Laplacian Matrices of Graphs: Algorithms and Applications

Daniel A. Spielman Dept. of Computer Science Dept. of Statistics and Data Science Yale Institute for Network Science

SIAM AN, 2017

Outline

Applications of Laplacian linear equations Interpolation on graphs Physical systems Optimization on graphs

Algorithms Sparsification Approximate Cholesky Factorization

Generalizations and recent developments

(Zhu,Ghahramani,Lafferty '03)

Interpolate values of a function at all vertices from given values at a few vertices.

Minimize $\sum_{(a,b)\in E} (x(a) - x(b))^2$

Subject to given values

(Zhu,Ghahramani,Lafferty '03)

Interpolate values of a function at all vertices from given values at a few vertices.

Minimize $\sum_{(a,b)\in E} (x(a) - x(b))^2$

Subject to given values

(Zhu,Ghahramani,Lafferty '03)

Interpolate values of a function at all vertices from given values at a few vertices.

Minimize
$$\sum_{(a,b)\in E} (x(a) - x(b))^2 = x^T L x$$

Subject to given values

(Zhu,Ghahramani,Lafferty '03)

Interpolate values of a function at all vertices from given values at a few vertices.

Minimize
$$\sum_{(a,b)\in E} (x(a) - x(b))^2 = x^T L x$$

Subject to given values

Take derivatives. Minimize by solving Laplacian

The Laplacian Quadratic Form of a Graph

 $\sum (x(a) - x(b))^2$ $(a,b) \in E$

The Laplacian Matrix of a Graph

 $x^{T}L_{G}x = \sum (x(a) - x(b))^{2}$ $(a,b) \in E$

The Laplacian Matrix of a Weighted Graph

$$x^{T}L_{G}x = \sum_{(a,b)\in E} w_{a,b}(x(a) - x(b))^{2}$$

Positive real weights measuring strength of connection spring constant 1/resistance View edges as resistors connecting vertices

Apply voltages at some vertices. Measure induced voltages and current flow.

Induced voltages minimize subject to constraints.

 $\sum (x(a) - x(b))^2$ $(a,b) \in E$

Induced voltages minimize subject to constraints.

Induced voltages minimize subject to constraints.

Induced voltages minimize subject to constraints.

 $\sum_{(a,b)\in E} (x(a) - x(b))^2$

Effective resistance = 1/(current flow at one volt)

Measuring boundaries of sets

Boundary: edges leaving a set

Measuring boundaries of sets

Measuring boundaries of sets

The Laplacian Matrix of a Graph

Symmetric

Non-positive off-diagonals

Diagonally dominant

The Laplacian Matrix of a Graph

$$x^{T}L_{G}x = \sum_{(a,b)\in E} w_{a,b}(x(a) - x(b))^{2}$$
$$L_{G} = \sum_{(a,b)\in E} w_{a,b}L_{a,b}$$
$$L_{1,2} = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} 1 \\ -1 \end{pmatrix} \begin{pmatrix} 1 & -1 \end{pmatrix}$$

S,Teng '04: Using low-stretch trees and sparsifiers $O(m\log^c n\log\epsilon^{-1})$

Where m is number of non-zeros and n is dimension

S,Teng '04: Using low-stretch trees and sparsifiers $O(m\log^c n\log\epsilon^{-1})$

Koutis, Miller, Peng '11: Low-stretch trees and sampling

$$\widetilde{O}(m\log n\log \epsilon^{-1})$$

Where m is number of non-zeros and n is dimension

S,Teng '04: Using low-stretch trees and sparsifiers $O(m\log^c n\log\epsilon^{-1})$

Koutis, Miller, Peng '11: Low-stretch trees and sampling

$$\widetilde{O}(m \log n \log \epsilon^{-1})$$

Cohen, Kyng, Pachocki, Peng, Rao '14: $\widetilde{O}(m \log^{1/2} n \log \epsilon^{-1})$

Where m is number of non-zeros and n is dimension

Good code:

LAMG (lean algebraic multigrid) – Livne-Brandt

CMG (combinatorial multigrid) – Koutis

approxChol in Laplacians.jl – S, Kyng-Sachdeva

S,Teng '04: Using low-stretch trees and sparsifiers $O\big(m\log^c n\log\epsilon^{-1}\big)$

An ϵ -accurate solution to $L_G x = b$ is an \widetilde{x} satisfying

$$\|\widetilde{x} - x\|_{L_G} \le \epsilon \|x\|_{L_G}$$

where
$$\|v\|_{L_G} = \sqrt{v^T L_G v} = ||L_G^{1/2} v||$$

Laplacians in Linear Programming

Laplacians appear when solving Linear Programs on on graphs by Interior Point Methods

