Today’s Webinar:
Rare Epilepsies

Presented by:
Jacqueline French, MD
Dale Hesdorffer, PhD
Janice Buelow, RN, PhD, FAAN
Thank you to the Partners Against Mortality in Epilepsy for making this webinar series possible.
Thank You to the PAME Steering Committee Members

- Co-Chair: Jeff Buchhalter, MD, PHD, FAAN,
- Co-Chair: Gardiner Lapham, CURE
- Cyndi Wright, Epilepsy Foundation SUDEP Institute
- Orrin Devinsky, MD
- Jeanne Donalty,
- Elizabeth Donner, MD, FRCPC
- Alicia Goldman, MD, PhD
- Jane Hanna
- Cynthia Harden, MD
- Dale Hesdorffer, PhD
- Lawrence J. Hirsch, MD
- Tamzin Jeffs, MSc
- Vicki Kopplin
- Barbara L. Kroner, PhD, MPH, RN, APRN
- Kim Macher
- Lina Nashef, MBChB, MD, BC, CNRN
- Rosemary Panel
- George Richerson, MD, PhD
- Christina SanInnocencio

- Paul Scribner
- Tess Sierzant, MS
- Elson So, MD
- Mark Stevenson, FACHE, CHIE
- Torbjörn Tomson, MD, PhD
- Vicky Whittemore, PhD
- Tom Stanton
- David Thurman, MD, MPH
- Michelle Welborn, PharmD

AES Staff:
- Jeffrey Melin, MEd., CMP
- Paul Levisohn, MD
- Elizabeth Kunsey, CMP
- Sandy Pizzoferrato
- Kathy Hucks
Register Now at:
www.aesnet.org
Today’s Speakers

Jacqueline French, MD
Professor of Neurology
Co-Director of Epilepsy Research and Epilepsy Clinical Trials
NYU Comprehensive Epilepsy Center

Dale Hesdorffer, PhD, MPH
Professor
GH Sergievsky Center and Department of Epidemiology
Columbia University

Janice Buelow, RN, PhD, FAAN
Vice President of Programs and Research
Epilepsy Foundation
What are the Rare epilepsies?
Orphan diseases

• Diseases or disorders that affect < 200,000 people in the US (based on the orphan disease act of 2002), or 1/1,500 people
• These diseases have been highlighted in legislature because of the concern that treatments will not be developed for them
• Rare epilepsies are the “Orphan Diseases” of epilepsy
Incidence of Epilepsy Overall

- By a conservative estimate, 50 million people worldwide have epilepsy\(^1\)
- The annual incidence ranges from 20-70 cases per 100,000
- Overall, 5% of persons report a seizure at some time in their lives (excluding febrile seizures)
- Incidence rates are highest in childhood, plateau from 15-65 years of age, and rise again among the elderly
- About 30% of patients with seizures have an identifiable neurologic or systemic disorder, and the remainder have either a genetic cause or an unknown cause

Epilepsy classification

- Epilepsy can be classified in a number of ways - Some of these include:
 - What caused the epilepsy
 - For example, stroke, genetic defect, hypothalamic hamartoma
 - What kind of seizures happen
 - For example simple focal seizures, infantile spasms
 - What are the characteristics of the epilepsy
 - Age of onset, likelihood of remission, EEG pattern - These add up to an epilepsy “syndrome”
 - For example Dravet syndrome, Lennox-Gastaut syndrome, photosensitive epilepsy
Epilepsy Classification

- Any of the ways we classify (cause, seizure type, seizure syndrome) can be the basis of a rare (orphan) epilepsy
- These characteristics are not mutually exclusive
- For example, a child may have a **genetic disorder such as Tuberous sclerosis (Cause)** that leads to **Lennox-Gastaut (syndrome)**
- Since both of these are rare, such a person would have 2 orphan epilepsies
Why do we classify Epilepsy?

