ACTIVE SUBSPACES for dimension reduction in parameter studies

PAUL CONSTANTINE

Ben L. Fryrear Assistant Professor Applied Mathematics \& Statistics Colorado School of Mines
activesubspaces.org @DrPaulynomial

In collaboration with:

RACHEL WARD
UT Austin

ARMIN EFTEKHARI UT Austin

SLIDES: goo.gl/cK6goL
DISCLAIMER: These slides are meant to complement the oral presentation. Use out of context at your own risk.

TAKE-HOMES

An active subspace is a type of low-dimensional structure in a function of several variables.

TAKE-HOMES

An active subspace is a type of low-dimensional structure in a function of several variables.

We have tools for identifying and exploiting active subspaces for parameter studies.

TAKE-HOMES

An active subspace is a type of low-dimensional structure in a function of several variables.

We have tools for identifying and exploiting active subspaces for parameter studies.

Active subspaces appear in a wide range of physical models.

TAKE-HOMES

An active subspace is a type of low-dimensional structure in a function of several variables.

We have tools for identifying and exploiting active subspaces for parameter studies.

Active subspaces appear in a wide range of physical models.

Active subspaces are closely related to ridge approximation.

$$
f(\mathbf{x})
$$

$f(\mathbf{x})$

Shape optimization in

aerospace vehicles
(with J. Alonso, T. Lukaczyk)
(with J. Alonso, T. Lukaczyk)

Sensitivity analysis in integrated hydrologic models
(with R. Maxwell, J. Jefferson, J. Gilbert)

 aerospace vehicles
(with J. Alonso, T. Lukaczyk)

Uncertainty quantification for hypersonic scramjets

Sensitivity analysis in integrated hydrologic models
(with R. Maxwell, J. Jefferson, J. Gilbert)

Sensitivity analysis in HIV modeling
(with T. Loudon, S. Pankavich)

Sensitivity analysis in HIV modeling
(with T. Loudon, S. Pankavich)

Sensitivity analysis in HIV modeling (with T. Loudon, S. Pankavich)

Sensitivity analysis in solar cell models
(with B. Zaharatos, M. Campanelli)

Sensitivity analysis in Ebola transmission models (with P. Diaz, S. Pankavich)

Sensitivity analysis in HIV modeling (with T. Loudon, S. Pankavich)

Sensitivity analysis in solar cell models
(with B. Zaharatos, M. Campanelli)

Calibration of an atmospheric reentry vehicle model
$f(\mathbf{x})$

Lithium ion battery model (with A. Doostan)

e- (extraction in anode) Image from Doherty et al. (2010)

$f(\mathbf{x})$

Magnetohydrodynamics generator model (with A. Glaws, T. Wildey, J. Shadid)

Lithium ion battery model

 (with A. Doostan)

$f(\mathbf{x})$

Vehicle design

(with C. Othmer, J. Alonso)

Magnetohydrodynamics generator model (with A. Glaws, T. Wildey, J. Shadid)

Lithium ion battery model (with A. Doostan)

Ridge approximation

$$
f(\mathbf{x}) \approx g\left(\boldsymbol{U}^{T} \mathbf{x}\right)
$$

where

$$
\begin{aligned}
\boldsymbol{U}^{T} & : \mathbb{R}^{m} \rightarrow \mathbb{R}^{n} \\
g & : \mathbb{R}^{n} \rightarrow \mathbb{R}
\end{aligned}
$$

Ridge approximation

$$
f(\mathbf{x}) \approx g\left(\boldsymbol{U}^{T} \mathbf{x}\right)
$$

Ridge approximation

Ridge approximation

Ridge approximation

What is the approximation error?

$$
f(\mathbf{x}) \text { 雨 } g\left(\boldsymbol{U}^{T} \mathbf{x}\right)
$$

Ridge approximation

What is the approximation error?

