

MARIANNA EVANS, DMD

BOARD CERTIFIED PERIODONTIST AND ORTHODONTIST PRIVATE PRACTICE, NEWTOWN SQUARE, GLEN MILLS, PA

MEVANS@INFINITYORTHOPERIO.COM

TREATMENT GOALS:

1. FACIAL ESTHETICS.

2. UPRIGHT TEETH IN BASAL BONE TO RECEIVE AXIAL LOADING.

3. MAXIMUM INTERCUSPATION.

4. MINIMAL CR/CO DISCREPANCIES.

5. AIRWAY PROTECTIVE RESULT.

THE CASE FOR TADS:

- 1. BETTER OCCLUSAL STABILITY?
- 2. AVOID OR MINIMIZE EXTRACTIONS?
- 3. AVOID OR MINIMIZE ORTHOGNATIC SURGERY?
- 4. SHORTER TREATMENT TIME?
- 5. GREATER CASE ACCEPTANCE IN ADULTS IN NEED OF EXPANSION?

PERIODONTAL AUGMENTATION: SFOT/POPA/PAOO...

AFTER

BEFORE

2 WEEKS AFTER EXPANSION

AFTER DEBONDING

PALATAL SUTURE INTERDIGITATION WITH AGE (AGE 0-18)

Melsen B.; AJO 1975

LESS THAN 50% OSSIFICATION OF THE MIDPALATAL SUTURE IN YOUNG ADULTS (20-25 Y.O.)

COMPUTER TOMOGRAPHY VERSUS OCCLUSAL FILM STUDY

Thadani M. et al; J of Indian Academy of Oral Medicine and Radiology, 2010;22(2):81-87

Eur J Orthod. 2001 Apr;23(2):105-14.

The mid-palatal suture in young adults. A radiological-histological investigation.

Wehrbein H¹, Yildizhan F.

Author information

STUDIED 10 PATIENTS AGE 18-38

NO SUTURE OBLITERATION FOUND AT HISTOLOGIC EXAMINATION...

F. Angelieri, L. Cevidanes, J. McNamara et al; AJODO 2013;144:759-769

STAGE D SUTURE

30 Y.O. FEMALE

29 Y.O. MALE

ALVEOLAR BONE CHANGES AFTER RAPID MAXILLARY EXPANSION WITH TOOTH-BORN APPLIANCES: A SYSTEMATIC REVIEW

In all considered studies, significant loss of buccal bone thickness and marginal bone level were observed in anchored teeth, following RME.

Bone loss was on average less than 1mm

LO GIUDICE A. ET AL. EUR J ORTHOD. 2018; 40(3):296-303

EVANS M. ET AL, SEM ORTHO 2016; 22:52-6

3D guided comprehensive approach to mucogingival problems in orthodontics

Marianna Evans, Nipul K. Tanna, and Chun-Hsi Chung

Advances in technology have enabled the clinician to use a 3-dimensional (3D) guided approach to orthodontic diagnosis and treatment planning, leading to a more predictable treatment sequence and outcome for orthodontists and surgeons. Important factors must be taken into consideration when planning orthodontic treatment such as the existing and projected tooth position as well as the periodontal soft and hard tissue phenotype. 3D anatomic analysis of the dentoalveolar complex may provide more information than what can be derived from 2-dimensional radiographs and the clinical examination. It can help identify patients at risk for the development of mucogingival problems during or after orthodontic treatment and can guide the clinician in determining the appropriate intervention to minimize the risks of an unfavorable outcome. (Semin Orthod 2016; 22:52-63.) © 2016 Elsevier Inc. All rights reserved.

ALVEOLAR BONE CHANGES AFTER RAPID MAXILLARY EXPANSION WITH TOOTH-BORN APPLIANCES: A SYSTEMATIC REVIEW.

Recommendations:

- Evaluate gingival biotype prior to expansion
- Use primary teeth as anchors
- Utilize TADs and SARPE in skeletally mature patients to minimize periodontal damage...

