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The Continuous Wavelet Transform

The classical continuous wavelet transform on R is associated with the
affine systems of functions

{ψa,t(x) = a−
1
2ψ(a−1 (x − t)) : a > 0, t ∈ R},

where ψ ∈ L2(R).

Provided that ψ satisfies the admissibility condition [Calderón, 1964]∫
a>0
|ψ(aξ)|2 da

a
= 1, for a.e. ξ ∈ R,

the continuous wavelet transform of f

Wψ : f →Wψf (a, t) = 〈f , ψa,t〉 , for a > 0, t ∈ Rd ,

is a linear isometry (from L2(R) to L2(A)).
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The Continuous Wavelet Transform

That is,

‖f ‖2L2(R) =

∫
R

∫
a>0
|Wψf (a, t)|2 da

a
dt,

or f (x) =

∫
R

∫
a>0
〈f , ψa,t〉 ψa,t(x)

da

a
dt.

dλ(a, t) = da
a dt is the left Haar measure on the affine group.

• Wψf (a, t) measures
the content of f
at scale a and location t.
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The Continuous Wavelet Transform

• The continuous wavelet transform has a special ability to deal with point
singularities.

If f is singular at location t0, Wψf (a, t) signals the location t0 through its
asymptotic decay at fine scales, a→ 0.

• This property is a manifestation of the sparsity and locality of the
wavelet representation and it is critical in multiple signal/image processing
applications.
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Example: Dirac Delta

Let ψ be a well-localized wavelet (e.g., Schwartz class)
on R, and δ be the Dirac delta.

We have:

Wψδ(a, t) = 〈δ, ψa,t〉 = ψa,t(0).

If t = 0, then

Wψδ(a, 0) = ψa,0(0) = a−
1
2 ψ(0) ∼ O(a−

1
2 ).

If t 6= 0, then, for each k ∈ N, there is a constant Ck such that

|Wψδ(a, t)| = |ψa,t(0)| ≤ Ck ak , a→ 0.
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Example: Heaviside function

Let ψ be a well-localized wavelet (e.g., Schwartz class)
on R, and h(x) = 1 if x ≥ 0, h(x) = 0 if x < 0.

We have:

Wψh(a, t) =
〈

ĥ, ψ̂a,t

〉
=
√

a

∫
R

1

2πiξ
ψ̂(aξ) e−2πiξt dξ

(set γ̂(η) =
1

2πiη
ψ̂(η)) =

√
a

∫
R
γ̂(η) e−2πiη

t
a dη

=
√

a γ(−t/a)

If t = 0, provided
∫
γ̂(η)dη 6= 0, then

|Wψh(a, 0)| ≈
√

a.

If t 6= 0, for any k ∈ N,

|Wψh(a, 0)| ≤ Ck ak , a→ 0.

Demetrio Labate (UH) Applied Harmonic Analysis SIAM IS16 7 / 57



Example: Heaviside function

Let ψ be a well-localized wavelet (e.g., Schwartz class)
on R, and h(x) = 1 if x ≥ 0, h(x) = 0 if x < 0.

We have:

Wψh(a, t) =
〈
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The Continuous Wavelet Transform

In general...

For an appropriate well-localized wavelet ψ:

Wψf (a, t)→ 0, rapidly as a→ 0, for t away from singularities;

Wψf (a, t0)→ 0, “slowly” (not rapidly), as a→ 0, if t = t0 is a
singularity.

Locations t = t0 of “slow” (not-rapid) asymptotic decay of Wψf (a, t), as
a→ 0, are exactly those points where f is singular.

The continuous wavelet transform resolves the singular support
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The Continuous Wavelet Transform

In higher dimensions...

The simplest way to extend the continuous wavelet transform to Rd is by
considering the affine systems

{ψa,t(x) = a−
d
2ψ(a−1 (x − t)) : a > 0, t ∈ Rd},

where ψ ∈ L2(Rd).

Similar to the 1D case, it can detect
point-singularities and resolve the
singular support.

However, it provides very limited information about the geometry of
singularities of multivariate functions and distributions.

Demetrio Labate (UH) Applied Harmonic Analysis SIAM IS16 9 / 57



The Continuous Wavelet Transform

In higher dimensions...

The simplest way to extend the continuous wavelet transform to Rd is by
considering the affine systems

{ψa,t(x) = a−
d
2ψ(a−1 (x − t)) : a > 0, t ∈ Rd},

where ψ ∈ L2(Rd).

