Laplacian Matrices of Graphs: Algorithms and Applications

Daniel A. Spielman
Dept. of Computer Science
Dept. of Statistics and Data Science
Yale Institute for Network Science

Outline

Applications of Laplacian linear equations Interpolation on graphs
Physical systems
Optimization on graphs
Algorithms
Sparsification
Approximate Cholesky Factorization

Generalizations and recent developments

Interpolation on Graphs

Interpolate values of a function at all vertices from given values at a few vertices.

Minimize $\quad \sum(x(a)-x(b))^{2}$

$$
(a, b) \in E
$$

Subject to given values

Interpolation on Graphs

Interpolate values of a function at all vertices from given values at a few vertices.

Minimize $\quad \sum(x(a)-x(b))^{2}$

$$
(a, b) \in E
$$

Subject to given values

Interpolation on Graphs

Interpolate values of a function at all vertices from given values at a few vertices.

Minimize $\quad \sum(x(a)-x(b))^{2}=x^{T} L x$

$$
(a, b) \in E
$$

Subject to given values

Interpolation on Graphs

Interpolate values of a function at all vertices from given values at a few vertices.

Minimize $\quad \sum(x(a)-x(b))^{2}=x^{T} L x$

$$
(a, b) \in E
$$

Subject to given values

Take derivatives. Minimize by solving Laplacian

The Laplacian Quadratic Form of a Graph

$$
\sum_{(a, b) \in E}(x(a)-x(b))^{2}
$$

The Laplacian Matrix of a Graph

$$
x^{T} L_{G} x=\sum_{(a, b) \in E}(x(a)-x(b))^{2}
$$

The Laplacian Matrix of a Weighted Graph

$$
x^{T} L_{G} x=\sum_{(a, b) \in E} w_{a, b}(x(a)-x(b))^{2}
$$

Positive real weights measuring
strength of connection spring constant
1 /resistance

Resistor Networks

View edges as resistors connecting vertices
Apply voltages at some vertices. Measure induced voltages and current flow.

Resistor Networks

Induced voltages minimize subject to constraints.

$$
\sum(x(a)-x(b))^{2}
$$

$(a, b) \in E$

Resistor Networks

Induced voltages minimize subject to constraints.

$$
\sum(x(a)-x(b))^{2}
$$

$(a, b) \in E$

Resistor Networks

Induced voltages minimize subject to constraints.

$$
\sum(x(a)-x(b))^{2}
$$

$(a, b) \in E$

Resistor Networks

Induced voltages minimize subject to constraints.

$$
\sum_{(a, b) \in E}(x(a)-x(b))^{2}
$$

Effective resistance $=1 /($ current flow at one volt)

Measuring boundaries of sets
Boundary: edges leaving a set

Measuring boundaries of sets

Boundary: edges leaving a set
Characteristic Vector of S :

$$
x(a)= \begin{cases}1 & a \text { in } S \\ 0 & a \text { not in } S\end{cases}
$$

Measuring boundaries of sets

Boundary: edges leaving a set
Characteristic Vector of S :

$$
\begin{gathered}
x(a)= \begin{cases}1 & a \text { in } S \\
0 & a \text { not in } S\end{cases} \\
\sum_{(a, b) \in E}(x(a)-x(b))^{2} \\
=\mid \text { boundary }(S) \mid
\end{gathered}
$$

The Laplacian Matrix of a Graph

$\left(\begin{array}{rrrrrr}3 & -1 & -1 & -1 & 0 & 0 \\ -1 & 2 & 0 & 0 & 0 & -1 \\ -1 & 0 & 3 & -1 & -1 & 0 \\ -1 & 0 & -1 & 4 & -1 & -1 \\ 0 & 0 & -1 & -1 & 3 & -1 \\ 0 & -1 & 0 & -1 & -1 & 3\end{array}\right) \quad \begin{aligned} & \text { Symmetric } \\ & \begin{array}{l}\text { Non-positive } \\ \text { off-diagonals } \\ \text { Diagonally dominant }\end{array}\end{aligned}$

