Clinical Relevance of GWAS and Pedigree-based studies

John Fingert MD PHD

Department of Ophthalmology and Visual Sciences Carver College of Medicine, University of Iowa

No conflicts to disclose

POTENTIAL BENEFITS OF GENETIC STUDIES

Diagnostic utility

- Early detection
- Confirm clinical evidence of disease

Prognostic utility

- Predict disease course
- Predict response to therapy

Family counseling

- Risk for offspring

Gene-directed therapies

- Medications that target a gene defect
- Gene therapy (viral delivery of normal genes)
- Genome editing (in vivo gene repair)

Regenerative therapies

Stem cell therapy (replacement of tissue)

TWO LARGE CLASSES OF GLAUCOMA GENES

Some cases are "caused" primarily by a SINGLE gene

- Three are known: MYOC, OPTN, TBK1
- 5% of POAG is cause by one of these 3 genes
- Mutations are essentially seen only in patients
- Familial glaucoma (autosomal dominant inheritance)

If glaucoma genes were coins and it took a dollar to get glaucoma...

MYOC, OPTN, and TBK1 would each be dollar coins

TWO LARGE CLASSES OF GLAUCOMA GENES

Other cases of glaucoma are the result of the combined action of MANY genetic and environmental risk factors

- Risk factors are commonly detected in POAG patients (often in 25% or more)
- Risk factors are observed in normal subjects too (less often than in patients)
- > 35 Risk factor genes have been discovered
- Act in concert NO SINGLE RISK FACTOR CAN CAUSE DISEASE ON ITS OWN

If glaucoma risk factors were coins and it took a dollar to get glaucoma...

Each risk factor would be a penny

Many are required for glaucoma

RISK FACTOR GENES

Together they cause glaucoma, but each contribution small risk

ABCA1	CDKN2B-AS1	GAS7	MYOF	40 —		
AFAP1	CHR 8q22 locus	GMDS	PDE7B	35 ———		
ANKRD55-M	AP3K1 CRYGS	HMGA2	PMM2	30 ———		
ANKH	DGKG	IKZF2	SIX6	25 ———		
ARHGEF12	ELOVL5	LHPP	SRBD1	15 —		
ATOH7	EXOC2	LMO7	TFGBR3	10 ———		
ATXN2	FDNC3B	LMX1B	TLR4	5 ———		
CADM2	FMNL2	LOXL1	TMCO1	0		
CAV1/CAV2	FOXC1	MEIS2	TMTC2	1997	2008	2018
<u>L</u>			TXNRD2			
Mili						iovica 🔽 🖊

GLAUCOMA RISK FACTOR Example 1 (*TMCO1*)

ABCA1	CDKN2B-AS1	GAS7
AFAP1	CHR 8q22 locus	GMDS
ANKRD55-MAP3K1	CRYGS	HMGA2
ANKH	DGKG	IKZF2
ARHGEF12	ELOVL5	LHPP
АТОН7	EXOC2	LMO7
ATXN2	FDNC3B	LMX1B
CADM2	FMNL2	LOXL1
CAV1/CAV2	FOXC1	MEIS2

MYOF
PDE7B
PMM2
SIX6
SRBD1
TFGBR3
TLR4
тмсо1
TMTC2
TXNRD2

TMCO1 and POAG risk

TMCO1 GENE

- Identified as a glaucoma risk factor in 2011
- GWAS hit with odds ratio of 1.51
 - Burdon KP, Macgregor S, et al. Nat Genet, 2011; 43: 574-578.
- Encodes a transmembrane protein
- Retina / RGC / optic nerve expression
 - Burdon KP, Macgregor S, et al. Nat Genet, 2011; 43: 574-578.
 - Van Koolwijk LME, Ramdas WD, et al., PloS Genet, 2012; 8: e1002611.
 - Sharma S, Burdon KP, et al., IOVS, 2012; 53: 4917-4925.