LO GIUDICE A. ET AL. EUR J ORTHOD. 2018; 40(3):296-303

Periodontal effects of surgically assisted rapid palatal expansion evaluated clinically and with cone-beam computerized tomography: 6-month preliminary results

Chantal Gauthier,^a René Voyer,^b Manon Paquette,^c Pierre Rompré,^d and Athena Papadakis^e *Montreal, Quebec, Canada*

Although clinical findings were insignificant, radiographic changes in crestal bone thickness were statistically significant.

AJODO 2011;139:S117-28

STANDING ON THE SHOULDERS OF GIANTS...

PERIODONTAL REGENERATION WITHOUT PERIODONTAL SURGERY

SARPE

CHALLENGING TO PLACE THIS DEVICE IN VERY NARROW PALATE

REPORTED MANY COMPLICATIONS:

SOFT TISSUE IMPINGEMENT

APPLIANCE LOOSENING

Mommaerts M. et al; British J OMFS, 1999 (37): 268-272

KLS martin

OP OR End 2008;105: e8-e11

ORTHOPEDIC PROTRACTION WITH SKELETAL ANCHORAGE IN A PATIENT WITH MAXILLARY HYPOPLASIA AND HYPODONTIA

Kircelli et al; Angle Orthod 2006;76: 156-163

PTERYGOMAXILLARY DISJUNCTION IS
NOT NECESSARY IN PATIENTS UNDER
20 Y.O. DURING SARPE PROCEDURE

Laudemann K. et al; OMFS 2009;13:159-169

Miniscrew-assisted nonsurgical palatal expansion before orthognathic surgery for a patient with severe mandibular prognathism

Kee-Joon Lee,^a Young-Chel Park,^b Joo-Young Park,^c and Woo-Sang Hwang^c Seoul, Korea

AJODO 2010;137:830-9

EXPAND WITHOUT SURGERY UP TO EARLY 20S...

22 YR. OLD FEMALE

THREE-DIMENSIONAL CONTROL
WITH TAD-TISSUE SUPPORTED
RAPID PALATAL EXPANDER:
AN OVERVIEW OF CLINICAL APPLICATIONS
AND BIOLOGICAL ADVANTAGES

MARIANNA EVANS, DMD

RMO CLINICAL REVIEWS, 2012

MARIANNA EVANS, DMD

RMO CLINICAL REVIEWS, 2012

ONLY 12 MONTHS IN ACTIVE TREATMENT

RAPID MAXILLARY EXPANSION WITH SKELETAL ANCHORAGE VS BONDED TOOTH / TISSUE BORN EXPANDERS: A CASE REPORT COMPARISON UTILIZING CBCT