The Laplacian Matrix of a Graph

$$
\begin{aligned}
x^{T} L_{G} x & =\sum_{(a, b) \in E} w_{a, b}(x(a)-x(b))^{2} \\
L_{G} & =\sum_{(a, b) \in E} w_{a, b} L_{a, b} \\
L_{1,2} & =\left(\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right) \\
& =\binom{1}{-1}\left(\begin{array}{ll}
1 & -1
\end{array}\right)
\end{aligned}
$$

Quickly Solving Laplacian Equations

S,Teng '04: Using low-stretch trees and sparsifiers

$$
O\left(m \log ^{c} n \log \epsilon^{-1}\right)
$$

Where m is number of non-zeros and n is dimension

Quickly Solving Laplacian Equations

S,Teng '04: Using low-stretch trees and sparsifiers

$$
O\left(m \log ^{c} n \log \epsilon^{-1}\right)
$$

Koutis, Miller, Peng '11: Low-stretch trees and sampling

$$
\widetilde{O}\left(m \log n \log \epsilon^{-1}\right)
$$

Where m is number of non-zeros and n is dimension

Quickly Solving Laplacian Equations

S,Teng '04: Using low-stretch trees and sparsifiers

$$
O\left(m \log ^{c} n \log \epsilon^{-1}\right)
$$

Koutis, Miller, Peng '11: Low-stretch trees and sampling

$$
\widetilde{O}\left(m \log n \log \epsilon^{-1}\right)
$$

Cohen, Kyng, Pachocki, Peng, Rao '14:

$$
\widetilde{O}\left(m \log ^{1 / 2} n \log \epsilon^{-1}\right)
$$

Where m is number of non-zeros and n is dimension

Quickly Solving Laplacian Equations

Good code:

LAMG (lean algebraic multigrid) - Livne-Brandt
CMG (combinatorial multigrid) - Koutis
approxChol in Laplacians.jl - S, Kyng-Sachdeva

Quickly Solving Laplacian Equations

S,Teng '04: Using low-stretch trees and sparsifiers

$$
O\left(m \log ^{c} n \log \epsilon^{-1}\right)
$$

An ϵ-accurate solution to $L_{G} x=b$
is an \widetilde{x} satisfying

$$
\|\widetilde{x}-x\|_{L_{G}} \leq \epsilon\|x\|_{L_{G}}
$$

where $\|v\|_{L_{G}}=\sqrt{v^{T} L_{G} v}=\left\|L_{G}^{1 / 2} v\right\|$

Laplacians in Linear Programming

Laplacians appear when solving Linear Programs on on graphs by Interior Point Methods

Maximum and Min-Cost Flow (Daitch, S ’08, Mądry ‘13)

Shortest Paths
(Cohen, Mądry, Sankowski, Vladu ‘16)

Isotonic Regression
(Kyng, Rao, Sachdeva '15)
Lipschitz Learning : regularized interpolation on graphs (Kyng, Rao, Sachdeva, S ‘15)

Interior Point Method for Maximum s-t Flow

maximize $f^{o u t}(s)$
subject to $\quad f^{o u t}(a)=f^{i n}(a), \quad \forall a \notin\{s, t\}$

$$
0 \leq f(a, b) \leq c(a, b), \quad \forall(a, b) \in E
$$

Interior Point Method for Maximum s-t Flow

maximize $f^{\text {out }}(s)$
subject to $\quad f^{o u t}(a)=f^{i n}(a), \quad \forall a \notin\{s, t\}$

$$
0 \leq f(a, b) \leq c(a, b), \quad \forall(a, b) \in E
$$

Interior Point Method for Maximum s-t Flow

maximize $f^{o u t}(s)$
subject to $\quad f^{o u t}(a)=f^{i n}(a), \quad \forall a \notin\{s, t\}$