Similar to the 1D case, it can detect
point-singularities and resolve the
singular support.

However, it provides very limited information about the geometry of
singularities of multivariate functions and distributions.

Demetrio Labate (UH) Applied Harmonic Analysis SIAM IS16 9 / 57



The Continuous Wavelet Transform

In higher dimensions...

The simplest way to extend the continuous wavelet transform to Rd is by
considering the affine systems

{ψa,t(x) = a−
d
2ψ(a−1 (x − t)) : a > 0, t ∈ Rd},

where ψ ∈ L2(Rd).

Similar to the 1D case, it can detect
point-singularities and resolve the
singular support.

However, it provides very limited information about the geometry of
singularities of multivariate functions and distributions.

Demetrio Labate (UH) Applied Harmonic Analysis SIAM IS16 9 / 57



The Continuous Wavelet Transform

In higher dimensions...

The simplest way to extend the continuous wavelet transform to Rd is by
considering the affine systems

{ψa,t(x) = a−
d
2ψ(a−1 (x − t)) : a > 0, t ∈ Rd},

where ψ ∈ L2(Rd).

Similar to the 1D case, it can detect
point-singularities and resolve the
singular support.

However, it provides very limited information about the geometry of
singularities of multivariate functions and distributions.

Demetrio Labate (UH) Applied Harmonic Analysis SIAM IS16 9 / 57



Continuous Shearlet Transform (D=2)

Shearlets are derived from the framework of affine systems.

The full affine group of motions on R2 is the set

A = {(M, t) : M ∈ GL2(R), t ∈ R2}

with group operation (M, t) · (M ′, t ′) = (MM ′, t + Mt ′).
We consider subgroups AG of A of the form

AG = {(M, t) : M ∈ G ⊂ GL2(R), t ∈ R2}

where G is referred to as the dilation subgroup.
The affine system generated by ψ ∈ L2(R2) and AG is{

ψM,t(x) = | det M|−1/2ψ(M−1(x − t)) : (M, t) ∈ AG

}
.
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Continuous Shearlet Transform (D=2)

Under appropriate admissibility conditions on ψ, it may be possible to
define a (generalized) continuous wavelet transform associated with AG .
(Note: not all AG have admissible functions)

In this case, the continuous wavelet transform associated with AG

Wψ : f →Wψf (M, t) = 〈f , ψM,t〉 , for (M, t) ∈ AG ,

is a linear isometry from L2(R2) into L2(AG ).
For all f ∈ L2(R2)

f (x) =

∫
R2

∫
G
〈f , ψM,t〉 ψM,t(x) dλ(M) dt,

where λ is the left Haar measure on G .
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Example: G = isotropic dilations

Isotropic dilations. The dilation group G is:

G =

M =

a 0

0 a

 : a > 0



Admissibility is given by the classical Calderón condition.
This group is associated with the conventional continuous wavelet
systems {

ψa,t(x) = a−1 ψ(a−1(x − t)) : a > 0, t ∈ R2
}
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Example: G = shearlet group [K,Labate,2009],[Dahlke et al,2008]

Shearlet group. The dilation group G is:

G =

Mas =

a −
√

a s

0
√

a

 , a > 0, s ∈ R



We have the factorization

Mas =

(
a −

√
a s

0
√

a

)
=

(
1 −s
0 1

) (
a 0
0
√

a

)
into anisotropic dilation

(
a 0
0
√

a

)
and shear transformation

(
1 −s
0 1

)
NOTE:

√
a can be replaced by aα, 0 < α < 1.

A system associated with this group is a continuous shearlet system{
ψa,s,t(x) = a−3/4 ψ(M−1as (x − t)) : a ∈ R+, s ∈ R, t ∈ R2

}
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1 −s
0 1

) (
a 0
0
√

a

)
into anisotropic dilation

(
a 0
0
√

a

)
and shear transformation

(
1 −s
0 1

)
NOTE:

√
a can be replaced by aα, 0 < α < 1.

A system associated with this group is a continuous shearlet system{
ψa,s,t(x) = a−3/4 ψ(M−1as (x − t)) : a ∈ R+, s ∈ R, t ∈ R2

}
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Construction of Continuous Shearlets

There are many admissible shearlets.