ROBERT L. VANARSDALL, JR. DDS, IGNACIO BLASI JR., DDS MARIANNA EVANS, DMD, PAUL KOCIAN, DDS

B. To achieve greater dental and skeletal stability

C. To improve dentofacial esthetics by eliminating or improving lateral negative space

COMPARISON OF MAXILLARY ORTHOPEDIC EXPANSION IN 13 Y.O. IDENTICAL TWINS: SKELETAL ANCHORED RPE VS BONDED RPE

6.6 MM OF SKELETAL EXPANSION NO DENTAL TIPPING

4 MM OF SKELETAL EXPANSION DENTAL TIPPING

70% OF EXPANSION OCCURRED AT THE ALVEOLAR LEVEL

ONLY 36% OF EXPANSION WAS SUTURAL

34% OF EXPANSION WAS PURE ALVEOLAR BANDING

EXPANSION VECTOR CENTERED ON THE FRONTONASAL SUTURE

Podesser B. et al; Euro J of Ortho 29(2007); 37-44

DIFFERENTIATED ALVEOLAR BANDING FROM DENTAL TIPPING

IN HYRAX GROUP ALVEOLAR BANDING WAS >2 THAT OF TAD-EXPANSION GROUP

TAD-EXPANSION GROUP HAD NEGLIGIBLE DENTAL TIPPING

HYRAX GROUP HAD TIPPING IN THE UNBANDED TEETH TWICE OF THE BANDED
TEETH WHICH HAD SIMILAR TIPPING TO TAD EXPANSION GROUP

Lu Lin et al; Angle Orthod 2015;85: 253-262

FEMALES AGE 13-20

		Bone-Borne Type				Tooth-Borne Type					
					P-Value ^a					P-Value ^a	-
	First Premola	Second r Premolar	First Molar	Second Molar (Multiple Comparisons	First Premolar	Second Premolar	First Molar	Second Molar	Multiple Comparisons	•
Skeletal expansion ratio, 3/5 Dental tipping/ alveolar bending,	0.77	0.71	0.58	0.59) (0.37	0.30	0.26	0.43	ı	- Lu l
(9+10)/(7+8)	0.92	1.30	1.11	0.60		2.11	5.07	1.80	1.63		

Lu Lin et al; Angle Orthod 2015;85: 253-262

LONG TERM STABILITY OF THE NON-SURGICAL EXPANSION IN YOUNG ADULTS 19-22 Y.O.

86.96% (60/69) OF SUBJECTS OPENED UP

43.4% (2MM) EXPANSION AT J-J

Choi S. et al; Angle Orthod 2016;86: 713-720

LONG TERM STABILITY OF THE NON-SURGICAL EXPANSION IN YOUNG ADULTS 19-22 Y.O.

20 PATIENTS

30 MONTHS POST-EXPANSION

AJO-DC

Microimplant-assisted rapid palatal expansion appliance to orthopedically correct transverse maxillary deficiency in an adult

Chuck Carlson,^a Jay Sung,^b Ryan W. McComb,^c Andre Wilson Machado,^d and Won Moon^e Tustin, Los Angeles, and Culver City, Calif, and Salvador, Bahia, Brazil

AJODO 2016;149:716-28

Non-surgical treatment of transverse deficiency in adults using Microimplant-assisted Rapid Palatal Expansion (MARPE)

Daniel Paludo Brunetto¹, Eduardo Franzzotti Sant'Anna², Andre Wilson Machado³, Won Moon⁴

MSE

Acrylic TAD RPE

DEGREE OF INSERTION

AGE 9-14 AGE 14-18 AGE 5-?

13 Y.O.MALE

40 Y.O. FEMALE

Midfacial changes in the coronal plane induced by microimplant-supported skeletal expander, studied with cone-beam computed tomography images

Daniele Cantarella,^a Ramon Dominguez-Mompell,^b Christoph Moschik,^b Sanjay M. Mallya,^c Hsin Chuan Pan,^b Mohammed R. Alkahtani,^a Islam Elkenawy,^b and Won Moon^b

Los Angeles, Calif

AJODO 2018;154:337-45

Daniele Cantarella, ^a Ramon Dominguez-Mompell, ^b Christoph Moschik, ^b Sanjay M. Mallya, ^c Hsin Chuan Pan, ^b Mohammed R. Alkahtani, ^a Islam Elkenawy, ^b and Won Moon ^b Los Angeles, Calif

SURGICAL SARPE, DOME

LE FORT 3

LE FORT 1

DOME = SARPE WITHOUT PTERYGOMAXILLARY DISJUNCTION UTILIZING MSE EXPANDERS

LE FORT 1 OSTEOTOMY

Clinical Techniques and Technology

Distraction Osteogenesis Maxillary Expansion (DOME) for Adult Obstructive Sleep Apnea Patients with High Arched Palate

Stanley Yung-Chuan Liu, MD, DDS¹, Christian Guilleminault, MD, DBiol², Leh-Kiong Huon, MD^{3,4}, and Audrey Yoon, DDS⁵

\$SAGE

Otolaryngology—
Head and Neck Surgery
2017, Vol. 157(2) 345–348
© American Academy of
Otolaryngology—Head and Neck
Surgery Foundation 2017
Reprints and permission:
sagepub.com/journalsPermissions.nav
DOI: 10.1177/0194599817707168
http://otojournal.org

Demographic, Subjective, and Objective Parameters before and after Distraction Osteogenesis Maxillary Expansion (DOMF).