$$
0 \leq f(a, b) \leq c(a, b), \quad \forall(a, b) \in E
$$

Multiple calls with varying weights $w_{a, b}$
minimize $\quad \sum w_{a, b} f(a, b)^{2}$

$$
(a, b) \in E
$$

subject to $f^{\text {out }}(s)=f^{\text {in }}(t)=F$

$$
f^{o u t}(a)=f^{\text {in }}(a), \quad \forall a \notin\{s, t\}
$$

Interior Point Method for Min Cost Flow

$$
\begin{array}{ll}
\hline \text { minimize } & \sum_{(a, b)} f(a, b) p(a, b) \\
\text { subject to } \quad & f^{o u t}(s)=f^{\text {in }}(t)=F \\
& f^{\text {out }}(a)=f^{\text {in }}(a), \quad \forall a \notin\{s, t\} \\
0 \leq f(a, b) \leq c(a, b), \quad \forall(a, b) \in E
\end{array}
$$

Asymptotically fastest algorithms:
(Daitch, S '08; Mądry '13; Lee-Sidford '15)
Fastest on some large problems in practice?
(Fountoulakis, Rao, S '??)

Spectral Sparsification

Every graph can be approximated by a sparse graph with a similar Laplacian

Approximating Graphs

A graph H is an ϵ-approximation of G if
for all $x \quad \frac{1}{1+\epsilon} \leq \frac{x^{T} L_{H} x}{x^{T} L_{G} x} \leq 1+\epsilon$

$$
L_{H} \approx_{\epsilon} L_{G}
$$

Approximating Graphs

A graph H is an ϵ-approximation of G if
for all $x \quad \frac{1}{1+\epsilon} \leq \frac{x^{T} L_{H} x}{x^{T} L_{G} x} \leq 1+\epsilon$
Preserves boundaries of every set

Approximating Graphs

A graph H is an ϵ-approximation of G if
for all $x \quad \frac{1}{1+\epsilon} \leq \frac{x^{T} L_{H} x}{x^{T} L_{G} x} \leq 1+\epsilon$
Solutions to linear equations are similiar

$$
L_{H} \approx_{\epsilon} L_{G} \Longleftrightarrow L_{H}^{-1} \approx_{\epsilon} L_{G}^{-1}
$$

Every graph G has an ϵ-approximation H with $n(2+\epsilon)^{2} / \epsilon^{2}$ edges

Spectral Sparsification

Every graph G has an ϵ-approximation H with $n(2+\epsilon)^{2} / \epsilon^{2}$ edges

Random regular graphs approximate complete graphs

Fast Spectral Sparsification

(S \& Srivastava ‘08)
If sample each edge with probability inversely proportional to its effective resistance, only need $O\left(n \log n / \epsilon^{2}\right)$ samples

Takes time $O\left(m \log ^{2} n\right)$ (Koutis, Levin, Peng '12)
(Lee \& Sun '17)
Can find an ϵ-approximation with $O\left(n / \epsilon^{2}\right)$ edges in nearly linear time.

Approximate Gaussian Elimination

(Kyng \& Sachdeva ‘16)

Gaussian Elimination:
compute upper triangular U so that

$$
L_{G}=U^{T} U
$$

Approximate Gaussian Elimination:
compute sparse upper triangular U so that

$$
L_{G} \approx U^{T} U
$$

Additive view of Gaussian Elimination

Find U, upper triangular matrix, s.t $U^{\top} U=A$

$$
A=\left(\begin{array}{cccc}
16 & -4 & -8 & -4 \\
-4 & 5 & 0 & -1 \\
-8 & 0 & 14 & 0 \\
-4 & -1 & 0 & 7
\end{array}\right)
$$

Additive view of Gaussian Elimination

$$
\left(\begin{array}{cccc}
16 & -4 & -8 & -4 \\
-4 & 5 & 0 & -1 \\
-8 & 0 & 14 & 0 \\
-4 & -1 & 0 & 7
\end{array}\right)
$$

