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An active subspace is a type of low-dimensional structure in a  
function of several variables. 
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parameter studies. 
 
Active subspaces appear in a wide range of physical models. 
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How do active subspaces relate to [insert method]? 

How do I compute active subspaces? 

What if I don’t have gradients? 

What kinds of models does this work on? 

PAUL CONSTANTINE
Ben L. Fryrear Assistant Professor 
Colorado School of Mines 
activesubspaces.org 
@DrPaulynomial 

QUESTIONS?

Active Subspaces 
SIAM (2015) 
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Given             , find 

Sufficient Dimension Reduction 
in regression

Projection Pursuit Regression, 
Neural Nets, Ridge functions

Fisher Information Theory Principal Components / Regression, 
Karhunen-Loéve

P(y|x) = P(y|AT
x)

(yi,xi) A

minimize
A,✓

Z
(f(x)� g(AT

x, ✓))2 ⇢ dx

Z
r2

✓ logL(x, ✓) ⇢(x) dx
Z

xx

T ⇢(x) dx

Assume: 

Assume: 

y = f(x) + ✏
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In statistics/machine learning: “principal pursuit regression,” “neural nets” 



Discover the active subspace 
with random sampling.

Draw samples: 

Compute:                             and   fj = f(xj)

Approximate with Monte Carlo 

Equivalent to SVD of samples of the gradient 

Called an active subspace method in T. Russi’s 2010 Ph.D. thesis,  
Uncertainty Quantification with Experimental Data in Complex System Models 

xj ⇠ ⇢

C ⇡ 1

N

NX

j=1

rfj rfT
j = Ŵ ⇤̂Ŵ

T

1p
N

⇥
rf1 · · · rfN

⇤
= Ŵ

p
⇤̂V̂

T

rfj = rf(xj)



Using Gittens and Tropp (2011) 

How many gradient samples?

Bound on gradient 
norm squared 

Relative accuracy 

Dimension 

(with high probability) 

N = ⌦

✓
L2�1

�2
k"

2
log(m)

◆
=) |�k � ˆ�k|  "�k



Gittens and Tropp (2011), Golub and Van Loan (1996), Stewart (1973) 

Bound on gradient 
norm squared 

Relative accuracy 

Dimension (with high probability) 

Spectral gap 

N = ⌦

✓
L2

�1"2
log(m)

◆
=) dist (W 1, ˆW 1) 

4�1"

�n � �n+1

How many gradient samples?



1p
N

⇥
rf1 · · · rfN

⇤
⇡ Ŵ 1

q
⇤̂1V̂

T

1

Low-rank approximation of the collection of gradients: 

Let’s be abundantly clear about the 
problem we are trying to solve. 

Low-dimensional linear approximation of the gradient: 

rf(x) ⇡ Ŵ 1 a(x)

f(x) ⇡ g
⇣
Ŵ

T

1 x

⌘

Approximate a function of many variables by a function 
of a few linear combinations of the variables: ✔	

✖	
✖	