Procedure. ^a					
Characteristic	Before, Mean ± SD	After, Mean ± SD	Paired t Test, P Value		
BMI	26.8 ± 5.0	26.4 ± 5.5	0.44		
ESS	12.3 ± 4.1	7.8 ± 4.8	< 0.001		
NOSE	11.7 ± 5.3	3.85 ± 3.23	< 0.001		
Л ШІ	20.9 ± 27.1	142 + 92	~0.0I		

וויוט	20.0 - 3.0	20.7 = 3.3	υ.ττ
ESS	12.3 ± 4.1	7.8 ± 4.8	< 0.001
NOSE	11.7 ± 5.3	3.85 ± 3.23	< 0.001
AHI	30.9 ± 27.1	14.2 ± 9.3	< 0.0 l
ODI	23.0 ± 28.4	8.7 ± 6.9	0.07
Reff Insp (left)	1.4 ± 0.4	1.0 ± 0.5	< 0.001
Reff Insp (right)	1.4 ± 0.4	0.9 ± 0.3	< 0.001
Nasal floor width—anterior, mm	22.7 ± 4.58	27.4 ± 4.7	< 0.001
Nasal floor width—posterior, mm	27.9 ± 4.3	32.1 \pm 4.8	< 0.001

NASAL AIRWAY RESISTANCE COMPRISES 50-75% IN OSA PATIENTS

WU J ET LA, MEDICINE, 96(5), 2017

Randomized Controlled Trial

Effects on nasal airflow and resistance using two different RME appliances: a randomized controlled trial

Farhan Bazargani¹, Anders Magnuson² and Björn Ludwig^{3,4}

¹Department of Orthodontics, Postgraduate Dental Education Center, Örebro, Sweden, ²Clinical Epidemiology and Biostatistics Unit, Orebro University Hospital, Orebro, Sweden, ³Private Orthodontic Office, Traben-Trarbach, Germany and ⁴Department of Orthodontics, University of Saarland, Homburg/Saar, Germany

	P1	P2	M1	
				OUR STUDY:
SKELETAL EXPANSION	62.2%	54.6%	50.8%	27 PATIENTS AGE 15YO 7 MALES 20 FEMALES
NASAL EXPANSION	52%	46.9%	44.4%	ZOT LIVIALLO

NASAL AIRWAY RESISTANCE COMPRISES 50-75% IN OSA PATIENTS

WU J ET LA, MEDICINE, 96(5), 2017

300.0

350.0

IDENTICAL 16 Y.O. TWINS

WHICH ONE HAS OSA?
AHI -16

5 MM DISCREPANCY

Miner et al, AJODO 2015;148:253-63

AFTER 4 MM OF SKELETAL TAD-ASSISTED EXPANSION AHI WENT FROM 16 TO 1

10 Y.O.

MODERATE OSA
HISTORY OF T&A SURGERY
DAD HAS OSA

24.34 mm

22.92 mm

31.11 mm

EXPANSION:
4 MM AT NASAL FLOOR
5.5 MM SKELETAL
5.5 MM DENTAL

11 y.o.

Severely enlarged adenoids and tonsils

CHAT STUDY: EFFECTIVENESS (PSG IMPROVEMENTS) OF T&A SURGERY FOR CHILDHOOD OSA

TREATMENT OUTCOMES OF ADENOTONSILLECTOMY FOR CHILDREN WITH OSA

http://dx.doi.org/10.5665/sleep.3310

Treatment Outcomes of Adenotonsillectomy for Children with Obstructive Sleep Apnea: A Prospective Longitudinal Study

Yu-Shu Huang, MD^{1,6}; Christian Guilleminault, DM, MD, DBiol^{2,6}; Li-Ang Lee, MD³; Cheng-Hui Lin, MD⁴; Fan-Ming Hwang, PhD⁵

¹Department of Child Psychiatry and Sleep Center, Chang Gung Memorial Hospital and College of Medicine, Taoyuan, Taiwan; ²Stanford University Sleep Medicine Division, Stanford, CA; ³Department of Otolaryngology and Sleep Center, Chang Gung Memorial Hospital and College of Medicine, Taoyuan, Taiwan; ⁴Department of Cranio-Facial Center and Sleep Center, Chang Gung Memorial Hospital and College of Medicine, Taoyuan, Taiwan; ⁵Department of Education, National Chia-Yi University, Chiayi, Taiwan; ⁶Department of Clinical Psychology College of Medicine, FU JEN Catholic University, Taipei, Taiwan

Objective: To evaluate the efficacy of adenotonsillectomy (AT) in the treatment of children with obstructive sleep apnea (OSA) in a 3-y prospective, longitudinal study with analysis of risk factors of recurrence of OSA.