• Sometimes if types of epilepsy can be characterized into clusters, groups or syndromes, it may inform us about:
 – What the long-term outcome (prognosis) might be?
 • Including whether the epilepsy is likely to respond to drugs
 – What the cause is (for example a genetic mutation)
 – What is the best treatment
 • Drugs? Specific drugs? Surgery?
 – What treatments should be avoided
Common vs rare epilepsies

- 70% of epilepsy is “focal” (used to be caused partial) which means that epilepsy begins in one or two spots. This is the epilepsy type that is the target of most new drugs and treatments.
Common Epilepsy Syndromes With >1M Patients Worldwide:

- Febrile Seizures in Children
- Focal Epilepsy in Adults and Children
- Idiopathic (Genetic) Generalized Epilepsy with Tonic-Clonic Seizures in Adults in Children
- Juvenile Myoclonic Epilepsy
The discovery and development of a new medicine

Discovery Research

Potential Drug

Drug Development

Commer- cialisation

6-15 years

Investment to bring 1 new drug to the market: $4-11Billion

Industry with highest project attrition and longest development cycles
Regulatory Issues: Orphan Drug

• If companies develop drugs for orphan diseases they get special FDA benefits intended to motivate them to develop treatments

• Small population may make return on investment difficult, even with these benefits

• Drugs, once approved, may be priced very high
 – Acthar Gel (ACTH) went from $1,650 to $23,000 Per Vial
Examples: Very Rare Epilepsy Syndromes With <100K Patients Worldwide:

- Severe Myoclonic Epilepsy of Infancy (Dravet Syndrome) 1:40,000 births
- Landau-Kleffner Syndrome
- Rasmussen’s Syndrome-1:40,000
- Lafora body myoclonic epilepsy -1:1,000,000
- Myoclonic Astatic Epilepsy (Doose) 1:10,000
Rare Epilepsy Network

- 10 orphan diseases that have collaborated through a grant from the Patient Centered Outcomes Research Institute (PCORI)
- An attempt to find out more information to help us diagnose, classify and treat the rare Orphan) epilepsies.
What are the Risks?

Dale C Hesdorffer, PhD
GH Sergievsky Center
Columbia University
Outcomes of the rare epilepsies

- Cognitive
- Behavioral
- Seizure persistence
- Mortality
Cognitive outcomes
Intellectual disability in Lennox-Gastaut Syndrome

<table>
<thead>
<tr>
<th>Study</th>
<th>Kurokawa</th>
<th>Ohtsuka</th>
<th>Yagi</th>
<th>Oguni</th>
<th>Goldsmith</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>123</td>
<td>89</td>
<td>102</td>
<td>72</td>
<td>74</td>
</tr>
<tr>
<td>Follow-up in years</td>
<td>>5</td>
<td>>5</td>
<td>>10</td>
<td>>1</td>
<td>>3</td>
</tr>
<tr>
<td>% Intellectual disability</td>
<td>93%</td>
<td>91%</td>
<td>~75%</td>
<td>99%</td>
<td>92%</td>
</tr>
</tbody>
</table>

Change in intellectual disability from onset to the final visit more than 10 years later:
Onset: 69% Final visit: 99%

Development and developmental quotient in Aicardi syndrome

<table>
<thead>
<tr>
<th>Study</th>
<th>N patients</th>
<th>Walk</th>
<th>Talk</th>
<th>DQ>12 mos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chevrie & Aicardi, 1986</td>
<td>184</td>
<td>Some unable</td>
<td>none</td>
<td>--</td>
</tr>
<tr>
<td>Donnenfeld, 1989</td>
<td>18</td>
<td>11%</td>
<td>One used words</td>
<td>17%</td>
</tr>
<tr>
<td>Neidich, 1990</td>
<td>7</td>
<td>14%</td>
<td>One used words</td>
<td>14%</td>
</tr>
<tr>
<td>Menezes, 1996</td>
<td>14</td>
<td>14%</td>
<td>2 spoke in sentences</td>
<td>21%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2 used words</td>
<td></td>
</tr>
<tr>
<td>Rosser, 2002</td>
<td>77</td>
<td>21%</td>
<td>3 spoke in sentences</td>
<td>9%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Severe intellectual disability in girls with CDKL5

All were older than the maximum developmental level at the time of reporting

Severe intellectual disability in presurgical patients with Hypothalamic Hamartoma and refractory epilepsy