Maximum and Min-Cost Flow (Daitch, S '08, Mądry '13)

Shortest Paths (Cohen, Mądry, Sankowski, Vladu '16)

Isotonic Regression (Kyng, Rao, Sachdeva '15)

Lipschitz Learning : regularized interpolation on graphs (Kyng, Rao, Sachdeva, S '15)

Interior Point Method for Maximum s-t Flow

$$\begin{array}{ll} \mbox{maximize } f^{out}(s) \\ \mbox{subject to} & f^{out}(a) = f^{in}(a), & \forall a \not\in \{s,t\} \\ & 0 \leq f(a,b) \leq c(a,b), & \forall (a,b) \in E \end{array}$$

Interior Point Method for Maximum s-t Flow

$$\begin{array}{ll} \mbox{maximize } f^{out}(s) \\ \mbox{subject to} & f^{out}(a) = f^{in}(a), & \forall a \not\in \{s,t\} \\ & 0 \leq f(a,b) \leq c(a,b), & \forall (a,b) \in E \end{array}$$

Interior Point Method for Maximum s-t Flow

$$\begin{array}{l} \text{maximize } f^{out}(s) \\ \text{subject to} \qquad f^{out}(a) = f^{in}(a), \quad \forall a \not\in \{s, t\} \\ 0 \leq f(a, b) \leq c(a, b), \quad \forall (a, b) \in E \end{array} \\ \\ \text{Multiple calls with varying weights } w_{a, b} \\ \hline \\ \text{minimize } \sum_{(a, b) \in E} w_{a, b} f(a, b)^2 \\ \text{subject to } f^{out}(s) = f^{in}(t) = F \\ f^{out}(a) = f^{in}(a), \quad \forall a \notin \{s, t\} \end{array}$$

Interior Point Method for Min Cost Flow

$$\begin{array}{ll} \text{minimize} & \sum_{(a,b)} f(a,b) p(a,b) \\ \text{subject to} & f^{out}(s) = f^{in}(t) = F \\ & f^{out}(a) = f^{in}(a), \quad \forall a \not\in \{s,t\} \\ & 0 \leq f(a,b) \leq c(a,b), \quad \forall (a,b) \in E \end{array}$$

Asymptotically fastest algorithms: (Daitch, S '08; Mądry '13; Lee-Sidford '15)

Fastest on some large problems in practice? (Fountoulakis, Rao, S '??)

Every graph can be approximated by a sparse graph with a similar Laplacian

A graph H is an ϵ -approximation of G if

for all
$$x$$
 $\frac{1}{1+\epsilon} \le \frac{x^T L_H x}{x^T L_G x} \le 1+\epsilon$

 $L_H \approx_{\epsilon} L_G$

A graph *H* is an ϵ -approximation of *G* if

for all
$$x$$
 $\frac{1}{1+\epsilon} \le \frac{x^T L_H x}{x^T L_G x} \le 1+\epsilon$

Preserves boundaries of every set

A graph H is an ϵ -approximation of G if

for all
$$x$$
 $\frac{1}{1+\epsilon} \le \frac{x^T L_H x}{x^T L_G x} \le 1+\epsilon$

Solutions to linear equations are similiar

$$L_H \approx_{\epsilon} L_G \iff L_H^{-1} \approx_{\epsilon} L_G^{-1}$$

Every graph G has an ϵ -approximation H with $n(2+\epsilon)^2/\epsilon^2~~{\rm edges}$

Every graph *G* has an ϵ -approximation *H* with $n(2 + \epsilon)^2/\epsilon^2$ edges

Random regular graphs approximate complete graphs

Fast Spectral Sparsification

(S & Srivastava '08) If sample each edge with probability inversely proportional to its effective resistance, only need $O(n\log n/\epsilon^2)$ samples

Takes time $O(m \log^2 n)$ (Koutis, Levin, Peng '12)

(Lee & Sun '17)

Can find an ϵ -approximation with $O(n/\epsilon^2)$ edges in nearly linear time.