$$
f(\mathbf{x}) \text { 雨 } g\left(\boldsymbol{U}^{T} \mathbf{x}\right)
$$

Use the weighted root-mean-squared error:

$$
\left\|f(\mathbf{x})-g\left(\boldsymbol{U}^{T} \mathbf{x}\right)\right\|_{L^{2}(\rho)}=\left(\int\left(f(\mathbf{x})-g\left(\boldsymbol{U}^{T} \mathbf{x}\right)\right)^{2} \rho(\mathbf{x}) d \mathbf{x}\right)^{\frac{1}{2}}
$$

Ridge approximation

What is the approximation error?

$$
f(\mathbf{x}) \text { 光 } g\left(\boldsymbol{U}^{T} \mathbf{x}\right)
$$

Use the weighted root-mean-squared error:

$$
\left\|f(x)-g\left(U^{T} x\right)\right\|_{L^{2}(\theta)}=\left(\int\left(f(x)-g\left(U^{T} x\right)\right) \sum^{p(x) d x}\right)^{\frac{1}{2}}
$$

Given weight function

Ridge approximation

$$
f(\mathbf{x}) \approx \underset{\text { What is } \mathrm{g} ?}{ }\left(\mathbb{U}^{T} \mathbf{x}\right)
$$

Ridge approximation

$$
f(\mathbf{x}) \approx \underset{\text { What is } \mathrm{g} ?}{ }\left(\mathbb{U}^{T} \mathbf{x}\right)
$$

Use the conditional average:

$$
\mu(\mathbf{y})=\int f(\boldsymbol{U} \mathbf{y}+\boldsymbol{V} \mathbf{z}) \pi(\mathbf{z} \mid \mathbf{y}) d \mathbf{z}
$$

Ridge approximation

$$
f(\mathbf{x}) \approx \underset{\text { What is } \mathrm{g} ?}{ }\left(\mathbb{U}^{T} \mathbf{x}\right)
$$

Use the conditional average:

$$
\mu(\mathbf{y})=\iint_{\text {abspace coordinates }} f(\boldsymbol{U} \overline{\mathbf{y}}+\boldsymbol{V} \mathbf{z}) \pi(\mathbf{z} \mid \mathbf{y}) d \mathbf{z}
$$

Ridge approximation

$$
f(\mathbf{x}) \approx \underset{\sim}{g}\left(U^{T} \mathbf{x}\right)
$$

Use the conditional average:

Ridge approximation

$$
f(\mathbf{x}) \approx \underset{\sim}{g}\left(U^{T} \mathbf{x}\right)
$$

Use the conditional average:
Conditional density

Ridge approximation

$$
f(\mathbf{x}) \approx \underset{\sim}{g}\left(U^{T} \mathbf{x}\right)
$$

Use the conditional average:
Conditional density

$\mu\left(\boldsymbol{U}^{T} \mathbf{x}\right)$ is the best approximation (Pinkus, 2015).

Ridge approximation

$$
f(\mathbf{x}) \approx g\left(\boldsymbol{U}^{T} \mathbf{x}\right)
$$

Ridge approximation

What is U ?
 $$
f(\mathbf{x}) \approx g\left(\boldsymbol{U}^{\Gamma} \mathbf{x}\right)
$$

Define the error function:

$$
R(\boldsymbol{U})=\frac{1}{2} \int\left(f(\mathbf{x})-\mu\left(\boldsymbol{U}^{T} \mathbf{x}\right)\right)^{2} \rho(\mathbf{x}) d \mathbf{x}
$$

Ridge approximation

$$
f(\mathbf{x}) \approx g\left(U^{\Gamma} \mathbf{x}\right)
$$

Define the error function:

$$
R(\boldsymbol{U})=\frac{1}{2} \int\left(f(\mathbf{x})-\mu\left(\boldsymbol{U}^{T} \mathbf{x}\right)\right)^{2} \rho(\mathbf{x}) d \mathbf{x}
$$

Minimize the error:

$$
\underset{\boldsymbol{U}}{\operatorname{minimize}} R(\boldsymbol{U}) \quad \text { subject to } \boldsymbol{U} \in \mathbb{G}(n, m)
$$

Ridge approximation

What is U ?
 $$
f(\mathbf{x}) \approx g\left(\boldsymbol{U}^{T} \mathbf{x}\right)
$$