Band-limited shearlets [Guo,Kutyniok,L, 2006]. We choose:

ψ̂(ξ) = ψ̂(ξ1, ξ2) = ψ̂1(ξ1) ψ̂2(
ξ2
ξ1

),

where

ψ1 is a continuous wavelet with ψ̂1 ∈ C∞(R)
and supp ψ̂1 ⊂ [−2,−1

2 ] ∪ [12 , 2].

ψ2 satisfies ψ̂2 ∈ C∞(R), supp ψ̂2 ⊂ [−1, 1]
and ‖ψ2‖ = 1.

Hence ψ is a smooth bandlimited function.

Demetrio Labate (UH) Applied Harmonic Analysis SIAM IS16 14 / 57



Construction of Continuous Shearlets

There are many admissible shearlets.

Band-limited shearlets [Guo,Kutyniok,L, 2006]. We choose:

ψ̂(ξ) = ψ̂(ξ1, ξ2) = ψ̂1(ξ1) ψ̂2(
ξ2
ξ1

),

where

ψ1 is a continuous wavelet with ψ̂1 ∈ C∞(R)
and supp ψ̂1 ⊂ [−2,−1

2 ] ∪ [12 , 2].

ψ2 satisfies ψ̂2 ∈ C∞(R), supp ψ̂2 ⊂ [−1, 1]
and ‖ψ2‖ = 1.

Hence ψ is a smooth bandlimited function.

Demetrio Labate (UH) Applied Harmonic Analysis SIAM IS16 14 / 57



Construction of Continuous Shearlets

There are many admissible shearlets.

Band-limited shearlets [Guo,Kutyniok,L, 2006]. We choose:

ψ̂(ξ) = ψ̂(ξ1, ξ2) = ψ̂1(ξ1) ψ̂2(
ξ2
ξ1

),

where

ψ1 is a continuous wavelet with ψ̂1 ∈ C∞(R)
and supp ψ̂1 ⊂ [−2,−1

2 ] ∪ [12 , 2].

ψ2 satisfies ψ̂2 ∈ C∞(R), supp ψ̂2 ⊂ [−1, 1]
and ‖ψ2‖ = 1.

Hence ψ is a smooth bandlimited function.

Demetrio Labate (UH) Applied Harmonic Analysis SIAM IS16 14 / 57



Construction of Continuous Shearlets

There are many admissible shearlets.

Band-limited shearlets [Guo,Kutyniok,L, 2006]. We choose:

ψ̂(ξ) = ψ̂(ξ1, ξ2) = ψ̂1(ξ1) ψ̂2(
ξ2
ξ1

),

where

ψ1 is a continuous wavelet with ψ̂1 ∈ C∞(R)
and supp ψ̂1 ⊂ [−2,−1

2 ] ∪ [12 , 2].

ψ2 satisfies ψ̂2 ∈ C∞(R), supp ψ̂2 ⊂ [−1, 1]
and ‖ψ2‖ = 1.

Hence ψ is a smooth bandlimited function.

Demetrio Labate (UH) Applied Harmonic Analysis SIAM IS16 14 / 57



Construction of Continuous Shearlets

Alternatively...

Compactly supported shearlets
[Lim,Kutyniok,2011] [Kutyniok,Petersen,2015]. We choose:

ψ(x1, x2) = ψ1(x1)φ(x2)

where

ψ1 is a compactly supported continuous wavelet.

φ ∈ C 2([−r , r ]) satisfies φ(0) = 0, φ′(0) 6= 0,
∫
φ(x)dx > C > 0.

Hence ψ is a compactly supported function.
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Construction of Continuous Shearlets

The elements of a shearlet system {ψa,s,t} are a well localized waveforms,
with orientation controlled by the shear parameter s, and increasingly
elongated at fine scales (a→ 0).
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Construction of Continuous Shearlets

Choosing an admissible function ψ, the Continuous Shearlet Transform

SHψ : f → SHψf (a, s, t) = 〈f , ψa,s,t〉 ,

is a linear isometry from L2(R2) to L2(AG ).

Hence

‖f ‖2 =

∫
R2

∫
R+

∫ ∞
0
|SHψf (a, s, t)|2 da

a3
ds dt.

SHψf (a, s, t) measures the content of f
as a function of the scale a,
the shear s and the location t.

It is able to resolve both the location and orientation of singularities.
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Example: Heaviside function (2D)

Let H(x1, x2) = χx1>0(x1, x2).

