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Inverse Problems

• Given measurement of the form

y = Ax + ε

• Noise distribution ε ∼ Pe known

• Recover x from data y

• Naive reconstruction for ill-posed problem is unstable
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Computed Tomography

A · +ε =
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Ill-posedness

Image Reconstruction 3



Variational Regularization

• Reconstruct by solving variational problem

argminx ‖Ax − y‖2 + λR(x)

• Motivated by MAP interpretation

argmaxx p(x |y) = argminx

1

2σ2
‖Ax − y‖2 − log p(x)

• R(x) encodes prior knowledge about the reconstruction.

• Corresponds to Gibbs prior p(x) ∼ exp(−R(x))

• Total variation regularization

TV (x) =

∫
‖∇x(t)‖1 dt
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Deep Learning in Inverse Problems

Methods based on minimizing ‖ΨΘ(y)− x‖.

• Fully learned inversion

• Postprocessing

• Recurrent Inference Machines

• Learned gradient descent

• Learned PDHG

Learning a regularization functional

• Regularization by Denoising (RED):

• Deep Image Priors: Regularization by Architecture.

• GAN Image Priors: Projection onto Image of Generative Model.

• NETT
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Distributional losses

• Heuristic: Regularization functional suppresses characteristic noise in

reconstruction

• Distribution of Reconstructions should be close to distribution of

ground truth images.

• Denote by Pr distribution of ground truth images, by PY

measurement distribution.

• In practice, have access to the empirical associated to Pr and PY .

• Pull back distribution PY via pseudo-inverse A†:

Pn := A†]PY

• Aim: Construct regularization functional that aligns reconstruction

distribution with Pr .
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Wasserstein Loss

• The Wasserstein-1 distance between two distributions Pn and Pr is

defined as

Wass(Pn,Pr ) := inf
γ∈Π(Pn,Pr )

‖x1 − x2‖ dγ(x1, x2)

• Minimal path length to ’transport’ mass Pn to Pr .

• The Kantorovich duality allows to equivalently characterize via

Wass(Pn,Pr ) = sup
f 1−Lip

EX∼Pn f (X )− EX∼Pr f (X )

• Denote now by f ∗ an optimizer to the dual formulation of the

Wasserstein distance.
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Decreasing the Wasserstein Distance

What happens if we do gradient descent over f ∗?

• Definitions

gη(x) := x − η · ∇x f
∗(x).

Pη := (gη)#Pn

• Assume that η 7→Wass(Pr ,Pη) admits a left and a right derivative

at η = 0, and that they are equal. Then,

d

dη
Wass(Pr ,Pη)|η=0 = −EX∼Pn

[
‖∇xΨΘ(X )‖2

]
= −1.

• This is the fastest decrease in Wasserstein distance for any

regularization functional with normed gradients

8



Approximating f ∗

• Idea in Wasserstein GANs: Use a neural network (critic), to

approximate f ∗.

• We employ a convolutional architecture for the network

ΨΘ : Rn×m → R.

• Train the Network with the loss

EX∼Pr [ΨΘ(X )]− EX∼Pn [ΨΘ(X )] + λ · E
[
(‖∇xΨΘ(X )‖∗ − 1)2

+

]
.

• Relaxation of Lipschitz constraint into penalty term (WGAN-GP)
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Algorithm Summary

• Train a convolutional neural network as regularization functional by

minimizing

EX∼Pr [ΨΘ(X )]− EX∼Pn [ΨΘ(X )] + λ · E
[
(‖∇xΨΘ(X )‖∗ − 1)2

+

]
.

• Deploy the network on the inverse problem by solving

argminx ‖Ax − y‖2 + λΨΘ(x)

• Gradient of ΨΘ(x) available via backpropagation, prox not available

• Many optimization schemes possible. We employed gradient descent.
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Computational Results

Ground truth Filtered

Backprojec-

tion

Total

Variation

Post-

Processing

Adversarial

Regularizer
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Denoising on BSDS

Ground Truth Noisy Image TV Denoising AE Adversarial

Reg.
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Ellipse data

Comparing to TV on synthetic ellipse data. The images are piecewise

constant.
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Parameter Heuristics

• Normed gradients of regularization functionals allow to estimate

parameters easily from noise level

• Heuristic: Ground truth is a critical point of regularization functional

• Leads to formula

λ = 2 Ee∼pn‖A∗e‖2,

• Note: Unlike direct unrolling schemes, can underregularize by

choosing λ small.
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How does this functional look like?

• Data Manifold Assumption: The measure Pr is supported on the

weakly compact set M, i.e. Pr (Mc) = 0

• Denote by PM : D →M, x → argminy∈M ‖x − y‖ the projection

onto the data manifold

• Projection Assumption: (PM)#(Pn) = Pr

• Corresponds to a low-noise assumption - noise level low in

comparison to manifold curvature
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Manifold Lemma

The distance function to the data manifold

dM(x) := min
y∈M

‖x − y‖

is a maximizer to the functional

argmaxf∈1−Lip EX∼Pn f (X )− EX∼Pr f (X )
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Stability

• Do not assume ΨΘ to be bounded from below

• Instead have Lipschitz assumption on ΨΘ

• Make usual sufficient assumptions for coercivity

• Let yn be a sequence in Y with yn → y in the norm topology and

denote by xn a sequence of minimizers of the functional

argminx∈X ‖Ax − yn‖2 + λΨΘ(x)

Then xn has a weakly convergent subsequence and the limit x is a

minimizer of ‖Ax − y‖2 + λΨΘ(x).
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Unpaired Training Data

• Note that paired data of the form (xi , yi ) from the joint distribution

was never used.

• Instead, have access to both marginals xi samples from Pr , yi
samples from PY .

• Use case: Real measurement data y , containing unmodeled effects

• Single Particle Analysis reconstruction: No need to for registration
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Advantages & Disadvantages

Advantages

• Unpaired Training Data

• Greater Flexibility (i.e. EM

algorithm)

• Interpretability. Non-implicit

prior.

• Very quick training, small data

sets

• Stability results

Disadvantages

• Slower evaluation than some

direct methods

(Post-Processing)

• Worse performance in term of

PSNR
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