosineSimilarity >

* Expected Reduce-Key complexity: At most R

* Sequential complexity: Shuffle size goes down from NL‘ to around DRL . (=
100B = ~ 100M)



Cosine Similarity [contd]
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Dimension Independent Similarity Computation
(DISCO)

MapReduce is a programming model for processing lamge data sets, typically used to do
distnbuted computing on clusters of commodity competers. With large amount of
processing power af hand. it's very lempting 1o solve problems by brute force. However,
we often combine clever sampling techngues with the power of MapRaduce to extend its
utility

Consider the problem of finding all pairs of simiantes between D indicator (071 entres)
vectors. each of dimension N. In particular we focus on cosine similanties between all
pairs of D vectors in R*N. Further assume that each dmension & L-sparse, meanng
each dimension has at most L non-zerms across all ponts. For exampie. typical values to
compute similanties between all pairs of 3 subset of Twilter users can be

D= 10M
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L = 1000
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Keyword similarity in Tweets

Consider a corpus of N documents (eg. Tweets) of length L
each, and a dictionary of D words

— Typical values: N=1B, L =10, D = 100K
Goal: Find cosine similarity of all pairs of words

CosineSimilarity(wl, w2) =
Count{w1, w2}/Sgrt(Count{w1} * Count{w2})

Critically important problem; also used to identify similar
nodes in networks

We only need cosine similarity for nodes/words that are
indeed very similar (say CosineSimilarity > €, for e=0.1)
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Consider a corpus of N documents (eg. Tweets) of length L
each, and a dictionary of D words

— Typical values: N = 1B, L = 10, D = 100K
Goal: Find cosine similarity of all pairs of words
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CosineSimilarity(w1, w2) =
Count{w1, w2}/Sqrt(Count{w1} * Count{w2})

Critically important problem; also used to identify similar
nodes in networks

We only need cosine similarity for nodes/words that are
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Need for Efficient Algorithms

. Fast Cosine Similarity

. Fast Incremental PageRank
. Fast Personalized PageRank

. Computing via Intersections




Incremental PageRank

Updates to social graph are made in real-time

As opposed to a batched crawl process for web search

Real-time updates to PageRank are important to capture trending
events

Goal: Design an algorithm to update PageRank

incrementally (i.e. upon an edge arrival)

t-th edge arrival: Let (u:, vi) denote the arriving edge, di(v) denote
the out-degree of node v, and m:(v) its PageRank




Incremental PageRank via Monte Carlo

Start with R = O(log N) random walks from every node

At time t, for every random walk through node u;, re-route
it to use the new edge (u:, vi) with probability 1/d:(u:)

Time/number of network-calls for each re-routing: O(1/x)

Claim: This faithfully maintains R random walks after
arbitrary edge arrivals

Need the graph and the stored random walks in fast
distributed memory
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Incremental PageRank

Updates to social graph are made in real-time

As opposed to a batched crawl process for web search

Real-time updates to PageRank are important to capture trending
events

Goal: Design an algorithm to update PageRank

incrementally (i.e. upon an edge arrival)

t-th edge arrival: Let (ui, vi) denote the arriving edge, di(v) denote
the out-degree of node v, and m(v) its PageRank




Incremental PageRank via Monte Carlo

Start with R = O(log N) random walks from every node

At time t, for every random walk through node u;, re-route
it to use the new edge (u:, vi) with probability 1/d:(u:)

Time/number of network-calls for each re-routing: O(1/x)

Claim: This faithfully maintains R random walks after
arbitrary edge arrivals

Need the graph and the stored random walks in fast
distributed memory




Incremental PageRank Time

Assume that the edges of the graph are chosen by
an adversary, but then presented in random order

Theorem: # of Power I per arrival goes to O

. iteration takes
t-th arrival: # of| . e/

Total time over M arrivals = O((N R log N)/x?)
Comparable to doing power iteration/Monte Carlo just once!