Find the rank-1 matrix that agrees on the first row and column.

$$
\left(\begin{array}{cccc}
16 & -4 & -8 & -4 \\
-4 & 1 & 2 & 1 \\
-8 & 2 & 4 & 2 \\
-4 & 1 & 2 & 1
\end{array}\right)=\left(\begin{array}{c}
4 \\
-1 \\
-2 \\
-1
\end{array}\right)\left(\begin{array}{c}
4 \\
-1 \\
-2 \\
-1
\end{array}\right)^{\top}
$$

Additive view of Gaussian Elimination

$$
\left(\begin{array}{cccc}
16 & -4 & -8 & -4 \\
-4 & 5 & 0 & -1 \\
-8 & 0 & 14 & 0 \\
-4 & -1 & 0 & 7
\end{array}\right)-
$$

Subtract the rank 1 matrix. We have eliminated the/first variable. -4 ($\left.\begin{array}{cccc} \\ -4 & 1 & 2 & 1 \\ -8 & 2 & 4 & 2 \\ -4 & 1 & 2 & 1\end{array}\right)$

Additive view of Gaussian Elimination

$$
\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 4 & -2 & -2 \\
0 & -2 & 10 & -2 \\
0 & -2 & -2 & 6
\end{array}\right)
$$

Additive view of Gaussian Elimination

$$
\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 4 & -2 & -2 \\
0 & -2 & 10 & -2 \\
0 & -2 & -2 & 6
\end{array}\right)
$$

Find the rank-1 matrix that agrees on the next row and column.

$$
\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 4 & -2 & -2 \\
0 & -2 & 1 & 1 \\
0 & -2 & 1 & 1
\end{array}\right)=\left(\begin{array}{c}
0 \\
2 \\
-1 \\
-1
\end{array}\right)\left(\begin{array}{c}
0 \\
2 \\
-1 \\
-1
\end{array}\right)^{\top}
$$

Additive view of Gaussian Elimination

$$
\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 4 & -2 & -2 \\
0 & -2 & 10 & -2 \\
0 & -2 & -2 & 6
\end{array}\right)-\quad=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 9 & -3 \\
0 & 0 & -3 & 5
\end{array}\right)
$$

Subtract the rank 1 matrix. We have eliminated the second variable.

Additive view of Gaussian Elimination

$$
\begin{aligned}
A & =\left(\begin{array}{cccc}
16 & -4 & -8 & -4 \\
-4 & 5 & 0 & -1 \\
-8 & 0 & 14 & 0 \\
-4 & -1 & 0 & 7
\end{array}\right) \\
& =\left(\begin{array}{c}
4 \\
-1 \\
-2 \\
-1
\end{array}\right)\left(\begin{array}{c}
4 \\
-1 \\
-2 \\
-1
\end{array}\right)^{\top}+\left(\begin{array}{c}
0 \\
2 \\
-1 \\
-1
\end{array}\right)\left(\begin{array}{c}
0 \\
2 \\
-1 \\
-1
\end{array}\right)^{\top}+\left(\begin{array}{c}
0 \\
0 \\
3 \\
-1
\end{array}\right)\left(\begin{array}{c}
0 \\
0 \\
3 \\
-1
\end{array}\right)^{\top}+\left(\begin{array}{l}
0 \\
0 \\
0 \\
2
\end{array}\right)\left(\begin{array}{l}
0 \\
0 \\
0 \\
2
\end{array}\right)^{\top}
\end{aligned}
$$

Running time proportional to sum of squares of number of non-zeros in these vectors.

