

Simulating Fires and Explosives

Steven Parker School of Computing Scientific Computing and Imaging Institute University of Utah/NVIDIA

Composing software

Building systems out of pieces

Component Software

C-SAFE

Center for the Simulation of Accidental Fires & Explosions

- Solve fundamental problems in:
 - Physical chemistry
 - Structural mechanics
- Coupled with:
 - Experimental verification
 - Algorithm optimization
 - Advanced visualization

Time scales

Fire

Heat-up

Explosion

Multi-physics challenges

- Multiple time scales
- Multiple space scales
- Impedance matching of:
 - Mathematical description
 - Frame of reference
 - (Lagrangian vs. Eulerian)
 - Numerical algorithms
 - Software interfaces
 - Parallelization strategy
 - Interpersonal relationships

Material Point Method

Handles deformation, contact, high strain

MPM-ICE

ICE is a cell centered finite volume method MPM uses particles and nodes Cell-centered grid used as a common frame of reference

Particle:
Mass, volume,
Temperature,
Velocity, etc.

Node Centered: Mass, volume, Temperature, Velocity, etc.

Cell Centered:
Density,
Internal Energy,
Momentum, etc.

Tightly coupled fluid-solid interaction

Software Challenges

- Software integration challenges:
 - Integration requires broad expertise
 - The effort required is too large to be justified any single application
 - Applications are not always designed top-down
 - Cannot give up performance

Component-based Architecture

Structured AMR Coarse Level

Parallel Components

Multiple ways to split up parallel work

Cor

Hov

Integrated Simulation

→ Fire Simulation→ Structural

Mechanics

processors

Key challenge

Solution: Uintah

Explicit representation of parallelism in components

 Scheduling, domain decomposition factored out of simulation components

 Enables scalability in multiphysics simulation Data Parallel Load balance tradeoffs

Task Parallel
High communication costs

Taskgraphs

- Unique feature: explicit representation of parallelism
- Expresses data parallelism and task parallelism
- Enables compiler-like analysis of communication

1 CPU

4 CPUs

Explicitly defined

Implicitly defined

4 patches

32 patches

Space scales

End-to-end Parameter Study

- Predict:
 - Time to explosion
 - Violence of explosion (various metrics)
- As a function of:
 - Pool fire diameter (0.5 meters to 1 meter)
 - Wind speed (0 to 4 m/s)
 - Position relative to fire
- Constants:
 - Device parameters (geometry, material)
 - Fuel
 - Methods/models

Scenario parameters

- Range of pool diameters 0.5m to 1m
- Examine locations only in wind plane
- Container centered or downwind

Top view

Location

 Examine locations both absolute and relative to fire diameter

Wind

0.5m pool

1m pool

Side views

*Containers not to scale

Closeup

 Pressurization of infinitely small boundary between explosive and container

Explosion

Complete End-to-End Simulation

AMR bore hole studies

Experimental Comparisons

Using shadows

Shadows help to clarify the position of individual particles

Using global illumination

Global illumination

Advanced illumination models enhance subtle detail

Realistic Fire Rendering

- Compute emission, absorption and refraction at visible wavelengths
- Handles both quasi-continuous emission from soot and discrete spectral emissions from other chemical species
- Model S-potential response of human photoreceptors to reproduce perceived colors

Visual Adaptive Response

Night

Day

Physically-Based Realistic Flame Rendering Using Ray Integration

Heptane Pool Fire Simulation

Vocal fold modeling

Conclusions

- Interdisciplinary efforts require:
 - Patience
 - Respect
 - Improvements in all areas of Software Engineering, Numerical Methods, Modeling, etc.

Acknowledgements

- Department of Energy ASC program
- SCI Institute
- Center for Simulation of Accidental Fires and Explosions

Questions?