TMCO1 in the OHTS Confers significant risk for POAG

OCULAR HYPERTENSION TREATMENT STUDY

- Prospective, multicenter, controlled, treatment trial
- 1637 participants with ocular hypertension
 - Treatment arm 20% reduction in IOP
 - Observation arm Placebo
- Visual fields every 6 months / annual disc photos
- Comparison of incident glaucoma between groups

TMCO1 in the OHTS Confers significant risk for POAG

OCULAR HYPERTENSION TREATMENT STUDY

Genetics Ancillary Study

- DNA from 1055 of 1636 participants
- Genetic study of POAG risk factors in OHTS

TMC01 risk alleles vs incident POAG

- 14 year follow up (OHTS-I and OHTS-II)
- TMCO1 risk alleles are powerful

KAPLAN MEIER ANALYSIS:

10% HIGHER PROBABILITY FOR POAG

AT 14 YEARS

TMCO1 in the OHTS Confers significant risk for POAG

OCULAR HYPERTENSION TREATMENT STUDY

Genetics Ancillary Study

- DNA from 1055 of 1636 participants
- Genetic study of POAG risk factors

TMC01 risk alleles vs incident POAG

- 14 year follow up (OHTS-I and OHTS-II)
- TMCO1 risk alleles are powerful

COX PROPORTIONAL HAZARDS:

RISK ON PAR WITH POTENT CLINICAL FACTORS

Cox proportional hazards ratio analysis

752 non-Hispanic whites	Hazards ratio	95% confidence interval	p value
Age (decade)	1.39	1.14 – 1.71	0.0012
Gender (male)	1.55	1.07 - 2.24	0.021
IOP (per mm Hg)	1.08	1.01 – 1.15	0.029
CCT (per 40 micron)	1.58	1.29 – 1.94	0.000014
VCDR (ratio per 0.1)	1.28	1.15 – 1.42	0.0000029
TMCO1 (per allele)	1.66	1.24 – 2.22	0.00061

Calculating Glaucoma Risk

- One risk factor (TMCO1) has a strong influence on glaucoma
- More precise, personalized risk assessments will be possible
 - Combined analyses of more genetic factors
 - Combined analyses with clinical factors
- Now a work in progress

Mendelian (single gene) POAG

- Myocilin (*MYOC*) 1997
 - 16 to 63% JOAG cases
 - 3-4% of POAG cases
 - 1% of NTG cases
- Optineurin (*OPTN*) 2002
 - 1% of NTG cases
- TANK binding Kinase 1 (TBK1) 2011
 - 1% of NTG cases

Stone EM, Fingert JH, Alward WLM et al. *Science*. 1997; 275(5300):668–70.

Rezaie T, Child A, Hitchings R et al. *Science*. 2002; 295(5557):1077–9.

Fingert JH, Robin AL, Ben R Roos et al. *Hum Mol Genet*. 2011; 20(12):2482–94.

Mendelian (single gene) POAG

discovered with pedigree studies

- Myocilin (*MYOC*) 1997
 - 16 to 63% JOAG cases
 - 3-4% of POAG cases
 - 1% of NTG cases
- Optineurin (OPTM) 2001
 - 1% of NTG cases
- TANK binding Kinase 1 (TBK1) 2011
 - 1% of NTG cases

Key features

- One gene <u>causes</u> glaucoma
- High penetrance
 - Most carriers develop POAG
- Virtually absent from controls
- Autosomal dominant

GLAUCOMA-CAUSING GENE Example 1

20 years old male – routine exam

HIGH IOP: 36 mm Hg OD / 38 mm Hg OS

LARGE CUPS (OS > OD)

(OS > OD)VF LOSS

Diagnosis of JOAG

Positive family history

Genetic Testing

Positive (GLY367ARG MYOC mutation)

MYOC GLN367ARG and JOAG

Previously detected in JOAG

- Europe, USA, Australia, India, and Japan

Clinical features

- Mean age at diagnosis: 18-37 years
- Mean maximum IOP: 35-51 mm Hg
- Surgery usually required for IOP control