(Kyng & Sachdeva '16)

Gaussian Elimination: compute upper triangular U so that

$$L_G = U^T U$$

Approximate Gaussian Elimination: compute sparse upper triangular U so that

$$L_G \approx U^T U$$

(See also Clarkson '03)

Find U, upper triangular matrix, s.t $U^{\top}U = A$

$$A = \begin{pmatrix} 16 & -4 & -8 & -4 \\ -4 & 5 & 0 & -1 \\ -8 & 0 & 14 & 0 \\ -4 & -1 & 0 & 7 \end{pmatrix}$$

$$\begin{pmatrix} 16 & -4 & -8 & -4 \\ -4 & 5 & 0 & -1 \\ -8 & 0 & 14 & 0 \\ -4 & -1 & 0 & 7 \end{pmatrix}$$

Find the rank-1 matrix that agrees on the first row and column.

$$\begin{pmatrix} 16 & -4 & -8 & -4 \\ -4 & 1 & 2 & 1 \\ -8 & 2 & 4 & 2 \\ -4 & 1 & 2 & 1 \end{pmatrix} = \begin{pmatrix} 4 \\ -1 \\ -2 \\ -1 \end{pmatrix} \begin{pmatrix} 4 \\ -1 \\ -2 \\ -1 \end{pmatrix}^{\top}$$

$$\begin{pmatrix} 16 & -4 & -8 & -4 \\ -4 & 5 & 0 & -1 \\ -8 & 0 & 14 & 0 \\ -4 & -1 & 0 & 7 \end{pmatrix}$$

Subtract the rank 1 matrix.

We have eliminated the first variable. -4-4 1 2 1 -8 2 4 2 -4 1 2 1

$$\begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 4 & -2 & -2 \\ 0 & -2 & 10 & -2 \\ 0 & -2 & -2 & 6 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 4 & -2 & -2 \\ 0 & -2 & 10 & -2 \\ 0 & -2 & -2 & 6 \end{pmatrix}$$

Find the rank-1 matrix that agrees on the **next** row and column.

$$\begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 4 & -2 & -2 \\ 0 & -2 & 1 & 1 \\ 0 & -2 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 2 \\ -1 \\ -1 \end{pmatrix} \begin{pmatrix} 0 \\ 2 \\ -1 \\ -1 \end{pmatrix} +$$

$$\begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 4 & -2 & -2 \\ 0 & -2 & 10 & -2 \\ 0 & -2 & -2 & 6 \end{pmatrix}$$

Subtract the rank 1 matrix.

We have eliminated the second variable.

$$A = \begin{pmatrix} 16 & -4 & -8 & -4 \\ -4 & 5 & 0 & -1 \\ -8 & 0 & 14 & 0 \\ -4 & -1 & 0 & 7 \end{pmatrix}$$
$$= \begin{pmatrix} 4 \\ -1 \\ -2 \\ -1 \end{pmatrix} \begin{pmatrix} 4 \\ -1 \\ -2 \\ -1 \end{pmatrix}^{\top} + \begin{pmatrix} 0 \\ 2 \\ -1 \\ -1 \end{pmatrix} \begin{pmatrix} 0 \\ 2 \\ -1 \\ -1 \end{pmatrix}^{\top} + \begin{pmatrix} 0 \\ 0 \\ 3 \\ -1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 3 \\ -1 \end{pmatrix}^{\top} + \begin{pmatrix} 0 \\ 0 \\ 0 \\ 2 \\ 2 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 0 \\ 2 \\ 2 \end{pmatrix}^{\top}$$

Running time proportional to sum of squares of number of non-zeros in these vectors.

$$\begin{split} A &= \begin{pmatrix} 16 & -4 & -8 & -4 \\ -4 & 5 & 0 & -1 \\ -8 & 0 & 14 & 0 \\ -4 & -1 & 0 & 7 \end{pmatrix} \\ &= \begin{pmatrix} 4 \\ -1 \\ -2 \\ -1 \end{pmatrix} \begin{pmatrix} 4 \\ -1 \\ -2 \\ -1 \end{pmatrix}^{\top} + \begin{pmatrix} 0 \\ 2 \\ -1 \\ -1 \end{pmatrix} \begin{pmatrix} 0 \\ 2 \\ -1 \\ -1 \end{pmatrix}^{\top} + \begin{pmatrix} 0 \\ 0 \\ 3 \\ -1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 3 \\ -1 \end{pmatrix}^{\top} + \begin{pmatrix} 0 \\ 0 \\ 0 \\ 2 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 0 \\ 2 \end{pmatrix}^{\top} \\ &= \begin{pmatrix} 4 & 0 & 0 & 0 \\ -1 & 2 & 0 & 0 \\ -2 & -1 & 3 & 0 \\ -1 & -1 & -1 & 2 \end{pmatrix} \begin{pmatrix} 4 & -1 & -2 & -1 \\ 0 & 2 & -1 & -1 \\ 0 & 0 & 3 & -1 \\ 0 & 0 & 0 & 2 \end{pmatrix} \end{split}$$

