Brain maps from machine learning? Spatial regularizations

Gaël Varoquaux (nría PARIETAL

Brain decoding

Predicting stimulus / cognitive state

[Haxby... 2001] Distributed and Overlapping Representations of Faces and Objects in Ventral Temporal Cortex

Supervised learning task

Brain decoding

G Varoduaux

Predicting stimulus / cognitive state [Haxby... 2001] Distributed and Overlapping Representations of Faces and Objects in Ventral Temporal Cortex

> Take home message: brain regions, not prediction

Face area 🛹

Predictive modeling

Place area

Find combinations of voxels to best predict

What is the neural support of a function?

What is function of a given brain module?

What is the neural support of a function?

What is function of a given brain module?

Brain mapping = task-evoked activity

■ What is the neural support of a function?

What is function of a given brain module?
Reverse inference

Brain mapping = task-evoked activity + crafting "contrasts" to isolate effects

What is the neural support of a function?

What is function of a given brain module?
Reverse inference

Is there a face area?

[Kanwisher... 1997, Gauthier... 2000, Hanson and Halchenko 2008]

■ What is the neural support of a function?

What is function of a given brain module?
Reverse inference

Find regions that predict observed cognition

[Poldrack... 2009]

- **2** Opening the black box of decoders
- **3** Spatial regularization

Face vs house visual recognition [Haxby... 2001]

SVM error: 26%

Face vs house visual recognition [Haxby... 2001]

Sparse model error: 19%

http://nilearn.github.io/auto_examples/decoding/ G Varoquaux plot_haxby_different_estimators.html

Face vs house visual recognition [Haxby... 2001]

Ridge error: 15%

http://nilearn.github.io/auto_examples/decoding/ G Varoquaux plot_haxby_different_estimators.html

Face vs house visual recognition [Haxby... 2001]

Best predictor outlines the worst regions
 Best maps predict worst

G Varoquaux

•••

1 Brain decoding with local models

Face vs cat visual recognition [Haxby... 2001]

SVM error: 24%

First 6 sessions

Last 6 sessions

1 Brain decoding with local models

Face vs cat visual recognition full brain

SVM error: 43%

- $\mathbf{y} = \mathbf{w} \, \mathbf{X} + \mathbf{e}$
- **X**: observed fMRI images: spatially smooth
- e: noise
- **w**: true coefficients (brain regions)

SVM

Prediction: 0.71 Recovery: 0.464

SVM Prediction: 0.71 Recovery: 0.464

Sparse models

Prediction: 0.77 Recovery: 0.461

SVM Prediction: 0.71 Recovery: 0.464

Sparse models Prediction: 0.77 Recovery: 0.461

F-score Prediction: Recovery: 0.963

Good prediction \neq good recovery

Not all informative features are need to predict

Not all informative features are need to predict

Weight on uninformative features may not harm prediction

2 Opening the black box of decoders

2 Brain decoding with linear models

2 Estimation: an ill-posed problem

Find brain maps **w** to minimize the prediction error

Ill-posed:

Many different **w** will give the same prediction error

How to choose one?

2 Estimation: an ill-posed problem

Find brain maps **w** to minimize the prediction error

Ill-posed:

Many different **w** will give the same prediction error How to choose one?

Somewhat arbitrary choice Not informed by the data

Different methods
 ⇒ different outputs

2 SVM: exemplar-based classifier

2 SVM: exemplar-based classifier

2 SVM: exemplar-based classifier

2 Risk minimization and penalization

Minimize the error term: $\hat{\mathbf{w}} = \operatorname{argmin} I(\mathbf{y} - \mathbf{X} \mathbf{w})$ Ill-posed:

Many different **w** will give the same prediction error

To choose one: inject prior with a penalty $\hat{\mathbf{w}} = \operatorname{argmin} I(\mathbf{y} - \mathbf{X} \mathbf{w}) + p(\mathbf{w})$

2 Sparse models: selecting predictive voxels?

2 Sparse models: selecting predictive voxels?

 Between correlated features, selects a random subset [Wainwright 2009, Varoquaux... 2012]
 [Rish... 2012]

Violates the restricted isometry property G Varoquaux

2 Tricks of the trade

Spatial smoothing

Face vs cat error rate: 43% Giving up on resolution

Feature selection

Giving up on multivariate

12mm

From prediction to mapping?