Additive view of Gaussian Elimination

$$
\begin{aligned}
A & =\left(\begin{array}{cccc}
16 & -4 & -8 & -4 \\
-4 & 5 & 0 & -1 \\
-8 & 0 & 14 & 0 \\
-4 & -1 & 0 & 7
\end{array}\right) \\
& =\left(\begin{array}{c}
4 \\
-1 \\
-2 \\
-1
\end{array}\right)\left(\begin{array}{c}
4 \\
-1 \\
-2 \\
-1
\end{array}\right)^{\top}+\left(\begin{array}{c}
0 \\
2 \\
-1 \\
-1
\end{array}\right)\left(\begin{array}{c}
0 \\
2 \\
-1 \\
-1
\end{array}\right)^{\top}+\left(\begin{array}{c}
0 \\
0 \\
3 \\
-1
\end{array}\right)\left(\begin{array}{c}
0 \\
0 \\
3 \\
-1
\end{array}\right)^{\top}+\left(\begin{array}{l}
0 \\
0 \\
0 \\
2
\end{array}\right)\left(\begin{array}{l}
0 \\
0 \\
0 \\
2
\end{array}\right)^{\top} \\
& =\left(\begin{array}{cccc}
4 & 0 & 0 & 0 \\
-1 & 2 & 0 & 0 \\
-2 & -1 & 3 & 0 \\
-1 & -1 & -1 & 2
\end{array}\right)\left(\begin{array}{cccc}
4 & -1 & -2 & -1 \\
0 & 2 & -1 & -1 \\
0 & 0 & 3 & -1 \\
0 & 0 & 0 & 2
\end{array}\right)
\end{aligned}
$$

Additive view of Gaussian Elimination

$$
\begin{aligned}
A & =\left(\begin{array}{cccc}
16 & -4 & -8 & -4 \\
-4 & 5 & 0 & -1 \\
-8 & 0 & 14 & 0 \\
-4 & -1 & 0 & 7
\end{array}\right) \\
& =\left(\begin{array}{c}
4 \\
-1 \\
-2 \\
-1
\end{array}\right)\left(\begin{array}{c}
4 \\
-1 \\
-2 \\
-1
\end{array}\right)^{\top}+\left(\begin{array}{c}
0 \\
2 \\
-1 \\
-1
\end{array}\right)\left(\begin{array}{c}
0 \\
2 \\
-1 \\
-1
\end{array}\right)^{\top}+\left(\begin{array}{c}
0 \\
0 \\
3 \\
-1
\end{array}\right)\left(\begin{array}{c}
0 \\
0 \\
3 \\
-1
\end{array}\right)^{\top}+\left(\begin{array}{l}
0 \\
0 \\
0 \\
2
\end{array}\right)\left(\begin{array}{l}
0 \\
0 \\
0 \\
2
\end{array}\right)^{\top} \\
& =\left(\begin{array}{cccc}
4 & -1 & -2 & -1 \\
0 & 2 & -1 & -1 \\
0 & 0 & 3 & -1 \\
0 & 0 & 0 & 2
\end{array}\right)^{\top}\left(\begin{array}{cccc}
4 & -1 & -2 & -1 \\
0 & 2 & -1 & -1 \\
0 & 0 & 3 & -1 \\
0 & 0 & 0 & 2
\end{array}\right)=U^{\top} U
\end{aligned}
$$

Gaussian Elimination of Laplacians

If this is a Laplacian,
then so is this
$\left(\begin{array}{cccc}16 & -4 & -8 & -4 \\ -4 & 5 & 0 & -1 \\ -8 & 0 & 14 & 0 \\ -4 & -1 & 0 & 7\end{array}\right)-\left(\begin{array}{c}4 \\ -1 \\ -2 \\ -1\end{array}\right)\left(\begin{array}{c}4 \\ -1 \\ -2 \\ -1\end{array}\right)^{T}=\left(\begin{array}{cccc}0 & 0 & 0 & 0 \\ 0 & 4 & -2 & -2 \\ 0 & -2 & 10 & -2 \\ 0 & -2 & -2 & 6\end{array}\right)$