Define the error function:

$$
R(\boldsymbol{U})=\frac{1}{2} \int\left(f(\mathbf{x})-\mu\left(\boldsymbol{U}^{T} \mathbf{x}\right)\right)^{2} \rho(\mathbf{x}) d \mathbf{x}
$$

Minimize the error:

Grassmann manifold of n-dimensional subspaces

Define the active subspace

Consider a function and its gradient vector,

$$
f=f(\mathbf{x}), \quad \mathbf{x} \in \mathbb{R}^{m}, \quad \nabla f(\mathbf{x}) \in \mathbb{R}^{m}, \quad \rho: \mathbb{R}^{m} \rightarrow \mathbb{R}_{+}
$$

Define the active subspace

Consider a function and its gradient vector,

$$
f=f(\mathbf{x}), \quad \mathbf{x} \in \mathbb{R}^{m}, \quad \nabla f(\mathbf{x}) \in \mathbb{R}^{m}, \quad \rho: \mathbb{R}^{m} \rightarrow \mathbb{R}_{+}
$$

The average outer product of the gradient and its eigendecomposition,

$$
\boldsymbol{C}=\int \nabla f(\mathbf{x}) \nabla f(\mathbf{x})^{T} \rho(\mathbf{x}) d \mathbf{x}=\boldsymbol{W} \Lambda \boldsymbol{W}^{T}
$$

Define the active subspace

Consider a function and its gradient vector,

$$
f=f(\mathbf{x}), \quad \mathbf{x} \in \mathbb{R}^{m}, \quad \nabla f(\mathbf{x}) \in \mathbb{R}^{m}, \quad \rho: \mathbb{R}^{m} \rightarrow \mathbb{R}_{+}
$$

The average outer product of the gradient and its eigendecomposition,

$$
\boldsymbol{C}=\int \nabla f(\mathbf{x}) \nabla f(\mathbf{x})^{T} \rho(\mathbf{x}) d \mathbf{x}=\boldsymbol{W} \Lambda \boldsymbol{W}^{T}
$$

Partition the eigendecomposition,

$$
\Lambda=\left[\begin{array}{cc}
\Lambda_{1} & \\
& \Lambda_{2}
\end{array}\right], \quad \boldsymbol{W}=\left[\begin{array}{ll}
\boldsymbol{W}_{1} & \boldsymbol{W}_{2}
\end{array}\right], \quad \boldsymbol{W}_{1} \in \mathbb{R}^{m \times n}
$$

Define the active subspace

Consider a function and its gradient vector,

$$
f=f(\mathbf{x}), \quad \mathbf{x} \in \mathbb{R}^{m}, \quad \nabla f(\mathbf{x}) \in \mathbb{R}^{m}, \quad \rho: \mathbb{R}^{m} \rightarrow \mathbb{R}_{+}
$$

The average outer product of the gradient and its eigendecomposition,

$$
\boldsymbol{C}=\int \nabla f(\mathbf{x}) \nabla f(\mathbf{x})^{T} \rho(\mathbf{x}) d \mathbf{x}=\boldsymbol{W} \Lambda \boldsymbol{W}^{T}
$$

Partition the eigendecomposition,

$$
\Lambda=\left[\begin{array}{cc}
\Lambda_{1} & \\
& \Lambda_{2}
\end{array}\right], \quad \boldsymbol{W}=\left[\begin{array}{ll}
\boldsymbol{W}_{1} & \boldsymbol{W}_{2}
\end{array}\right], \quad \boldsymbol{W}_{1} \in \mathbb{R}^{m \times n}
$$

Rotate and separate the coordinates,

$$
\mathbf{x}=\boldsymbol{W} \boldsymbol{W}^{T} \mathbf{x}=\boldsymbol{W}_{1} \boldsymbol{W}_{1}^{T} \mathbf{x}+\boldsymbol{W}_{2} \boldsymbol{W}_{2}^{T} \mathbf{x}=\boldsymbol{W}_{1} \mathbf{y}+\boldsymbol{W}_{2} \mathbf{z}
$$

