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Some perspective (thanks Mark Twain!)

¢ Facts are stubborn, but statistics are more pliable.

* Most people use statistics like a drunk man uses a lamppost; more for support than

illumination.

* Datais like garbage. You'd better know what you are going to do with it before you collect
it.



Data Workflow (cartoon credit: T. Wildey)
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The Conclusions! (I may run out of time)

¢ Data-consistent distributions on model inputs have push-forwards that match a
distribution on observable model outputs.

¢ Data-consistent distributions constructed by combining observable and prediction
distributions to update initial distributions.
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* Data-consistent distributions on model inputs have push-forwards that match a
distribution on observable model outputs.

¢ Data-consistent distributions constructed by combining observable and prediction
distributions to update initial distributions.

* Prior work used densities which presents some practical limitations.

= Expensive models: Computational budgets may prevent sufficient sampling to
construct accurate densities.

. ; . [y :
= High-dimensional spaces: Slows down convergence rates of naive KDEs.

* The use of optimally weighted empirical CDFs is a promising alternative approximation to
data-consistent distributions that implicitly can exploit low-dimensional structure.
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Notation and Terminology

* 4 € A = model inputs referred to as model parameters.

* (J(A) = measurable model outputs referred to as quantities of ilnterest (Qol).

* D = Q(A)denotes the set of observable data that can be predicted by the model.

= gisused to denote a single datum.
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A simple example: The Densities

prior

v~ U(-1,1])

o jy* ~ N(u,0°)

. Irliitially takey = 0.25ando = 0.1.

= Hg{prfm]

= Known in this case.
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A statistical Bayesian perspective

. L(glA
Jrh (A | q) o Jr;{:ﬂrlr (q )




A simple example: Comparison to statistical Bayesian

We use the same prior and make the data likelihood function match the observed density.

(prior)

- = PF of np
- = PF of SBayes posterior
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Issues with densities

¢ Convergence rates of naive KDE negatively impacted by dimension.

* May need at least several hundred (if not thousands) of samples in even low dimensions
(so iterative updates using rejection sampling may be problematic).

We summarize results for a 100D example from Convergence of Probability Densities using

Approximate Models for Forward and Inverse Problems in Uncertainty Quantification, T. Butler, J.
Jakeman, T. Wildey, SIAM J. Sci. Comput., 40(5), A3523-A3548. (2018)



Discretized PDE Example

Model Setup:
-V - (K(A)Vu)=0, (x,y) €Q=(0, i
u=l, x =),
u=1, x=1,

K(A)Vu-n=0, y=0andy=1.

o Y =logKand Y(A) = ¥ + X2, &)\ /nifi(x, y)
» Truncate at 100 terms and 72" ~ N(0, I).

Numerical Setup:

e Continuous piecewise bilinear FEM on uniform spatial grid.

= h = 1/10, 1/20, 1/40, 1/80, 1/160.

¢ Use 1 E3 samples from z%""""
Y



Discretized PDE Example: Posterior Convergence (77" ~ N(0.7, 1E — 4))
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Discretized PDE Example: Wait..accept/reject worked in 100D?

Remember, the computations are really taking place in the 1D data space!
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So what exactly is the problem with dimension?

It all depends on which space A or D has the large dimension.



Convergence and Dimension: An Example
Setup:

Q) =A=' C (A= p),
apy” ~ U(la, b))’

Prior and Push-forward:

and 77" ~ N(u,C) = 757" ~ y*(d)

* a and b chosen as the 40th and 60th percentiles Dfﬂ‘('(’t "or) gor each d



Approx. error in L' of updated density vs. Num. Samples used in GKDE.




~ @ and b chosen so Lebesgue measure of support of 1, Is constant for each m.

Approx. error in L' of updated density vs. Num. Samples used in GKDE.
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Approx. error in L' of updated density vs. Num. Samples used in GKDE.

\

100-




If

Can we exploit low-dimensional structure?

nhs(Q)__ H nba(Q' and

1<i<m

then

Eglhr."nr}(Q) = H Eg:.[prinr}(Q‘_)

1<i<m

A (4) =

=20 ]

”'I”(Q,(A))
I<i<m 7 g:{prm”(Qi(A)) |




e We can solve the joint prablem by solving several lower-dimensional problems.