Then:

SHψH(a, s, t) =

∫
R2

Ĥ(ξ) ψ̂a,s,t(ξ) dξ = a
3
4

∫
R

ψ̂1(a ξ1)
2πiξ1

ψ̂2(a−
1
2 s)e2πiξ1t1 dξ1

(set γ̂(η) =
1

2πiη
ψ̂1(η)) = a

3
4 ψ̂2(a−1/2s)

∫
R
γ̂(η) e2πiη

t1
a dη

If t1 6= 0, since ψ̂1 ∈ C∞c (R), for any k ∈ N

SHψH(a, s, t) ≤ Ck ak , as a→ 0.

If t1 = 0 and s 6= 0, the term ψ̂2(a−1/2s) will vanish as a→ 0.

If t1 = 0 and s = 0, provided ψ̂2(0) 6= 0 and
∫
R γ̂(η) dη 6= 0, we have

SHψH(a, 0, (0, t2)) = O(a
3
4 ).
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Example: Heaviside function (2D)

SHψH(a, s, t) decays rapidly for all values of s and t = (t1, t2),
except for s = 0 and t2 = 0
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Resolution of the Wavefront Set

The Continuous Shearlet Transform of f

SHψs(a, s, t) = 〈f , ψa,s,t〉 , a ∈ R+, s ∈ R, t ∈ R2

describes the geometry of the singularities of f through its decay at fine
scales.

SHψf characterizes the wavefront set of a distribution f through its
decay at fine scales [Kutyniok,L,2009], [Grohs, 2011].

The continuous curvelet transform has similar properties
[Candès,Donoho,2005].

SHψf provides a precise description of the geometry of
piecewise-smooth edges of f through its asymptotic decay at fine
scales [Guo,L,2008-2015]. This holds also in 3D.
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Resolution of edges using the CST (d = 2)

Theorem [Guo,L] Let B = χS , S ⊂ R2 compact, and ∂S is piecewise
smooth.

(i) If t /∈ S or if t ∈ ∂S and s does not correspond to the normal
direction of ∂S at t then

lim
a→0+

a−N SHψB(a, s, t) = 0, for all N > 0.

(ii) If s = s0 corresponds to the normal direction of ∂S at t then

0 < lim
a→0+

a−
3
4 |SHψB(a, s0, t)| <∞.

That is, SHψB has slow asymptotic decay only at the edge points for
normal orientations, where

SHψB(a, s0, t) = O(a
3
4 ) as a→ 0
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Resolution of Edges (D=2)

O(a
3
4 )

O(aN)

O(a
3
4 )

O(a
3
4 )O(aN) O(aN)

At the regular points t on an edge, for normal orientation, the shearlet

transform decays as O(a
3
4 ). For all other values of s, the decay is as fast

as O(aN), for any N ∈ N.

At the corner points, the shearlet transform decays as O(a
3
4 ) for both

normal orientations.
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Extensions and generalizations

The shearlet analysis of discontinuities extends to:

Functions f =
∑

fiχSi where fi are smooth functions and the
boundary sets ∂Si may contain corner points [Guo,L,2009,2015].

Characterization of edges with uniform decay estimates
[Kutyniok,Petersen,2015].

Characterization of edge curvature and flatness [Guo,L,2015].
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Extensions and generalizations

The shearlet analysis of discontinuities extends to higher dimensions:

Functions f = χS where S ⊂ R3 and the
boundary set ∂S is a piecewise smooth
boundary which may contain wedges.
[Guo,L,2011],[Guo,L,2012].

Analysis of 3D edges and corners [Kutyniok,Petersen,2015].

Analysis of one-dimensional manifolds, such
as the curve of intersection of 2 surfaces.
[Houska,L,2015] [Guo,L,2015]
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Analysis of singularities: geometric separation

A related problem is the geometric separation of singularities.

Let f = P + C where P is a collection of point-like singularities and C is a
cartoon-like image.

It is possible to separate, in a precise sense, point and curvilinear
singularities in 2D [Donoho,Kutyniok, 2013] or points and piecewise linear
singularities (polyhedral singularities) in 3D [Guo & L, 2014].
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Applications

Demetrio Labate (UH) Applied Harmonic Analysis SIAM IS16 28 / 57



Some image processing applications

The microlocal properties of the Continuous Shearlet Transform and
related tranforms are useful to derive efficient algorithms for

Edge and boundary detection (2D/3D)

Estimation of edge/boundary orientation

Identification of geometric features (corners, junctions,...)