Define the active subspace

Consider a function and its gradient vector,

$$
f=f(\mathbf{x}), \quad \mathbf{x} \in \mathbb{R}^{m}, \quad \nabla f(\mathbf{x}) \in \mathbb{R}^{m}, \quad \rho: \mathbb{R}^{m} \rightarrow \mathbb{R}_{+}
$$

The average outer product of the gradient and its eigendecomposition,

$$
\boldsymbol{C}=\int \nabla f(\mathbf{x}) \nabla f(\mathbf{x})^{T} \rho(\mathbf{x}) d \mathbf{x}=\boldsymbol{W} \Lambda \boldsymbol{W}^{T}
$$

Partition the eigendecomposition,

$$
\Lambda=\left[\begin{array}{cc}
\Lambda_{1} & \\
& \Lambda_{2}
\end{array}\right], \quad \boldsymbol{W}=\left[\begin{array}{ll}
\boldsymbol{W}_{1} & \boldsymbol{W}_{2}
\end{array}\right], \quad \boldsymbol{W}_{1} \in \mathbb{R}^{m \times n}
$$

Rotate and separate the coordinates,
active inactive variables variables

$$
\mathbf{x}=\boldsymbol{W} \boldsymbol{W}^{T} \mathbf{x}=\boldsymbol{W}_{1} \boldsymbol{W}_{1}^{T} \mathbf{x}+\boldsymbol{W}_{2} \boldsymbol{W}_{2}^{T} \mathbf{x}=\boldsymbol{W} \mathbf{y}+\boldsymbol{W}
$$

The eigenpairs identify perturbations that change the function more, on average.

LEMMA

$$
\lambda_{i}=\int\left(\mathbf{w}_{i}^{T} \nabla f(\mathbf{x})\right)^{2} \rho(\mathbf{x}) d \mathbf{x}, \quad i=1, \ldots, m
$$

The eigenpairs identify perturbations that change the function more, on average.

LEMMA

$$
\lambda_{i}=\int\left(\mathbf{w}_{i}^{T} \nabla f(\mathbf{x})\right)^{2} \rho(\mathbf{x}) d \mathbf{x}, \quad i=1, \ldots, m
$$

LEMMA

$$
\begin{aligned}
& \int\left\|\nabla_{\mathbf{y}} f(\mathbf{x})\right\|_{2}^{2} \rho(\mathbf{x}) d \mathbf{x}=\lambda_{1}+\cdots+\lambda_{n} \\
& \int\left\|\nabla_{\mathbf{z}} f(\mathbf{x})\right\|_{2}^{2} \rho(\mathbf{x}) d \mathbf{x}=\lambda_{n+1}+\cdots+\lambda_{m}
\end{aligned}
$$

An approximation result

$$
\left\|f(\mathbf{x})-\mu\left(\boldsymbol{W}_{1}^{T} \mathbf{x}\right)\right\|_{L^{2}(\rho)} \leq C\left(\lambda_{n+1}+\cdots+\lambda_{m}\right)^{\frac{1}{2}}
$$

An approximation result

Conditional
average

$$
\left\|f(\mathbf{x})-\mu\left(\boldsymbol{W}_{1}^{T} \mathbf{x}\right)\right\|_{L^{2}(\rho)} \leq C\left(\lambda_{n+1}+\cdots+\lambda_{m}\right)^{\frac{1}{2}}
$$

An approximation result

Conditional
average
$\left\|f(\mathbf{x})-\mu\left(\boldsymbol{W}_{1}^{T} \mathbf{x}\right)\right\|_{L^{2}(\rho)} \leq C\left(\lambda_{n+1}+\cdots+\lambda_{m}\right)^{\frac{1}{2}}$
Active
subspace

An approximation result

An approximation result

The active subspace is nearly stationary.

Recall:

$$
R(\boldsymbol{U})=\frac{1}{2} \int\left(f(\mathbf{x})-\mu\left(\boldsymbol{U}^{T} \mathbf{x}\right)\right)^{2} \rho(\mathbf{x}) d \mathbf{x}
$$

Assume (1) Lipschitz continuous function
(2) Gaussian density function

The active subspace is nearly stationary.