Inverse problem intractable in general

Need suitable simplifying hypothesis

- ■Spatial structure / contiguity (as Random Field Theory) ⇒ Smoothed SVM work better
- Only a fraction of the brain useful to predict ⇒ Feature-selection + Sparsity

Neighbooring voxel multi-colinear
 ⇒ Break multivariate estimators

Clustering to group similar voxels

Hierarchical clustering:

merge voxels with similar behavior

 \Rightarrow Good conditions for sparse models

[Varoquaux... 2012]

3 Brain parcellations + sparsity

Sparse model on brain parcellation

Mapping is much easier on a parcellation [Filippone... 2012]

Parcellation / clustering is not always perfect 😕

3 Randomized parcellations + sparsity

[Varoquaux... 2012]

3 Randomized parcellations + sparsity

Cluster sub-sampled data Average the results **Recovering predictive regions** Good theoretical argument Extensive simulations

[Varoquaux... 2012]

3 fMRI: face vs house discrimination [Haxby... 2001]

Sparse model

[Varoquaux... 2012]

3 fMRI: face vs house discrimination [Haxby... 2001]

Randomized Clustered ℓ_1 Logistic

[Varoquaux... 2012]

3 better prediction scores [Hoyos-Idrobo... 2015]

	dataset	sparse	sparse + clustered
	bottle/scramble	0.591	0.626
ds105 (haxb	cat/chair	0.558	0.612
	cat/house	0.698	0.963
	chair/house	0.668	0.734
	chair/scramble	0.700	0.743
	face/house	0.766	0.742
	tools/scramble	0.666	0.743
ds107	consonant/scramble	0.886	0.897
	objects/consonant	0.855	0.901
	objects/scramble	0.863	0.898
	objects/words	0.689	0.708
	words/scramble	0.782	0.841
	negative cue / neutral cue	0.444	0.497
ds108	negative rating / neutral rating	0.520	0.537
	negative stim / neutral stim	0.734	0.743
ds 109	false picture / false belief	0.664	0.675
oasis (vbm)	gender discrimination	0.617	0.655

3 better prediction scores [Hoyos-Idrobo... 2015]

dataset		sparse	sparse + clustered		
bottle/scramble		0.591	0.626		
cat/chair		0.558	0.612		
	cat/house	0.698	0.963		
ds105 (haxby	chair/house	0.668	0.734		
	chair/scramble	0.700	0.743		
	face/house	0.766	0.742		
Sparse-clustered: faster, better 43					
Faster: 10x speed up, due to smaller models 01					
More stable: bagging effect					
Averaging many estimates 41					
1-100	negative cue / neutral cue	0.111	0.527		
ds108 r	negative rating / neutral rating	0.520	0.537		
	negative stim / neutral stim	0.734	0.743		
ds 109	false picture / false belief	0.664	0.675		
oasis (vbm)	gender discrimination	0.617	0.655		

Total variation: a penalty for regions

■Sparsity is useful

■Want to recover brain regions

Face area

Total-variation penalization

Impose sparsity on the gradient of the image:

$${m
ho}({f w})=\ell_1(
abla{f w})$$

In fMRI: [Michel... 2011]

Related to GraphNet [Grosenick... 2013] G Varoquaux **3** Penalty engineering: total variation

Decoding prediction performance:

SVM0.77Sparse regression0.78Total Variation0.84

(explained variance)

[Michel... 2011]

Standard analysis

3 Penalty engineering: $TV-\ell_1$

Sparsity + regions [Baldassarre... 2012, Gramfort... 2013] $\hat{\mathbf{w}} = \underset{\mathbf{w}}{\operatorname{argmin}} I(\mathbf{y} - \mathbf{X} \mathbf{w}) + \lambda (\rho \ell_1(\mathbf{w}) + (1 - \rho) T V(\mathbf{w}))$

I: data-fit term

Poster 3980, Thursday

3 Penalty engineering: $TV-\ell_1$

Sparsity + regions [Baldassarre... 2012, Gramfort... 2013] $\hat{\mathbf{w}} = \underset{\mathbf{w}}{\operatorname{argmin}} I(\mathbf{y} - \mathbf{X} \mathbf{w}) + \lambda (\rho \ell_1(\mathbf{w}) + (1 - \rho) T V(\mathbf{w}))$

I: data-fit term Poster 3980, Thursday

Experiment results

Simulations

[Gramfort... 2013]

3 Prediction on simulations

[Gramfort... 2013]

