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An active subspace is a type of low-dimensional structure in a
function of several variables.

We have tools for identifying and exploiting active subspaces for
parameter studies.

Active subspaces appear in a wide range of physical models.

Active subspaces are closely related to
ridge approximation.
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Lithium ion battery model

(with A. Doostan)
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Vehicle design

(with C. Othmer, J. Alonso)
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Ridge approximation

f(x) ~ g(U"x)

where
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Ridge approximation

What is the
approximation error?

f (X)E g

Use the weighted root-mean-squared error:

oy = ([0 - g0
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Given weight function
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What is g?
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Ridge approximation

f(x) =|g(U" x)
What is g?

Use the conditional average: Conditional density

/
i) = [ N VAT

Complement
subspace and
coordinates

Subspace coordinates

,LL(UTX) is the best approximation (Pinkus, 2015).
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Ridge approximation

What is U?

Minimize the error:

minimize R(U) subject to U €|G(n,m)

U —
Grassmann manifold of
n-dimensional subspaces
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Define the active subspace

Consider a function and its gradient vector,

f=fx), xeR" Vf(x)eR™, p:R" =Ry
The average outer product of the gradient and its eigendecomposition,
C = /Vf(x) Vix)T px)dx = WAW?!

Partition the eigendecomposition,

A= [Al A ] : W = [Wl WQ] , W, e R™*"
2

active inactive

Rotate and separate the coordinates, variables variables

N
x = WWlx = W Wix+W,Wix = W@+ W@S
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The eigenpairs identify perturbations that
change the function more, on average.

LEMMA

N = /(W?Vf(x)fp(x)dx, i=1,...

LEMMA

/ Hvyf(XH@ p(X)dx =i + -+ A

/ Hvzf(X)H% p(x)dx = A1+ -+ A\,
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An approximation result

.. Poincaré
Conditional
constant

average \
<

Hf(x) ~ u(WTx) C (g1 + -+ Am)?
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The active subspace is nearly stationary.

Recall:

Assume (1) Lipschitz continuous function
(2) Gaussian density function

Lipschitz

Gradient on the. constant Dimensions
Grassmann manifold |

N\ l \
[VRW)[p < L (2m% + (m—n)F) Qngr -+ A)?

\ J
|
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IDEA Use active subspace as the starting
point for numerical ridge approximation.

Given an initial subspace U and samples {x;, f(x;)}
(1) Compute y; = ngi

(2) Fit a polynomial pn(y,¢) with the pairs {y;, f(x;)}
f, = argénin > (f(xi) —p(yi,0))°

(3) Minimize residual over subpsaces

(4) Set Uy = U, and repeat
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QUESTIONS?

How do active subspaces relate to [insert method]?

How do | compute active subspaces?

What if | don’t have gradients? Active Subspaces
SIAM (2015)

What kinds of models does this work on? m
AP0

Active Subspaces

Emerging Ideas for Dimension
Reduction in Parameter Studies

PAUL CONSTANTINE

Ben L. Fryrear Assistant Professor

Colorado School of Mines Paul G. Constantine
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Sufficient Dimension Reduction Projection Pursuit Regression,
in regression Neural Nets, Ridge functions

Assume: y = f(x) +¢€
Assume: P(y[x) = P(y| A" x) minjmize / (f(x) — g(A"x,0))% pdx

Given (y;,%;), find A

Fisher Information Theory Principal Components / Regression,
Karhunen-Loéve

/ V2 log £(x, 0) p(x) dx / xx” p(x) dx
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Discover the active subspace
with random sampling.

Draw samples: X; ~ p

Compute: fj — f(Xj) and ij = Vf(Xj)
Approximate with Monte Carlo

N
1 e T
C ~ N;:leijfj — WAW

Equivalent to SVD of samples of the gradient

\/LN[Vfl o Vfn] = WVAV'

Called an active subspace method in T. Russi’s 2010 Ph.D. thesis,
Uncertainty Quantification with Experimental Data in Complex System Models



How many gradient samples?

Bound on gradient
norm squared Dimension

N

L)\ A
N = Q 22 log(m) — ‘)\k — )\k‘ < eAg
k

/ (with high probability)

Relative accuracy

Using Gittens and Tropp (2011)



How many gradient samples?

Bound on gradient

norm squared . .
q \ Dimension (with high probability)

A

L2 A 4)\18
N =) | —  dist (W, W) <
(555 tog(m) ) St (W1 W) <

/ /

Relative accuracy Spectral gap

Gittens and Tropp (2011), Golub and Van Loan (1996), Stewart (1973)



Let’s be abundantly clear about the
problem we are trying to solve.

Low-rank approximation of the collection of gradients:

1 A A /\T
VA - ViN] ~ WAV
— |V fn] 1y AV,

Low-dimensional linear approximation of the gradient:
x Vi) = Wia(x)

Approximate a function of many variables by a function
of a few linear combinations of the variables:

f(x) =~ g (WlTX)