Recall:

$$
R(\boldsymbol{U})=\frac{1}{2} \int\left(f(\mathbf{x})-\mu\left(\boldsymbol{U}^{T} \mathbf{x}\right)\right)^{2} \rho(\mathbf{x}) d \mathbf{x}
$$

Assume (1) Lipschitz continuous function
(2) Gaussian density function
$\left\|\bar{\nabla} R\left(\boldsymbol{W}_{1}\right)\right\|_{F} \leq L\left(2 m^{\frac{1}{2}}+(m-n)^{\frac{1}{2}}\right)\left(\lambda_{n+1}+\cdots+\lambda_{m}\right)^{\frac{1}{2}}$

The active subspace is nearly stationary.

Recall:

$$
R(\boldsymbol{U})=\frac{1}{2} \int\left(f(\mathbf{x})-\mu\left(\boldsymbol{U}^{T} \mathbf{x}\right)\right)^{2} \rho(\mathbf{x}) d \mathbf{x}
$$

Assume (1) Lipschitz continuous function
(2) Gaussian density function

Gradient on the Grassmann manifold
$\left\|\bar{\nabla} R\left(\boldsymbol{W}_{1}\right)\right\|_{F} \leq L\left(2 m^{\frac{1}{2}}+(m-n)^{\frac{1}{2}}\right)\left(\lambda_{n+1}+\cdots+\lambda_{m}\right)^{\frac{1}{2}}$

The active subspace is nearly stationary.

Recall:

$$
R(\boldsymbol{U})=\frac{1}{2} \int\left(f(\mathbf{x})-\mu\left(\boldsymbol{U}^{T} \mathbf{x}\right)\right)^{2} \rho(\mathbf{x}) d \mathbf{x}
$$

Assume (1) Lipschitz continuous function
(2) Gaussian density function

Gradient on the Grassmann manifold
$\left\|\bar{\nabla} R\left(\boldsymbol{W}_{1}\right)\right\|_{F} \leq L\left(2 m^{\frac{1}{2}}+(m-n)^{\frac{1}{2}}\right)\left(\lambda_{n+1}+\cdots+\lambda_{m}\right)^{\frac{1}{2}}$

Active subspace

The active subspace is nearly stationary.

Recall:

$$
R(\boldsymbol{U})=\frac{1}{2} \int\left(f(\mathbf{x})-\mu\left(\boldsymbol{U}^{T} \mathbf{x}\right)\right)^{2} \rho(\mathbf{x}) d \mathbf{x}
$$

Assume (1) Lipschitz continuous function
(2) Gaussian density function

Gradient on the Grassmann manifold
$\left\|\bar{\nabla} R\left(\boldsymbol{W}_{1}\right)\right\|_{F} \leq L\left(2 m^{\frac{1}{2}}+(m-n)^{\frac{1}{2}}\right)\left(\lambda_{n+1}+\cdots+\lambda_{m}\right)^{\frac{1}{2}}$

Active subspace

The active subspace is nearly stationary.

Recall:

$$
R(\boldsymbol{U})=\frac{1}{2} \int\left(f(\mathbf{x})-\mu\left(\boldsymbol{U}^{T} \mathbf{x}\right)\right)^{2} \rho(\mathbf{x}) d \mathbf{x}
$$

Assume (1) Lipschitz continuous function
(2) Gaussian density function

The active subspace is nearly stationary.

Recall:

$$
R(\boldsymbol{U})=\frac{1}{2} \int\left(f(\mathbf{x})-\mu\left(\boldsymbol{U}^{T} \mathbf{x}\right)\right)^{2} \rho(\mathbf{x}) d \mathbf{x}
$$

Assume (1) Lipschitz continuous function
(2) Gaussian density function

IDEA Use active subspace as the starting point for numerical ridge approximation.