Segmentation, classification

. . .
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Edge Detection

Several edge analysis and detection algorithms based on multiscale
methods and shearlets were proposed. For example:

[Mallat,Zhong,1992] introduce a multiscale wavelet-based algorithm
for edge detection.

[Easley,Labate,Yi,2008], [Duval,Odone,De Vito,2015] use a multiscale
shearlet-based algorithm that reinforces true edges and suppresses
noise.

[Schug,Easley,O’Leary,2011] extend idea above to 3D for surface
detection.

[King at al.,2015] apply complex shearlets to detect edges in flame
front images recorded by planar laser-induced fluorescence

. . .
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Edge Detection

Shearlet-based edge detection on retina images [Easley,L,Yi,2008].

The Figure Of Merit (FOM) measures the closeness of reconstruction to
the true edge map (the higher the better).

Shearlet-based methods yield extremely competitive results.
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Edge Orientation

With respect to conventional multiscale methods, shearlets enable more
accurate and robust estimation of edge orientation.

Average error (degrees) in estimating edge orientation using a
wavelet method (dashed line) versus a shearlet method (solid line),
as a function of the scale 2−j .
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Feature Extraction

Multiscale methods can be very useful to extract features and landmarks
in images. For example:

[Lee,Sun,Chen,1992], [Quddus,Gabbouj,2002] multiscale corner
detection using wavelet transform.

[Easley,Labate,Yi,2008], [Duval,Odone,De Vito,2015] shearlet-based
corner and junction detection.

[Shui,Zhang,2013] corner detection using directional representations

. . .
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Feature Extraction

Single-scale shearlet analysis of corners and junctions
[Easley,Labate,Yi,2008]
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Feature Extraction

This idea can be used to classify smooth regions, edges, corner points
[Easley,Labate,Yi,2008].
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Feature Extraction

A multiscale variant of this idea can be used to define a corner detector
that is stable to viewpoint and illumination change, and robust to blur and
noise [Duval,Odone,De Vito,2015].

Shearlet multiscale corner detection: j = 0 (Blue); j = 1 (Green); j = 2
(Red); j = 3 (Magenta).
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Surface Orientation

Same idea extends to 3D. The 3D shearlet transform can be used to
estimate the local surface orientation [L,Negi,2013].

The magnitude of the continuous shearlet transform signals the local
orientation of the surface of a solid
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Surface Orientation

It can also be useful to detect wedges and corners.

The magnitude of the continuous shearlet transform signals the local
orientation of the surface of a solid
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Classification

Due to their ability to capture singularities over multiple scales, multiscale
representations are useful to generate highly informative features for
problems of classification.

Wavelet methods for texture classification and
segmentation [Unser,1995],[Laine,Fan,1993,1996],. . .

Rotation, scale invariance using wavelet packets
[Pun,Lee,2003], ridgelets [Chen,Bui,2005],
contourlets [Chen,Kegl,2010], . . .

Wavelet, shearlet filters in combination with SVM
[Chen,Xie,2007],[Jimenez,L,Papadakis,2015],. . .

. . .
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Problem: Soma Extraction

In neuroscience imaging, it is useful to automatically separate somas from
dendrites in fluorescent images of neurons.

Confocal image of neuronal culture (maximum projection view)
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Soma extraction

Shearlets and similar directional multiscale representations can be used to
detects regions of local isotropy.

Definition. Let f = χA, where A ⊂ R2. If x ∈ A we say that f is locally
isotropic at x and at scale s > 0 if B(x , s/2) ⊆ A.

Due to its directional sensitivity, the shearlet transform will exhibit a very
different behavior at points of local isotropy (inside soma) vs. points of
local anisotropy (inside dendrites)
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Directionality Ratio

We define the directionality ratio of an image f ∈ L2(R2) at scale a > 0
and location t ∈ R2 as the quantity

Daf (t) =
infs{|Sψf (a, s, t)|}
sups{|Sψf (a, s, t)|}

• It measures the strength of anisotropy at a location t and a scale a. •

The directionality ratio Daf (t) will be very different depending on t being
a point of local isotropy of f or not.
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Soma Extraction

Theorem [Labate,Negi,Ozcan,Papadakis,2014]: Let f = χN , where N
is the union of two subsets: a ball S with radius R > 0 and a cylinder C of
size 2r × L, where r > 0, L� R.