Prediction is easy, region recovery is hard

Wrapping up

Wrapping up

Software

■ Very versatile but simple code ■ Fast, memory efficient

■ Many examples + docs

http://nilearn.github.io

Standard decoders do not retrieve good maps Infinite number of maps predict as well

Standard decoders do not retrieve good maps Spatial models to select predictive regions $TV-\ell_1 = Sparsity + regions$ Randomized clustering + sparsity

Standard decoders do not retrieve good maps

Spatial models to select predictive regions

■ Decoding + mega-analysis ⇒ reverse-inference atlas Multi-label prediction Predicting on new studies

Standard decoders do not retrieve good maps

- Spatial models to select predictive regions
- Decoding + mega-analysis ⇒ reverse-inference atlas
 Software: nilearn

In Python http://nilearn.github.io

[Varoquaux and Thirion 2014] How machine learning is shaping cognitive neuroimaging

- L. Baldassarre, J. Mourao-Miranda, and M. Pontil. Structured sparsity models for brain decoding from fMRI data. In *PRNI*, page 5, 2012.
- M. Filippone, A. F. Marquand, C. R. Blain, S. C. Williams, J. Mourão-Miranda, and M. Girolami. Probabilistic prediction of neurological disorders with a statistical assessment of neuroimaging data modalities. *The annals of applied statistics*, 6 (4):1883, 2012.
- I. Gauthier, M. J. Tarr, J. Moylan, P. Skudlarski, J. C. Gore, and A. W. Anderson. The fusiform "face area" is part of a network that processes faces at the individual level. *J cognitive neuroscience*, 12:495, 2000.
- A. Gramfort, B. Thirion, and G. Varoquaux. Identifying predictive regions from fMRI with TV-L1 prior. In *PRNI*, page 17, 2013.

References II

- L. Grosenick, B. Klingenberg, K. Katovich, B. Knutson, and J. E. Taylor. Interpretable whole-brain prediction analysis with graphnet. *NeuroImage*, 72:304, 2013.
- S. J. Hanson and Y. O. Halchenko. Brain reading using full brain support vector machines for object recognition: there is no "face" identification area. *Neural Computation*, 20:486, 2008.
- J. V. Haxby, I. M. Gobbini, M. L. Furey, ... Distributed and overlapping representations of faces and objects in ventral temporal cortex. *Science*, 293:2425, 2001.
- R. Henson. Forward inference using functional neuroimaging: Dissociations versus associations. *Trends in cognitive sciences*, 10:64, 2006.
- A. Hoyos-Idrobo, Y. Schwartz, B. Thirion, and G. Varoquaux. Improving sparse recovery on structured images with bagged clustering. In *PRNI*. 2015.

References III

N. Kanwisher, J. McDermott, and M. M. Chun. The fusiform face area: a module in human extrastriate cortex specialized for face perception. *J Neuroscience*, 17:4302, 1997.

- V. Michel, A. Gramfort, G. Varoquaux, E. Eger, and B. Thirion. Total variation regularization for fMRI-based prediction of behavior. *Medical Imaging, IEEE Transactions on*, 30:1328, 2011.
- R. Poldrack. Can cognitive processes be inferred from neuroimaging data? *Trends in cognitive sciences*, 10:59, 2006.
- R. A. Poldrack, Y. O. Halchenko, and S. J. Hanson. Decoding the large-scale structure of brain function by classifying mental states across individuals. *Psychological Science*, 20:1364, 2009.

References IV

- Rish, G. A. Cecchi, K. Heuton, M. N. Baliki, and A. V. Apkarian. Sparse regression analysis of task-relevant information distribution in the brain. In *SPIE Medical Imaging*, pages 831412–831412. International Society for Optics and Photonics, 2012.
- G. Varoquaux and B. Thirion. How machine learning is shaping cognitive neuroimaging. *GigaScience*, 3:28, 2014.
- G. Varoquaux, A. Gramfort, and B. Thirion. Small-sample brain mapping: sparse recovery on spatially correlated designs with randomization and clustering. In *ICML*, page 1375, 2012.
- M. Wainwright. Sharp thresholds for high-dimensional and noisy sparsity recovery using ℓ_1 -constrained quadratic programming. *Trans Inf Theory*, 55:2183, 2009.

Decoding object recognition

8 objects multi-class prediction Categories: face, chair, srambledpix, scissors, house, bottle, shoe, cat **Difficult!**

> Lasso 69.4% **TV**- ℓ_1 75.3%

Distinguishing scissors in the dorsal stream, faces and cats in frontal areas

[Eickenberg Submitted]