Given an initial subspace \boldsymbol{U}_{0} and samples $\left\{\mathbf{x}_{i}, f\left(\mathbf{x}_{i}\right)\right\}$

IDEA Use active subspace as the starting

 point for numerical ridge approximation.Given an initial subspace \boldsymbol{U}_{0} and samples $\left\{\mathbf{x}_{i}, f\left(\mathbf{x}_{i}\right)\right\}$
(1) Compute $\mathbf{y}_{i}=\boldsymbol{U}_{0}^{T} \mathbf{x}_{i}$

IDEA Use active subspace as the starting

 point for numerical ridge approximation.Given an initial subspace \boldsymbol{U}_{0} and samples $\left\{\mathbf{x}_{i}, f\left(\mathbf{x}_{i}\right)\right\}$
(1) Compute $\mathbf{y}_{i}=\boldsymbol{U}_{0}^{T} \mathbf{x}_{i}$
(2) Fit a polynomial $p_{N}(\mathbf{y}, \theta)$ with the pairs $\left\{\mathbf{y}_{i}, f\left(\mathbf{x}_{i}\right)\right\}$

$$
\theta_{*}=\underset{\theta}{\operatorname{argmin}} \sum_{i}\left(f\left(\mathbf{x}_{i}\right)-p\left(\mathbf{y}_{i}, \theta\right)\right)^{2}
$$

IDEA Use active subspace as the starting point for numerical ridge approximation.

Given an initial subspace \boldsymbol{U}_{0} and samples $\left\{\mathbf{x}_{i}, f\left(\mathbf{x}_{i}\right)\right\}$
(1) Compute $\mathbf{y}_{i}=\boldsymbol{U}_{0}^{T} \mathbf{x}_{i}$
(2) Fit a polynomial $p_{N}(\mathbf{y}, \theta)$ with the pairs $\left\{\mathbf{y}_{i}, f\left(\mathbf{x}_{i}\right)\right\}$

$$
\theta_{*}=\underset{\theta}{\operatorname{argmin}} \sum_{i}\left(f\left(\mathbf{x}_{i}\right)-p\left(\mathbf{y}_{i}, \theta\right)\right)^{2}
$$

(3) Minimize residual over subpsaces

$$
\boldsymbol{U}_{*}=\underset{\boldsymbol{U} \in \mathbb{G}(n, m)}{\operatorname{argmin}} \sum_{i}\left(f\left(\mathbf{x}_{i}\right)-p\left(\boldsymbol{U}^{T} \mathbf{x}_{i}, \theta_{*}\right)\right)^{2}
$$

IDEA Use active subspace as the starting point for numerical ridge approximation.

Given an initial subspace \boldsymbol{U}_{0} and samples $\left\{\mathbf{x}_{i}, f\left(\mathbf{x}_{i}\right)\right\}$
(1) Compute $\mathbf{y}_{i}=\boldsymbol{U}_{0}^{T} \mathbf{x}_{i}$
(2) Fit a polynomial $p_{N}(\mathbf{y}, \theta)$ with the pairs $\left\{\mathbf{y}_{i}, f\left(\mathbf{x}_{i}\right)\right\}$

$$
\theta_{*}=\underset{\theta}{\operatorname{argmin}} \sum_{i}\left(f\left(\mathbf{x}_{i}\right)-p\left(\mathbf{y}_{i}, \theta\right)\right)^{2}
$$

(3) Minimize residual over subpsaces

$$
\boldsymbol{U}_{*}=\underset{\boldsymbol{U} \in \mathbb{G}(n, m)}{\operatorname{argmin}} \sum_{i}\left(f\left(\mathbf{x}_{i}\right)-p\left(\boldsymbol{U}^{T} \mathbf{x}_{i}, \theta_{*}\right)\right)^{2}
$$

(4) Set $\boldsymbol{U}_{0}=\boldsymbol{U}_{*}$ and repeat

An example where it doesn't work

$$
\begin{aligned}
& f\left(x_{1}, x_{2}\right)= \\
& 5 x_{1}+\sin \left(10 \pi x_{2}\right) \\
& \boldsymbol{C}=\left[\begin{array}{cc}
25 & 0 \\
0 & 526
\end{array}\right]
\end{aligned}
$$