N R/(O( 9) N log N/X VS
M

[Bahmani, Goel, Chowdhury, VLDB 2010]




Personalized PageRank

Network-based Personalized Search is not yet
mature

Missing technical piece: Efficient algorithms for

Personalized PageRank Queries

Given source s and target t, estimate the Personalized PageRank of t
for s with high accuracy, if it is greater than 6




Incremental PageRank Time

Assume that the edges of the graph are chosen by
an adversary, but then presented in random order

Theorem: # of n  Power  Iper arrival goes to O

_ iteration takes
t-th arrival: # of i MR/o B R/(a t))

Total time over M arrivals = O((N R log N)/«x?)
Comparable to doing power iteration/Monte Carlo just once!

[Bahmani, Goel, Chowdhury, VLDB 2010]




Personalized PageRank

Network-based Personalized Search is not yet
mature

Missing technical piece: Efficient algorithms for

Personalized PageRank Queries

Given source s and target t, estimate the Personalized PageRank of t
for s with high accuracy, if it is greater than
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Presentation - Prognosis - Genetics - Treatment Options

In the news
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Asbury Park Press - 18 hours ago
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Nils Lofgren is a virtuoso rock guitarist who has recorded and performed with Bruce
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Lofgren's syndrome is a subtype of acute sarcoidosis involving: [ 38484 : Byun CW,
Yang SN, Yoon JS, et al ] Hilar lymphadenopathy Erythema nodosum...

Nils Lofgren | Music Biography, Streaming Radio and ...

www allmisin enm/artist/nile-lafaran-mnNNNN414745 ~

Tv

Stewt

See
Zoe |
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More news for lofgren

Nils Lofgren, Musician, Songwriter

www.nilslofgren.com/ ~

Nils Lofgren is a virtuoso rock guitarist who has recorded and performed with Bruce
Springsteen as a member of the E Street Band, Ringo Starr and Neil Young.

U.S. Congresswoman Zoe Lofgren

https://lofgren.house.gov/ ~

Zoe Lofgren (D-Calif.), the top Democrat on the House Judiciary Subcommittee on
Immigration and Border Security, lamented today's Judiciary subcommittee ...

Lofgren's Syndrome | Doctor | Patient.co.uk

www,.patient.co.uk » Professional Reference ~

Lofgren's syndrome is a subtype of acute sarcoidosis involving: [ 38484 : Byun CW,
Yang SN, Yoon JS, et al ]| Hilar lymphadenopathy Erythema nodosum...

Nils Lofgren | Music Biography, Streaming Radio and ...
www.allmusic.com/artist/nils-lofgren-mn00004 14745 ~

Find Nils Lofgren bio, music, credits, awards, & streaming radio on AllMusic -
Guitarist/singer best known for his work with. ..

Nils Lofaren (@nilslofaren) | Twitter
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About 838,000 results (0.30 seconds)

Nils Lofgren - Wikipedia, the free encyclopedia

en.wikipedia.org/wiki/Nils_Lofgren ~ N

Nils Hilmer Lofgren (bom June 21, 1951) is an American rock musician, recording artist,

songwriter, and multi-instrumentalist. Along with his work as a solo artist, ... Musir

Nils Lofgren (album) - Cry Tough (Nils Lofgren album) - Night After Night Nils |
Amet

Lofgren syndrome - Wikipedia, the free encyclopedia recor
en.wikipedia.org/wiki/Lofgren_syndrome ~ w,’
Lofgren syndrome is a type of acute sarcoidosis that is frequent in Scandinavian, Irish, -
African and Puerto Rican women. It was characterized in 1953 by Sven ... Born
Presentation - Prognosis - Genetics - Treatment Options lllinoi

Heig
In the news Sy

Nils Lofgren ready to cross the Jersey state (‘;"'::
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mohammad zaki
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164 results for mohammad zaki

Did you mean mohamed zaki?

Some search results have been filtered to improve relevance.

- oope. Show all results
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Companies Mohammad Zaki

Grouns Operations Manager at RZ Livescan Services
Universities Similar

Posts
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Personalized PageRank

Network-based Personalized Search is not yet
mature

Missing technical piece: Efficient algorithms for

Personalized PageRank Queries

Given source s and target t, estimate the Personalized PageRank of t
for s with high accuracy, if it is greater than 6




Personalized PageRank

Given a consumer C, perform a random walk on the Follow
graph. If the walk is at node v, then the walk:

Jumps back to node C with probability «
Follows a random edge out of v with probability 1 - «

The Personalized PageRank of node Y is the weight of Y in
the stationary distribution of this random walk




Existing Methods for PPR Queries

CCDF of PPR Values

Monte Carlo uses time > 1/6
“Local Update” uses time d/6

[d = M/N is the average degree]

On Twitter-2010, if 6 = 2 &~ 10~7, then

!