- Mansergh FC, Kenna PF, Ayuso C, et al. Human Mut; 1998, 11: 244-251.
- Michels-Rautenstrauss KG, Mardin CY, Budde WM, et al. Human Genet; 1998, 102:103-106.
- Taniguchi F, Suzuki Y, Shirato S, et al. Jpn J Ophthalmol; 2000, 44: 445-448.
- Faucher M, Anctil JL, Rodrigue MA, et al. Hum Mol Genet; 2002, 11: 2077-2090.
- Kanagavalli J, Krishnadas SR, Pandaranayaka E, et al. **Mol Vis**; 2003, 9: 606-614.
- Iliev ME, Bodmer S, Gallati S, et al. **Eye**; 2008, 22: 880-888.
- Souzeau E, Burdon KP, Dubowsky A, et al. **Ophthalmology**; 2013, 120: 1135-1143.

MYOC TESTING OFTEN USEFUL FOR JOAG PATIENTS

- High rate of positive tests (8-63% cases)
- Key features
 - Early onset
 - High IOP
 - Strong family history
- Positive test may help direct management
 - Careful surveillance, more rapid move to surgery
 - Testing may be offered to relatives at risk

High rate of positive MYOC tests (up to 63%) in a rare form of OAG (<1% of OAG)

MYOC testing in POAG with more typical adult-onset disease

- Mutations are less common in adult-onset glaucoma
 - 3 to 4% positive test rate
 - 1 to 2% of POAG cases due to a single MYOC mutation Gln368Ter
- High risk patients may benefit from testing
 - Relatives of known MYOC+ patients (up to 50% risk of positive test)
 - Patients with strong history of familial glaucoma
- Unselected testing probably not yet warranted (except for research)

Mechanism of disease: How *MYOC* mutations cause glaucoma

 Normal MYOC protein properly folded and is secreted

 Mutant MYOC misfolds and stays within cells

Kwon YH, Fingert JH, et al. N Engl J Med, 2009, 360:1113-1124.

Abnormal intracellular accumulation of mutant MYOC

Elevated IOP and glaucoma

Mechanism of disease: How *MYOC* mutations cause glaucoma

Donor eye from a patient with myocilin glaucoma

Tyr437His mutation

More MYOC is retained in TM

Colocalizes with intracellular proteins (WGA, ConA, BiP)

Confirms disease model of mutant MYOC retained in TM cells

MYOC-directed therapies drugs and genome editing

Drug (phenylbutyrate) cures MYOC glaucoma in Tg-mice

- Chemical chaperone promotes proper folding and secretion of mutant MYOC
- Lowers IOP / prevents nerve damage
- Potential utility for human therapy

Phenylbutyrate

MYOC-directed therapies drugs and genome editing

CRISPR/Cas9 editing cures MYOC glaucoma in mice

- Blocks expression of mutant protein
- Lowers IOP / prevents nerve damage
- Potential utility for human therapy

Genome editing increases

MYOC secretion

Genome editing lowers IOP

Jain A, Zode G, et al. Proc Nat Acad Sci, 2017; 114: 11199-11204

GLAUCOMA-CAUSING GENE Example 2

33 year old male – routine exam

- **NORMAL IOP**: 16 mm Hg OD / 16 mm Hg OS

- LARGE CUPS OU

VF LOSS Severe OU

Diagnosis of JOAG / NTG

Strong positive family history

Genetic Testing

OS

OF IOWA

TBK1 gene triplication and NTG

Detected in NTG

- Caucasian ancestry (USA and Australia)
- TBK1 duplications in patients of African, Asian, and Caucasian ancestry (US), Asian ancestry

Clinical features

- Mean age at diagnosis: 29 years (Triplication)

36 years (Duplication)

- Mean maximum IOP: 18 mm Hg (Triplication)

18 mm Hg (Duplication)

Some patients progress at low IOP

TBK1 TESTING MAY BE USEFUL FOR SELECTNTG PATIENTS

- Rare + tests in unselected NTG
 - -0.4-1.2%
- Higher utility in select patients
 - Early onset
 - Presentation with severe disease
 - Strong family history of NTG
- TBK1 positive patients may benefit from lower IOP target

