Binary Classifier Calibration Using a
Bayesian Non-Parametric Approach

Mahdi Pakdaman Naeini, Gregory Cooper, and Milos Hauskrecht
SIAM Data Mining (SDM) 2015

University of Pittsburgh




Talk overview

Calibration problem
Review of Existing Calibration Methods

Bayesian Calibration Methods (SBB-ABB)
Experimental Results

Conclusions and Future Work



Problem Definition

We have a set of probabilistic predictions of a binary outcome
Probabilistic predictions are well-calibrated if the outcomes predicted
to occur with probability p do occur about p fraction of the time
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Motivation

Accurate probability outputs are critical in decision making, outlier
detection:

Science (e.g., determining which experiments to perform)
Medicine (e.g., deciding which therapy to give a patient)
Business (e.g., making investment decisions)

Outputs of many classification models are either:
not probabilistic (e.g. SVM)

Or, they do not give a well-calibrated probabilistic output (e.q. Naive
Bayes, logistic regression)



Calibrated Classification Models

Methods for learning well-calibrated classification model

Calibration is built-in to the classification learning algorithm
Can make the optimization harder

Optimized in a separate post-processing step
Learn the classification model using an arbitrary loss function first
Calibrate the output in the post-processing step



Post-Processing Calibration Methods

Platt’s calibration method (John C Platt, 1999)

A l
P(y=1|p,)=
r=i2, 1+exp(ax p. +b)

Equal frequency histogram binning (B. Zadrozny and C. Elkan, 2001)
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Post-Processing Calibration Methods

Isotonic regression (B. Zadrozny and C. Elkan, 2002)
Fits a piecewise-constant non-decreasing function to
model P(y=1|p,)

Assumes the classifier ranks the instances correctly

Adaptive Calibration of Predictions (ACP) (X. Jiang, et. al. 2012)
Finds 95% confidence interval (Cl) around the predicted value

Use observed frequency of instances in the Cl as calibrated
probability

ACP is designed for LR



Bayesian binning

Our approach:
Bayesian model selection
Bayesian model averaging

over all possible histogram binning models induced by the training data.

Challenges:
The number of binning models is exponential in N: 2
How to make the methods more efficient?

Solutions:
use decomposable Bayesian scoring functions
use dynamic programming



Bayesian Binning

Let us assume N training data points
The number of possible binnings of N is exponential in N
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Binning model: preliminaries

Let D denotes all training data sorted accordlng to the input score/probability
D:{(p in ‘ )....,(p\ ) p <p in. <p in

p classifier scores for ;" instance
y. the trueclass of i"instance

Let M be the binning model
B: denotes number of bins
Pa: denotes partitioning of D into B bins using bin boundaries
0=1{0.6.,....0,} parameters of Binomial distributions 6, = P(y=1| p, € Pa(b))
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Bayesian score

Let M be a binning model
B: denotes number of bins
Pa: denotes partitioning of D into B bins using bin boundaries
0=10,0.....0,; parameters of Binomial distributions
Bayesian score:

Score(M) = P(M) - P(D|M)

Model prior Marginal likelihood of M

Decomposable score:

B
Score(M) H Score(b,l,u)
h=1



Marginal Likelihood

P(D|M) = / P(D|M,8)P(0|M)db
Assuming: J o

all samples are i.i.d

The distributions of the class variable for two different bins are independent

The priors of these distributions are defined as P(6, | M) = Betd(6, | a,, )
< Decomposable marginal likelihood: | L

P(DV[):ﬁ [(a,+ ) Xf(nzﬁab)F(nﬁﬁb)
& b=] r(aﬁﬂb*“\;) F(a,o)r(ﬁb)

K2 score, BDeu score: different choices of prior parameters ¢;, /3,
N.=5 N.=7 N.=6  N,=6
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Decomposable model priors

Decomposable model prior:

B
P(M)= H Pp _(b,[,u)
Examples: b=!
Auniform prior: P (b,/,u) independent of the number of bins

Prior based on P0|sson distribution (Lustgarden et al 2011)

Let Pnor(k) defines the prior probability of having a bin boundary between p’

and D, d(k.k+1)
; - —_
P,tzor(k‘l) — 1 _6 (1(1.72;

Assuming the independence of partitioning boundarles the prior probability of
having a bin containing the training instances | p; Doy will be calculated

das:

ll;,—l
Prior(up) ( H (1 - Pl'i()r(/\')))
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Selection over Bayesian Binning (SBB)