Pr(n(s,t) > 6] = 1%




Personalized PageRank

Given a consumer C, perform a random walk on the Follow
graph. If the walk is at node v, then the walk:

Jumps back to node C with probability o
Follows a random edge out of v with probability 1 - «

The Personalized PageRank of node Y is the weight of Y in
the stationary distribution of this random walk




Existing Methods for PPR Queries

CCDF of PPR Values

Monte Carlo uses time > 1/6
“Local Update” uses time d/6

[d = M/N is the average degree]

On Twitter-2010. if 6 = —" ~ 10~ 7. then

!

Pr(n(s,t) > 4] = 1%




FAST PPR

We can answer PPR queries in either
Average time O(+/(d/8))

Worst case time O(+/(d/8)) with O(+/(d/8)) storage and pre-
processing time per node

Typical values: 6 ~ 10%, d ~ 100; results in a > 100-fold decrease




Basic Ildea

Intuition: The Birthday Paradox

Do small number of “forward” random
walks from s

-
-

Do “reverse” PageRank computation from
t using Local Update with low accuracy

Use number of collisions as an estimator

Need to “catch” a collision just before it
happens




Simple Version of FAST PPR

. Use Local Update to compute estimates (v, ) to accuracy O(vV4). T

2. Define . . k.o
2 ‘;’"/ = -f ' - -~ s

et ; ‘ , . //I . / s i

|ill._‘ﬁ""' 5"' I, { U ¢ \ . L. f) " 0 } 5 “__—/_"_'_;: e [/ .-_. g 5

Frontier Fy, = {ue V\T, : (u,v) € E for some v € T, }

- BackwardWork -
"~ {Frontier discovery) :

3. Take O ( log(n ) Random Walks {W;}. terminating each early if it hits F.

Define i
m(u.t). W, hits u € F;

0. W, does not hit F,

. Return empirical mean{ X, }.



Running Time for Simple Version

For a uniformly random target node ¢, the average per-query running time is

)

Reverse work Forward work
(Local Update) (Monte Carlo)

We get final running time of O(+/(d/8)) by using different accuracies in
forward and reverse computation

We use O(v‘"(d/ﬁ)) pre-processing/space to go from average to worst
case running time




Running Time (Targets sampled by PageRank)

10.00

Experiments

Time per Query (ms)
. 8 B g
s B 58 ¥

Relative Error of Personaiized PageRank Estimates Admits Distributed Implementation
v (much faster)

N Works when source is a set of nodes
Lower bound of 1/+/6
1 I i I Open problem: do we need the v/d ?

[Lofgren, Banerjee, Goel, Seshadhri, KDD, 2014]

Mean Relative Error




Computing via Intersections

Consider “sharding” a graph among K computers, i.e. the vertices
of the graph get randomly partitioned into K sets, Vi, V2, ..., Vk.
one for each compute node. Vertex v —> Shard s(v)

Typical: For each vertex v, store all its edges in Shard s(v) as a key-
value pair (v, ADJ(v))

Additional trick: also store the reverse map, i.e. for each node w,
store (w, ADJ(w) n V)) on the j-th compute node

Advantage: Intersection of the neighborhood of u and v can be
computed efficiently with one scatter-gather query

[Gupta, Satuluri et al., 2014]




Low Battery
= Your Mac will sleep soon unies
plugged into a power outlet

Computing via Intersections

Both PPR and All Pairs Cosine Similarity can be
efficiently reduced to graph intersections

Also, approximate shortest path reduces to
graph intersections

[Lofgren, Goel, Gupta; manuscript]




Low Battery

Pem

&=  Your Mac will sieep soon uniess
plugged into a power outlet

Summary

Personalization algorithms can lead to both
growth and monetization in social networks

Random walks and Cosine similarity are
particularly efficient

Careful consideration of algorithms and
architecture together can lead to efficiency

Next frontier: personalized search
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