* [Functional Assimilation] We can sequentially update prior weights as distributions on

mode| observables become available

Approx. error in L' of updated density vs. Num. Samples used in GKDE (now
exploiting structure)
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Avoiding density approximation with CDFs

We build upon the work of Optimal Z2 -norm empirical importance weights for the change of
probability measure, 5. Amaral, D. Allaire, K. Willcox, Stat. Comput., 27, 625-643 (2017)

The basic idea is to solve a forward UQ problem by constructing a constrained quadratic
optimization problem in terms of the empirical push-forward CDF and a known, or observed, |
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Some definitions/notation

n
(Empirical Weighted) Proposal: Fjqp.w(t) = n”! Z w;l(x"” < t)
i=1

m

(Empirical) Target: F;,,(t) = m™! 2 I(y" < t)
i=1

2

Misfit functional: J(w) = [2(u(R))*]™" ”F propiw(t) = Fgpe (D) L(B)




The (no details) algorithmic summary

H prop, W ;grg (t)

« Hyp € R and Hy,,, € R™™ can be written as Hadamard products of matrices
involving only 1D integrals. I:

 Eachcomponent of b € R” can be written as product of 1D integrals.

* Optimal w found by minimizing J(W) subject to w; > 0 for all i and Z w; = n.

We use cvxopt in Python to solve the optimization problem.



Numerical examples

¢ Verifying alternative approach estimates a consistent solution.

¢ A high-dimensional example.



Revisiting the Discretized PDE

We compute errors on data space and on the first few KL modes that exhibit greatest
differences in means from initial values.



Errors in 1000 samples vs. 240 i.i.d. samples
Errors in data space (absolute and rel. % reduction of weighted vs un-weighted):

un-weighted vs. weighted error: 1.046E-03 vs. 6.381E-06

rel. improvement: 99.39%
Errors in (certain directions of) parameter space (non-weighted vs. weighted and rel. improvement):

KL mode # 1 CDF errors: 3.329E-03 vs. 2.596E-04 => 92.20% reduction
KL mode # 3 CDF errors: 1.797E-03 vs. 6.762E-05 => 96.24% reduction
KL mode # 6 CDF errors: 2.480E-03 vs. 1.906E-04 => 92.32% reduction

KL mode #10 CDF errors: 7.208E-03 vs. 9.611E-05 => 98.67% reduction
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X

Errors in (certain directions of) parameter space (hon-weighted vs. weighted and rel. improvement):

Ay errors: 6.400E-02 vs. 1.514E-02 = 76.34% reduction
A> errors: 8.314E-02 vs. 1.288E-02 = 84.51% reduction
A3 errors: 7.598E-02 vs. 3.435E-02 = 54.79% reduction
/4 errors: 6.459E-02 vs. 5.704E-02 = 11.70% reduction

S
As errors: 6.286E-02 vs. 5.327E-02 = 15.25% reduction
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X

Errors in (certain directions of) parameter space (hon-weighted vs. weighted and rel. improvement):

S S u——
A> errors: 8.314E-02 vs. 1.288E-02 = 84.51% reduction
Ay errors: 7.598E-02 vs. 3.435E-02 = 54.79% reduction
A4 errors: 6.459E-02 vs. 5.704E-02 = 11.70% reduction
/s errors: 6.286E-02 vs. 5.327E-02 = 1[.25% reduction

Ag errors: 5.712E-02 vs. 9.003E-03 = 84.24% reduction




X

Errors in (certain directions of) parameter space (non-weighted vs. weighted and rel. improvement):

Ag errors: 5.712E-02 vs. 9.003E-03 = 84.24% reduction

A7 errors: 6.713E-02 vs. 2.735E-02 = 59.26% reduction

Ag errors: 5.732E-02 vs. 4.150E-02 = 27.59% reduction

Ag errors: 7.618E-02 vs. 6.727E-03 = 91.17% reduction

A1 errors: 5.550E-02 vs. 6.385E-03 = 88.50% reduction




	slide02-0.88
	slide03-0.75
	slide04-0.79
	slide05-0.82
	slide06-0.86
	slide07-0.76
	slide08-0.89
	slide09-0.90
	slide10-0.89
	slide11-0.90
	slide12-0.89
	slide13-0.88
	slide14-0.89
	slide15-0.91
	slide16-0.90
	slide17-0.90
	slide18-0.91
	slide19-0.85
	slide20-0.87
	slide21-0.83
	slide22-0.89
	slide23-0.90
	slide24-0.89
	slide25-0.88
	slide26-0.86
	slide27-0.90
	slide28-0.91
	slide29-0.89
	slide30-0.89
	slide31-0.88
	slide32-0.85
	slide33-0.89
	slide34-0.87
	slide35-0.90
	slide36-0.90
	slide37-0.87
	slide38-0.81
	slide39-0.88
	slide40-0.85
	slide41-0.83