GLAUCOMA-CAUSING GENE Example 3

GLAUCOMA-CAUSING GENE Example 3

45 year old female – exam due to FHx

- Mother, sister, several others
- IOP 15 mm Hg OD and 16 mm Hg OS
- Large cup to disc ratios
- Glaucomatous VFs OU

Genetic Testing for NTG:

• OPTN testing: positive (GLU50LYS mutation)

GLU50LYS *OPTN* mutation and NTG

Glu50Lys has been detected in NTG

- Caucasian (USA, Europe) and Asians (Japan)

Clinical Features

- Mean age at diagnosis: 41 years
- Mean maximum IOP: 17 mm Hg
- More frequent need for trabeculectomy (3X)
- Some may benefit from low IOP (i.e <10 mm Hg)

OPTN TESTING MAY BE USEFUL FOR SELECTNTG PATIENTS

- Rare + tests in unselected NTG
 - -1.0-3.0%
- Features that may improve utility
 - Early onset / severe presentation
 - Strong family history of NTG
 - Perhaps more common in Caucasian populations
- OPTN positive patients may benefit from lower IOP target

Genes are important in glaucoma and are becoming more important in the care of your glaucoma patients

Acknowledgements

Fingert Lab

- Ben Roos
- Kathy Rodine
- Ankur Jain
- Carly Van Der Heide

Collaborators / Colleagues

- Wallace Alward
- Robert Mullins
- Alan Robin
- Michael Kass
- Mae Gordon

- Michael Hauser
- Rand Allingham
- Ting Aung
- CC Khor
- Eyes From Africa Consortium

Funding Support

National Eye Institute
The Glaucoma Foundation
Research to Prevent Blindness

THE UNIVERSITY OF IOWA

GLAUCOMA RISK FACTOR Example 2

ABCA1	CDKN2B-AS1	GAS7	MYOF	40 ———		
AFAP1	CHR 8q22 locus	GMDS	PDE7B	35 ———		
ANKRD55-MAP3K1	CRYGS	HMGA2	PMM2	30 ———		
ANKH	Navele identific	l .Ct	SIX6	25 ———		
ARHGEF12	Newly identified factor APBB2		SRBD1	20 ———		
АТОН7			TFGBR3	15 ————————————————————————————————————		
ATXN2	FDNC3B	LMX1B	TLR4	5 ——		
CADM2	FMNL2	LOXL1	TMCO1	0 -		
CAV1/CAV2	FOXC1	MEIS2	TMTC2	1997	2008	2018
·			TXNRD2			

THE UNIVERSITY

OF IOWA

A new risk factors POAG in patients of African ancestry

What does APBB2 do?

amyloid beta precursor protein binding family B member 2 (APBB2)

- Amyloid precursor protein (APP)
 - Required for retinal development
- Improper processing of APP

THE UNIVERSITY OF IOWA

- Formation of β-amyloid plaques, as seen in Alzheimer's disease
- APBB2 stimulates γ-secretase digestion
 - Promotes β -amyloid formation

Hypothesis: New risk factor promotes glaucoma via:

- Increasing APBB2 production
 - Increasing toxic β -amyloid formation in retinal ganglion cells

Sections of human donor eyes Labeled with an antibody against APBB2

No APBB2 risk alleles

1 APBB2 risk allele

APBB2 risk alleles result in more APBB2 protein in human retina

Sections of human donor eyes Labeled with an antibody against **\beta-amyloid**

No APBB2 risk alleles

OF IOWA

1 APBB2 risk allele

APBB2 risk alleles result in more β -amyloid in retinal ganglion cells

APBB2 risk factors lead to more APBB2 and β -amyloid in the retina

Genetic factor discovery suggests new disease mechanism

- APBB2 risk allele
 - Associated with increased retinal expression of APBB2 protein
 - Associated with increased retinal expression of toxic β -amyloid
- Suggests links with Alzheimer's disease
- Suggests pathophysiology (β-amyloid biology)
- Suggests new avenues for glaucoma therapy