An example where it doesn't work

$$
\begin{aligned}
& f\left(x_{1}, x_{2}\right)= \\
& 5 x_{1}+\sin \left(10 \pi x_{2}\right) \\
& \boldsymbol{C}=\left[\begin{array}{cc}
25 & 0 \\
0 & 526
\end{array}\right]
\end{aligned}
$$

An example where it doesn't work

$$
\begin{aligned}
& f\left(x_{1}, x_{2}\right)= \\
& 5 x_{1}+\sin \left(10 \pi x_{2}\right) \\
& C=\left[\begin{array}{cc}
25 & 0 \\
0 & 526
\end{array}\right]
\end{aligned}
$$

An example where it doesn't work

$$
\begin{aligned}
& f\left(x_{1}, x_{2}\right)= \\
& 5 x_{1}+\sin \left(10 \pi x_{2}\right) \\
& C=\left[\begin{array}{cc}
25 & 0 \\
0 & 526
\end{array}\right]
\end{aligned}
$$

Inactive
subspace
$U=[1 ; 0]$

An example where it works

DRAG COEFFICIENT

as a function of
18 shape parameters
Uniform on a hypercube

SU2 CFD solver with adjoint solver for gradients

An example where it works

DRAG COEFFICIENT

as a function of
18 shape parameters
Uniform on a hypercube

SU2 CFD solver with adjoint solver for gradients

Recall: $\quad \boldsymbol{C}=\int \nabla f(\mathbf{x}) \nabla f(\mathbf{x})^{T} \rho(\mathbf{x}) d \mathbf{x}=\boldsymbol{W} \Lambda \boldsymbol{W}^{T}$

> Residual as a function of alternating iteration for different starting subspaces

RANDOM

IDENTITY

ACTIVE SUBSPACE

Residual as a function of alternating iteration for different starting subspaces

RANDOM

IDENTITY

ACTIVE SUBSPACE

Increasing polynomial degree（total）

（h）$n=2, N=5$ （l）$n=3, N=5$

（m）$n=4, N=2$

（f）$n=2, N=3$

（j）$n=3, N=3$

（n）$n=4, N=3$

（g）$n=2, N=4$

（k）$n=3, N=4$

（o）$n=4, N=4$

（p）$n=4, N=5$

TAKE-HOMES

An active subspace is a type of low-dimensional structure in a function of several variables.

We have tools for identifying and exploiting active subspaces for parameter studies.

Active subspaces appear in a wide range of physical models.

Active subspaces are closely related to ridge approximation.

QUESTIONS?

How do active subspaces relate to [insert method]?
How do I compute active subspaces?

What if I don't have gradients?
What kinds of models does this work on?

PAUL CONSTANTINE

Ben L. Fryrear Assistant Professor Colorado School of Mines

Active Subspaces
SIAM (2015)
activesubspaces.org
@DrPaulynomial

Active Subspaces
Emerging Ideas for Dimension
Reduction in Parameter Studies

Paul G. Constantine

BACK UP SLIDES

Sufficient Dimension Reduction in regression

Assume: $y=f(\mathbf{x})+\epsilon$
Assume: $\mathbb{P}(y \mid \mathbf{x})=\mathbb{P}\left(y \mid \boldsymbol{A}^{T} \mathbf{x}\right)$
Given $\left(y_{i}, \mathbf{x}_{i}\right)$, find \boldsymbol{A}

Projection Pursuit Regression, Neural Nets, Ridge functions
$\underset{\boldsymbol{A}, \theta}{\operatorname{minimize}} \int\left(f(\mathbf{x})-g\left(\boldsymbol{A}^{T} \mathbf{x}, \theta\right)\right)^{2} \rho d \mathbf{x}$

Fisher Information Theory

$$
\int \nabla_{\theta}^{2} \log \mathcal{L}(\mathbf{x}, \theta) \rho(\mathbf{x}) d \mathbf{x}
$$

Principal Components / Regression, Karhunen-Loéve

$$
\int \mathbf{x} \mathbf{x}^{T} \rho(\mathbf{x}) d \mathbf{x}
$$

References and related work

"Sufficient dimension reduction"