Gaussian Elimination of Laplacians

If this is a Laplacian, then so is this
$\left(\begin{array}{cccc}16 & -4 & -8 & -4 \\ -4 & 5 & 0 & -1 \\ -8 & 0 & 14 & 0 \\ -4 & -1 & 0 & 7\end{array}\right)-\left(\begin{array}{c}4 \\ -1 \\ -2 \\ -1\end{array}\right)\left(\begin{array}{c}4 \\ -1 \\ -2 \\ -1\end{array}\right)^{T}=\left(\begin{array}{cccc}0 & 0 & 0 & 0 \\ 0 & 4 & -2 & -2 \\ 0 & -2 & 10 & -2 \\ 0 & -2 & -2 & 6\end{array}\right)$

When eliminate a node, add a clique on its neighbors

Approximate Gaussian Elimination
(Kyng \& Sachdeva ‘16)

1. when eliminate a node, add a clique on its neighbors

2. Sparsify that clique, without ever constructing it

Approximate Gaussian Elimination

(Kyng \& Sachdeva '16)

When eliminate a node of degree d,
add d edges at random between its neighbors, sampled with probability proportional to the weight of the edge to the eliminated node

Approximate Gaussian Elimination

(Kyng \& Sachdeva ‘16)

1. Initialize by randomly ordering the vertices,
2. and making $O\left(\log ^{2} n\right)$ copies of every edge

Total time is $O\left(m \log ^{3} n\right)$

Approximate Gaussian Elimination
(Kyng \& Sachdeva '16)

Analysis by Random Matrix Theory:

Write $U^{T} U$ as a sum of random matrices.
$\mathbb{E}\left[U^{T} U\right]=L_{G}$
Random permutation and copying control the variances of the random matrices

Apply Matrix Freedman inequality (Tropp ‘11)

Approximate Gaussian Elimination
(Kyng \& Sachdeva ‘16)

1. Initialize by randomly ordering the vertices,
2. and making $O\left(\log ^{2} n\right)$ copies of every edge

Total time is $O\left(m \log ^{3} n\right)$
Can improve asymptotics by sacrificing some simplicity

Approximate Gaussian Elimination
(Kyng \& Sachdeva '16)

1. Initialize by randomly ordering the vertices,
2. and making $O\left(\log ^{2} n\right)$ copies of every edge

Total time is $O\left(m \log ^{3} n\right)$
Can improve asymptotics by sacrificing some simplicity
Can improve practice by sacrificing some theory

Approximate Gaussian Elimination

A fast implementation in Laplacians.jl
Usually $400 \mathrm{k}-1 \mathrm{M}$ edges per second, for 8 digits
Competes with LAMG, CMG, incomplete Cholesky.
Never much slower.
Sometimes much faster.

Recent Developments

Other families of linear systems
(Kyng, Lee, Peng, Sachdeva, S '16)
complex-weighted Laplacians $\left(\begin{array}{cc}1 & e^{i \theta} \\ e^{-i \theta} & 1\end{array}\right)$
connection Laplacians

$$
\left(\begin{array}{cc}
I & Q \\
Q^{T} & I
\end{array}\right)
$$

Recent Developments

Laplacians of Directed Graphs!
(Cohen, Kelner, Peebles, Peng, Sidford, Vladu '16)
(Cohen, Kelner, Peebles, Peng, Rao, Sidford, Vladu '16)
+1 to come with Rasmus Kyng (see his thesis)
With analyses of iterative methods for non-symmetric systems.

Fast computation of stable distribution of random walks.

Recent Developments

Laplacians.j

Laplacian equation solvers
Sparsification
Low-stretch spanning trees
Interior point methods
Local graph clustering
Tricky graph generators

My web page on:
Laplacian linear equations, sparsification, local graph clustering, low-stretch spanning trees, and so on.

My class notes from
"Graphs and Networks" and "Spectral Graph Theory"

Theses of
Richard Peng, Aaron Sidford, Yin Tat Lee, and Rasmus Kyng
$L x=b$, by Nisheeth Vishnoi