<table>
<thead>
<tr>
<th>Number of patients</th>
<th>49</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age range</td>
<td>5-55 years</td>
</tr>
<tr>
<td>Precocious puberty</td>
<td>26.5%</td>
</tr>
<tr>
<td>Severe intellectual disability (untestable)</td>
<td>14.3%</td>
</tr>
</tbody>
</table>

No difference in IQ by age for all IQ components in testable patients
IQ was correlated with number of AEDs at evaluation
IQ was not associated with:
 Age at seizure onset
 Epilepsy duration
 Size of Hypothalamic Hamartoma
 Side of attachment of Hypothalamic Hamartoma
 Anatomical classification of Hypothalamic Hamartoma based on MRI

Prigatano GP et al Epilepsy Behav 2008;13:149-155
Behavioral disorders
Autism spectrum disorder in Dravet syndrome

Autism was associated with:
- Number of AEDs

Autism was not associated with:
- Gender
- FS history
- Age at seizure onset
- Age at Dravet diagnosis
- Seizure type
- Neurological signs
- EEG abnormality
- MRI abnormality

Among 83 patients, ~50% had behavior problems that required mention in the medical record. These included:
- Hyperactivity
- Aggression
- Autism
- Destructive behaviors
- Antisocial behaviors
- Hypersexual behaviors
Behavior in 12 children with hypothalamic hamartoma
Compared to unaffected siblings

Gelastic seizure patients were more likely to have affective aggression, $p=0.028$

Weissenberger AA et al.
Behavioral findings in 98 unrelated patients with Tuberous Sclerosis

• Compared to a TSC1 mutation, a TSC2 mutation was associated with a higher risk for:
 – IQ less than 70 (p=0.0004)
 • Adjustment for infantile spasms did not change this relationship
 – Autism (p=0.03)

• 36 adults were able to complete depression and anxiety scales
 – 56% screened positive for anxiety
 – 19% screened positive for depression

• There was no association between positive screens for anxiety or depression and TSC1 or TSC2 mutations

Seizure persistence
Seizure persistence in Lennox-Gastaut Syndrome

<table>
<thead>
<tr>
<th>Study</th>
<th>Kurokawa</th>
<th>Ohtsuka</th>
<th>Yagi</th>
<th>Oguni</th>
<th>Goldsmith</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>123</td>
<td>89</td>
<td>102</td>
<td>72</td>
<td>74</td>
</tr>
<tr>
<td>Follow-up in years</td>
<td>>5</td>
<td>>5</td>
<td>>10</td>
<td>>1</td>
<td>>3</td>
</tr>
<tr>
<td>% Seizure persistence</td>
<td>66%</td>
<td>76%</td>
<td>92%</td>
<td>92%</td>
<td>95%</td>
</tr>
</tbody>
</table>

Seizure frequency in Aicardi syndrome

<table>
<thead>
<tr>
<th>Study</th>
<th>N patients</th>
<th>Seizure frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chevrie & Aicardi</td>
<td>184</td>
<td>--</td>
</tr>
<tr>
<td>Donnenfeld</td>
<td>18</td>
<td>67% daily seizures</td>
</tr>
<tr>
<td>Neidich</td>
<td>7</td>
<td>57% ‘intractable’ seizures</td>
</tr>
<tr>
<td>Menezes</td>
<td>14</td>
<td>78% daily seizures</td>
</tr>
<tr>
<td>Rosser</td>
<td>77</td>
<td>67% daily seizures</td>
</tr>
</tbody>
</table>

Seizure types and frequency in Aicardi syndrome

Percentage with each seizure type

Glasmacher MAK. J Child Neurol 2007;22:176-184
Seizures in patients with Dup15q syndrome

• 95 responded
 – 83 had variation in a marker idic(15) chromosome
 • Seizures in 52 (63%)
 – 42% had a history of infantile spasms
 – 33% had SE of which 80% had >10 SE episodes
 – 12 had int dup(15)
 • Seizures in 3 (25%)

Conant KD et al. Epilepsia 2014;55:396-402
Patient characteristics and surgical outcome in Hypothalamic Hamartoma

- Complete resection of HH in patients with:
 - Moderate to severe delay
 - Progressive cognitive decline
 - Behavioral abnormalities (e.g., autism, tantrums)