$$\begin{split} A &= \begin{pmatrix} 16 & -4 & -8 & -4 \\ -4 & 5 & 0 & -1 \\ -8 & 0 & 14 & 0 \\ -4 & -1 & 0 & 7 \end{pmatrix} \\ &= \begin{pmatrix} 4 \\ -1 \\ -2 \\ -1 \end{pmatrix} \begin{pmatrix} 4 \\ -1 \\ -2 \\ -1 \end{pmatrix}^{\top} + \begin{pmatrix} 0 \\ 2 \\ -1 \\ -1 \end{pmatrix} \begin{pmatrix} 0 \\ 2 \\ -1 \\ -1 \end{pmatrix}^{\top} + \begin{pmatrix} 0 \\ 0 \\ 3 \\ -1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 3 \\ -1 \end{pmatrix}^{\top} + \begin{pmatrix} 0 \\ 0 \\ 0 \\ 2 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 0 \\ 2 \end{pmatrix}^{\top} \\ &= \begin{pmatrix} 4 & -1 & -2 & -1 \\ 0 & 2 & -1 & -1 \\ 0 & 0 & 3 & -1 \\ 0 & 0 & 0 & 2 \end{pmatrix}^{\top} \begin{pmatrix} 4 & -1 & -2 & -1 \\ 0 & 2 & -1 & -1 \\ 0 & 0 & 3 & -1 \\ 0 & 0 & 0 & 2 \end{pmatrix} = U^{\top} U \end{split}$$

Gaussian Elimination of Laplacians

Gaussian Elimination of Laplacians

When eliminate a node, add a clique on its neighbors

(Kyng & Sachdeva '16)

1. when eliminate a node, add a clique on its neighbors

2. Sparsify that clique, without ever constructing it

(Kyng & Sachdeva '16)

When eliminate a node of degree d,

add *d* edges at random between its neighbors, sampled with probability proportional to the weight of the edge to the eliminated node

(Kyng & Sachdeva '16)

1. Initialize by randomly ordering the vertices,

2. and making $O(\log^2 n)$ copies of every edge

Total time is $O(m \log^3 n)$

(Kyng & Sachdeva '16)

Analysis by Random Matrix Theory:

Write $U^T U$ as a sum of random matrices.

$$\mathbb{E}\left[U^T U\right] = L_G$$

Random permutation and copying control the variances of the random matrices

Apply Matrix Freedman inequality (Tropp '11)

(Kyng & Sachdeva '16)

1. Initialize by randomly ordering the vertices,

2. and making $O(\log^2 n)$ copies of every edge

Total time is $O(m \log^3 n)$

Can improve asymptotics by sacrificing some simplicity

(Kyng & Sachdeva '16)

1. Initialize by randomly ordering the vertices,

2. and making $O(\log^2 n)$ copies of every edge

Total time is $O(m \log^3 n)$

Can improve asymptotics by sacrificing some simplicity

Can improve practice by sacrificing some theory

A fast implementation in Laplacians.jl

Usually 400k-1M edges per second, for 8 digits

Competes with LAMG, CMG, incomplete Cholesky.

Never much slower.

Sometimes much faster.

Recent Developments

Other families of linear systems (Kyng, Lee, Peng, Sachdeva, S '16)

complex-weighted Laplacians
$$\begin{pmatrix} 1 & e^{i\theta} \\ e^{-i\theta} & 1 \end{pmatrix}$$

connection Laplacians

 $\begin{pmatrix} I & Q \\ Q^T & I \end{pmatrix}$

Recent Developments

Laplacians of Directed Graphs!

(Cohen, Kelner, Peebles, Peng, Sidford, Vladu '16)(Cohen, Kelner, Peebles, Peng, Rao, Sidford, Vladu '16)+1 to come with Rasmus Kyng (see his thesis)

With analyses of iterative methods for non-symmetric systems.

Fast computation of stable distribution of random walks.

Laplacians.jl

Laplacian equation solvers Sparsification Low-stretch spanning trees Interior point methods Local graph clustering Tricky graph generators

My web page on:

Laplacian linear equations, sparsification, local graph clustering, low-stretch spanning trees, and so on.

My class notes from

"Graphs and Networks" and "Spectral Graph Theory"

Theses of

Richard Peng, Aaron Sidford, Yin Tat Lee, and Rasmus Kyng

Lx = b, by Nisheeth Vishnoi