Study Design: An investigation of children (6 to 12 y old) with OSA documented at entry and followed posttreatment at 6, 12, 24, and 36 mo with examination, questionnaires, and polysomnography.

Multivariate generalized linear modeling and hierarchical linear models analysis were used to determine contributors to suboptimal long-term resolution of OSA, and Generalized Linear Models were used for analysis of risk factors of recurrence.

Results: Of the 135 children, 88 terminated the study at 36 months post-AT. These 88 children (boys = 72, mean age = 8.9 ± 2.7 yersus boys 8.9 ± 2.04 y, girls: 8.8 ± 2.07 y; body mass index [BMI] = 19.5 ± 4.6 kg/m²) had a preoperative mean apnea-hypopnea index (AHI₀) of 13.54 ± 7.23 and a mean postoperative AHI at 6 mo (AHI₆) of 3.47 ± 8.41 events/h (with AHI₆ > 1 = 53.4% of 88 children). A progressive increase in AHI was noted with a mean AHI₃₆ = 6.48 ± 5.57 events/h and AHI₃₆ > 1 = 68% of the studied group. Change in AHI was associated with changes in the OSA-18 questionnaire.

The residual pediatric OSA after AT was significantly associated with BMI, AHI, enuresis, and allergic rhinitis before surgery. From 6 to 36 mo after AT, recurrence of pediatric OSA was significantly associated with enuresis, age (for the 24- to 36-mo period), postsurgery AHI₆ (severity), and the rate of change in BMI and body weight.

Conclusions: Adenotonsillectomy leads to significant improvement in apnea-hypopnea index, though generally with incomplete resolution, but worsening over time was observed in 68% of our cases.

Keywords: adenotonsillectomy, comorbidity, obstructive sleep apnea, polysomnography, treatment outcomes

Citation: Huang YS; Guilleminault C; Lee LA; Lin CH; Hwang FM. Treatment outcomes of adenotonsillectomy for children with obstructive sleep apnea: a prospective longitudinal study. SLEEP 2014;37(1):71-76.

Conclusions: Adenotonsillectomy leads to significant improvement in apnea-hypopnea index, though generally with incomplete resolution, but a worsening over time was observed in 68% of our cases.

350.0

400.0

300.0

100.0 150.0 200.0 250.0 300.0 350.0 400.0

4 mm of expansion

10 mm expansion

Before

2 weeks after expansion

After debonding

NON-EXTRACTION DENTO-ALVEOLAR EXPANSION PRESENTS PERIODONTAL RISKS

J. MORAIS ET AL; ANGLE ORTHOD. 2018;88:748-756

CONVENTIONAL ORTHODONTICS IS A **RISK** FOR ALVEOLAR BONE LOSS AND ROOT RESORPTION

(PREMOLAR EXTRACTIONS)

ANGLE ORTHO 2013: VOL.83, N2, PP.212-221

SURGICAL SARPE, DOME

LE FORT 3

NON-SURGICAL MARPE

LE FORT 1

12 MONTHS FROM START TO FINISH...

MEVANS@INFINITYORTHOPERIO.COM

RATIONALE FOR IMPLANT-ASSISTED EXPANSION....

- Greater velocity of skeletal expansion
- Less dental tipping
- Long-term stability (3 year follow up)
- Greater improvement in nasal resistance, nasal score
- Improvement in OSA parameters (DOME)

MEVANS@INFINITYORTHOPERIO.COM

THANK YOU

MEVANS@INFINITYORTHOPERIO.COM