- Outcome:
 - 2/13 seizure free after 2.5 and 4.5 years
 - 6/13 no major seizures or >90% reduction in seizures
 - 5/13 less than 50% reduction in major and minor seizures

Palmini A et al. Neurology 2002;58:1338-1347
Gamma knife surgery for epilepsy in Hypothalamic Hamartoma

• 10 patients were treated

• All exhibited improvement after surgery
 - 4/10 seizure free
 - 1/10 rare nocturnal seizures
 - 1/10 rare focal seizures and no GTCS
 - 2/10 reduced seizure frequency and rare GTCS
 - 2/10 now seizure free after a repeat procedure
AED treatment to reduce the onset of epilepsy and cognitive problems in Tuberous Sclerosis

Standard: Vigabatrin treatment within a week of the first seizure (N=31)
Preventive: Vigabatrin treatment after epileptiform discharges only (N=14)

<table>
<thead>
<tr>
<th></th>
<th>Standard</th>
<th>Preventive</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal EEG at 24 months</td>
<td>35.5%</td>
<td>85.7%</td>
<td>0.005</td>
</tr>
<tr>
<td>EEG normalized</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Whole group</td>
<td>6.5%</td>
<td>57.1%</td>
<td>0.0007</td>
</tr>
<tr>
<td>Patients on AEDs</td>
<td>9.1%</td>
<td>80%</td>
<td>0.0001</td>
</tr>
<tr>
<td>Seizure free at age 2 years</td>
<td>35.5%</td>
<td>92.9%</td>
<td>0.004</td>
</tr>
<tr>
<td>Mean IQ at 2 years</td>
<td>68.7</td>
<td>92.3</td>
<td><0.05</td>
</tr>
<tr>
<td>Moderate, severe or profound</td>
<td>32.3%</td>
<td>0%</td>
<td>0.036</td>
</tr>
<tr>
<td>intellectual disability at 2 years</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mortality
Causes of death in Dravet syndrome

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Population (N, range)</td>
<td>24 Adults 63, 3-27 yrs</td>
<td>63, 3-27 yrs</td>
<td>37, <43 yrs</td>
<td>84 Pediatric</td>
<td>438, <24 yrs</td>
</tr>
<tr>
<td>Deceased N (%)</td>
<td>5 (20.8%)</td>
<td>11 (16%)</td>
<td>7 (16.2%)</td>
<td>12 (14.3%)</td>
<td>59 (10.1%)</td>
</tr>
<tr>
<td>Age at death</td>
<td>24.8 yrs</td>
<td>11 yrs</td>
<td>5-12 yrs</td>
<td>6 yrs</td>
<td>NA</td>
</tr>
<tr>
<td>Percent of deaths by cause</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SE</td>
<td>1 (4.2%)</td>
<td>3 (4.8%)</td>
<td>4 (10.8%)</td>
<td>6 (7.1%)</td>
<td>21 (4.8%)</td>
</tr>
<tr>
<td>SUDEP</td>
<td>3 (12.5%)</td>
<td>2 (3.2%)</td>
<td>1 (2.7%)</td>
<td>0</td>
<td>31 (7.1%)</td>
</tr>
<tr>
<td>Pneumonia</td>
<td>0</td>
<td>1 (1.6%)</td>
<td>2 (5.4%)</td>
<td>1 (1.2%)</td>
<td>0</td>
</tr>
<tr>
<td>Drowning</td>
<td>0</td>
<td>3 (4.8%)</td>
<td>0</td>
<td>1 (1.2%)</td>
<td>6 (1.4%)</td>
</tr>
<tr>
<td>Other</td>
<td>0</td>
<td>1 (1.6%)</td>
<td>0</td>
<td>0</td>
<td>1 (0.2%)</td>
</tr>
<tr>
<td>Unknown</td>
<td>1 (4.2%)</td>
<td>1 (1.6%)</td>
<td>0</td>
<td>4 (4.8%)</td>
<td>0</td>
</tr>
</tbody>
</table>

Distribution of causes of death by age in 59 Dravet syndrome deaths

<table>
<thead>
<tr>
<th>Age at death (Y)</th>
<th>Number of Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
</tr>
<tr>
<td>>18</td>
<td>1</td>
</tr>
</tbody>
</table>