Goal: find the binning model with the highest Bayesian score
Idea: Use score decomposability and the dynamic programming to find
the best binning efficiently

Notation:

S. ={p. p, ,P.,} asubset of data pomtsformdexeslandu
W .. the optimal binningof S ={p. p.~ .. p!}

V. the Bayesian score for \[
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Selection over Bayesian Binning (SBB)

Dynamic programming algorithm:

Builds the best binning model starting from data with lower indexes
O(N?) time

Assume: the best binning models for subsets §. .S, ..., §,,

have scores v, ¢,V ... L T
Then v, =max(vxscore,, )

and M, s defined by the optimal choice of [ (or M | )

M, isthe best binng\g model for N data points
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Averaging over Bayesian Binning (ABB)

Algorithm: Offline step + Online prediction step
both require O(N?) time

Offline step:
Forward step: sequentially add the contributions of many
binningmodels v, ., 5,---. v, and their corresponding
Bayesian scores (maximization replaced by summation)
Backward step: Sequentially add the contributions of many
binningmodels Vy y» Vi1 y»---» V1. and their scores
Keep the results of both the forward and the backward step



Averaging over Bayesian Binning (ABB)

Online prediction step:
For any new data point x do the following steps:
Findtheindex k sothat xe[p. .p," " |
P(z) Z Z (v1,1-1 X Scoregy X Vys1 N X Pru(2))
1<I<k k+1<u<N
p,,(x) is the frequency of positive instances located in the bin that
contains all the training instances indexed by [J,..., U]
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Computational Cost

The main drawback of ABB is its time complexity at the test time. One
can address this problem simply by caching the probabilities based on
the required precision.

Mode! -
. O(TN) O(NlogN) O(NiogN) O(NlogN) O(N? O(N?)
optimization
Online |
O2) O(logB) O(logB) O(N) O(logB) O(N?Y)

prediction



Experiments on Simulated Data: Setup

Experiments :

600 train/calibration ﬁtﬁ?‘\z .
600 test averaging over 10 I {R
Two simulated datasets: b Ll 44
 Parity function data
 Circular class data F
Base model: .
Logistic Regression e
Note: LR is not a good r

model for the data




Experiments: Evaluation metrics

Discrimination measures: AUC, ACC
Calibration measures: RMSE, Expected Calibration Error (ECE),
Maximum Calibration Error (MCE)

Partition the interval [0,1] into K intervals (K=10, equal frequency bins)
0, is the true fraction of positive instances in the i" interval
e. is the mean of the classifier scores located inside the i" interval
P(i) fraction of all the instances that fall into the i interval

K ’
ECE=) P(i)-|o; —¢]| . .\[CE:nll_ﬁlx(}o,-—e,-\).
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Experiments on Simulated Data: Results

Parity function data Circular class data
(Higher s better) (Higher is better)

AUC 0497 0.950 0704 0497 0931 0914 0.941 AUC 0489 0.852 0635 0489 0.827 0816 0.838
ACC 0510 0.887 0690 0510 0855 0.887 0.888 ACC o0.500 0780 0.655 0.500 0.795 0.790 0.773

(Lower is better) (Lower is better)

RMSE 0.500 0.286 0.447 0.500 0307 0307 0.295 RMSE 0.501 0.387 0459 0.501 0394 0.393 0.390
MCE o521 o0.090 0642 0521 0152 0268 0.083 MCE o540 0172 0.608 0539 0.121 0790 0.146

ECE 0190 0.056 0173 0190 0072 0104 0062 ECE 0171 0098 0186 0171 0.074 0238 o0.091

Notes  Platt’s method: AUC is unchanged, poor calibration performance
Isotonic Regression: AUC can change (performance may improve), calibration is
typically poor due to isotonicity
Histogram binning, ACP, SBB and ABB: can improve AUC



Experiments on Real Data: Setup

Experiments on real world datasets

Community Acquired Pneumonia dataset (CAP)
UCI datasets: Adult, and SPECT datasets

Three most commonly used classifiers:
Logistic Regression (LR)
Support Vector Machine (SVM)
Naive Bayes (NB)



Current and Future Research

Bayesian averaging over a subset of binning models

Theoretical results on the quality of binning methods
Traditional histogram method:

by setting B=¢3/N one can achieve perfect calibration in terms of ECEand

MCE, without loosing any discrimination power in terms of AUC

(preprint : http://arxiv.org/abs/1401.3390)
We work on extending the histogram binning theorems for ABB and SBB

Calibration methods for multi-class classification
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