- Cook. Regression Graphics. (1998/2009)
- K.C. Li. Sliced inverse regression for dimension reduction. (1991)
- K.C. Li. On principal Hessian directions for data visualization and dimension reduction (1992)
In approximation theory
- Fornassier, Schass, Vybiral. Learning functions of few arbitrary linear parameters in high dimensions. FOCM (2012)
- Mayer, Ullrich, Vybiral. Entropy and sampling numbers of classes of ridge functions. Constructive Approximation (2014)
In UQ
- Tipireddy, Ghanem. Basis adaptation in homogeneous chaos spaces. JCP (2014)
- Stoyanov, Webster. A gradient-based sampling approach for dimension reduction of partial differential equations with stochastic coefficients. IJ4UQ (2015)
- Lei, Yang, Lei, Zheng, Lin, Baker. Constructing Surrogate Models of Complex Systems with Enhanced Sparsity: Quantifying the Influence of Conformational Uncertainty in Biomolecular Solvation. SIAM MMS (2015)
In engineering applications
- Abdel-Khalik, Bang, Wang. Overview of hybrid subspace methods for uncertainty quantification, sensitivity analysis. Annals of Nuclear Energy (2013)
- Berguin, Rancourt, Mavris. A method for high-dimensional design space exploration of expensive functions with access to gradient information. AIAA-2014-2174
- Russi. Uncertainty Quantification with Experimental Data and Complex System Models, Ph.D. thesis (2010)

In statistics/machine learning: "principal pursuit regression," "neural nets"

Discover the active subspace with random sampling.

Draw samples: $\quad \mathbf{x}_{j} \sim \rho$
Compute: $\quad f_{j}=f\left(\mathbf{x}_{j}\right)$ and $\nabla f_{j}=\nabla f\left(\mathbf{x}_{j}\right)$

Approximate with Monte Carlo

$$
\boldsymbol{C} \approx \frac{1}{N} \sum_{j=1}^{N} \nabla f_{j} \nabla f_{j}^{T}=\hat{\boldsymbol{W}} \hat{\Lambda} \hat{\boldsymbol{W}}^{T}
$$

Equivalent to SVD of samples of the gradient

$$
\frac{1}{\sqrt{N}}\left[\begin{array}{lll}
\nabla f_{1} & \cdots & \nabla f_{N}
\end{array}\right]=\hat{\boldsymbol{W}} \sqrt{\hat{\Lambda}} \hat{\boldsymbol{V}}^{T}
$$

Called an active subspace method in T. Russi's 2010 Ph.D. thesis, Uncertainty Quantification with Experimental Data in Complex System Models

How many gradient samples?

$$
\begin{aligned}
& \begin{array}{l}
\text { Bound on gradient } \\
\text { norm squared }
\end{array} \\
& N=\Omega\left(\frac{L^{2} \lambda_{1}}{\lambda_{k}^{2} \varepsilon^{2}} \log (m)\right) \Longrightarrow\left|\lambda_{k}-\hat{\lambda}_{k}\right| \leq \varepsilon \lambda_{k} \\
& \text { Relative accuracy }
\end{aligned}
$$

Using Gittens and Tropp (2011)

How many gradient samples?

Gittens and Tropp (2011), Golub and Van Loan (1996), Stewart (1973)

Let's be abundantly clear about the problem we are trying to solve.

Low-rank approximation of the collection of gradients:

$$
\frac{1}{\sqrt{N}}\left[\begin{array}{lll}
\nabla f_{1} & \cdots & \nabla f_{N}
\end{array}\right] \approx \hat{\boldsymbol{W}}_{1} \sqrt{\hat{\Lambda}_{1}} \hat{\boldsymbol{V}}_{1}^{T}
$$

Low-dimensional linear approximation of the gradient:

$$
\nabla f(\mathbf{x}) \approx \hat{\boldsymbol{W}}_{1} \mathbf{a}(\mathbf{x})
$$

Approximate a function of many variables by a function of a few linear combinations of the variables:

$$
f(\mathbf{x}) \approx g\left(\hat{\boldsymbol{W}}_{1}^{T} \mathbf{x}\right)
$$