Mortality in 182 children with Aicardi syndrome

Median age at death: 18.5 years
Conclusion -1

- Many of the rare epilepsies are associated with intellectual disability
- Behavioral problems are common in Dravet, hypothalamic hamartoma, LGS, and TS
- Seizure remission is very rare and some syndromes have many different co-occurring seizure types
- Mortality is high for Dravet syndrome and Aicardi syndrome
Conclusion-2

- Seizure frequency is reduced by:
 - Epilepsy surgery in hypothalamic hamartoma
 - Vigabatrin in Tuberous Sclerosis with epileptiform discharges only
Conclusion-3

- There is a paucity of research in many of the rare epilepsies
- The Rare Epilepsy Network hopes to change this with your help

- REN link
 https://ren.rti.org/
The REN is a collaboration between the Epilepsy Foundation, Columbia University, New York University, Research Triangle Institute and 10 rare epilepsy organizations:

Aaron’s Ohtahara
Aicardi Syndrome Foundation
Dravet Syndrome Foundation
Dup15q Alliance
Hope for Hypothalamic Hamartomas
International Fondation for CDKL5 Research
Lennox-Gastaut Syndrome Foundation
PCDH19 Alliance
Phelan-McDermid Syndrome Foundation
Tuberous Sclerosis Alliance
• The Rare Epilepsy Network (REN) PPRN is an initiative created by and for patients with catastrophic rare epilepsies.

• Goal -- build a patient-centered and driven data base

• Designed to provide the patients and their families an opportunity to participate in research

• Improve lives and quality of care for people with rare epilepsies.
Sustainability

• Further funding by PCORI
• We are building a sustainability plan
 • At the EF – Rare Epilepsy Institute that includes
 • Education
 • Social networking
 • Research
 • Partnerships with all organizations
• The PCORnet award has allowed 10 rare epilepsy organizations to collaborate with the Epilepsy Foundation, Columbia University and The Research Triangle

• Institute to build a common network for the conduct of research and for participation in non-REN initiated research

• The whole is greater than the sum of its parts – this is an incredible opportunity for all involved.
• How does this project impact patient outcomes.
 - The rare epilepsy diagnosis is often not studied
 • Difficult to find a sample

 • Not enough people to make an impact through research

 • Fewer people with a problem often are not able to generate interest.
REN can help

- We will have a registry of patients in one place allowing researchers easier access to patients for studies

- Because we are generating a data base there will be more accessible patients thus generating more research interest

- A larger sample creates a bigger research impact
REN can also

-Answer certain question that we have not been able to answer in the past.

• What are differences and similarities between rare epilepsies.
• What are specific computable phenotypes of each rare epilepsy
• What research questions can we ask that can study across rare epilepsies and also can we ask that study within each rare epilepsy
REN can also

• Create a database and registry for clinical trials

• Create a database for researchers to ask new questions
REN is part of a much bigger project

-We will not only be able to answer specific questions about rare epilepsies but also:

 • Be a part of studies that query other rare conditions such as Duchene’s Muscular Dystrophy

 • Partner with Clinical data research networks to answer large cohort question that can have an impact on the rare epilepsies. For example, if someone is doing an intervention for care givers – the utility of that interventions could also be tested in our group
The award enabled all participants in PCORnet to discuss a larger world of collaborative research. We are part of those discussions and are still considering how our rare epilepsy network will interact with the larger community of both common disease and CDRNs with huge populations.
Because of the PCORnet award, we think differently about how research may be conducted in the future. The PCORnet plans have implications for the REN but also for the entire epilepsy community.
Importantly for the REN, we can participate with larger groups to answer questions that may affect some of our participants. All is not about epilepsy in the REN as studies that focus on the systemic comorbidities may also offer our network important opportunities for research in areas that impact the quality of life for people with devastating epilepsy.
• Conclusion

- This is a critically important project that will provide data to do research in a timeframe that matters to patients and families.

- The PCORnet is visionary in that it begins to build a framework to let systems talk to one another.
- Improves the potential for greater research opportunities.

- Learning more about these disorders will help to better understand the role they play in SUDEP.
Q&A