Then, for 4r ≤ a ≤ 1/4, there exists a threshold τ such that, for all y ∈ C ,
the directionality ratio yields: Daf (y) ≤ τ.

That is, the directionality ratio of f is small on the cylinder C .

On the other hand, the directionality ratio of f is large (close to 1)
inside the ball S .
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Soma Extraction. Segmentation

Image segmentation (SVM based)
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Soma Extraction. Directionality ratio

Computation of directionality ratio
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Soma Extraction

Large values of directionality ratio only identify a region strictly inside the
soma, not entire soma.

To complete the soma, we apply the level set method. We compute:

initial curve = boundary of set where directionality ratio is large;

a force field from the gradient of directionality ratio.

We also use this method to separate clustered somas.
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Soma Extraction

Directionality ratio + level set: soma detection
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Soma Extraction. Another example

Identification of somas
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Soma Extraction. Another example

Identification of somas and separation of clustered ones
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Soma Extraction (3D)

Method extends to 3D where soma detection can be combined with the
extraction of soma morphology [Bozcan,L,Laezza,Negi,Papadakis,2014]
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Scattering Transform

The scattering transform [Mallat,2012, Mallat,Bruna,2013] computes
data representations targeted to problems of pattern recognition.
Key features:

It extracts locally invariant, stable, highly informative features.

It is implemented through a cascade of wavelet filters and modulus
operators over multiple layers (deep convolution network).

Dilated wavelets are also rotated with elements r ∈ G :

ψλ(x) = a−1ψ(a−1rx)

with λ = (a, r), a > 0, r ∈ G .

Wψ : f 7→ Wψf (a, t) = f ∗ ψλ(t)
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Scattering Transform

By taking the magnitude and then averaging with a low-pass function φ,
one defines locally translation invariant coefficients

S1f (x , λ) = |f ∗ ψλ(x)| ∗ φ(x).

This process is repeated
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Scattering Transform

The scattering transform builds coefficients

invariant to local translations and stable to small deformations;

other invariances can be built into this approach.

Multiple applications including:

texture classification [Sifre,Mallat,2014]

image registration [Easley,Mc-Innis,L,2015]

Demetrio Labate (UH) Applied Harmonic Analysis SIAM IS16 54 / 57



Scattering Transform

The scattering transform builds coefficients

invariant to local translations and stable to small deformations;

other invariances can be built into this approach.

Multiple applications including:

texture classification [Sifre,Mallat,2014]

image registration [Easley,Mc-Innis,L,2015]

Demetrio Labate (UH) Applied Harmonic Analysis SIAM IS16 54 / 57



Scattering Transform

The scattering transform builds coefficients

invariant to local translations and stable to small deformations;

other invariances can be built into this approach.

Multiple applications including:

texture classification [Sifre,Mallat,2014]

image registration [Easley,Mc-Innis,L,2015]

Demetrio Labate (UH) Applied Harmonic Analysis SIAM IS16 54 / 57



Scattering Transform

The scattering transform builds coefficients

invariant to local translations and stable to small deformations;

other invariances can be built into this approach.

Multiple applications including:

texture classification [Sifre,Mallat,2014]

image registration [Easley,Mc-Innis,L,2015]

Demetrio Labate (UH) Applied Harmonic Analysis SIAM IS16 54 / 57



Scattering Transform

The scattering transform builds coefficients

invariant to local translations and stable to small deformations;

other invariances can be built into this approach.

Multiple applications including:

texture classification [Sifre,Mallat,2014]

image registration [Easley,Mc-Innis,L,2015]

Demetrio Labate (UH) Applied Harmonic Analysis SIAM IS16 54 / 57



Conclusion
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Conclusion

Methods from applied harmonic analysis offer powerful tools to
capture the structure of imaging data.

I Wavelets, curvelets, shearlets, scattering wavelets,. . .

Shearlets and related multiscale representations enable a precise
geometrical description of the singularities of multivariate
functions and distributions.

These properties are useful to extract essential image features
I edge analysis, edge/boundary and corner detection, local isotropy, . . .

Building on this low-level image processing capabilities, one can
construct improved methods for pattern recognition and
classification

I soma detection, texture classification, . . .
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