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Continuum Limit of Posteriors in
Graph Bayesian Inverse Problems.

joint work with Daniel Sanz-Alonso (Brown University).
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Inverse Problems

u ∈ X 7−→ F(u) ∈ Z 7−→ O ◦ F(u) ∈ Rp

Forward map F : X → Z .
Observation map O : Z → Rp.
Spaces X ,Z are spaces of functions on M⊆ Rd . For
example: L2(M),C(M),H1(M), . . .
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Observations are contaminated by noise.
For example, additive noise:

yi = [O ◦ F(u)]i + ηi , i = 1, . . . , p.

In general, we use a negative log-likelihood function to describe
noise model:

φ(u; y).

Goal: Given observations y learn input u.
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Bayesian Inverse Problems

Goal: Learn input from observations.
How?: Use Bayesian approach. Need a prior distribution:

u ∼ π.

We can then obtain the posterior distribution of u|y :

dµy (u) ∝ exp(−φ(u; y))dπ(u).
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Example 1: Semi-supervised learning

Input space: u ∈ C(M) with
´
M u(x)dγ(x) = 0.

Forward map: F : u 7→ u.
Observations:

yi = S(u(xi ) + ηi ), i = 1, . . . , p.

ηi ∼ N(0, σ2).

Negative log-likelihood :

φ(u; y) = −
p∑

i=1
log(Ψγ(u(xj) · yj))

Prior: π = N(0, (−∆M)−s).
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Example 2: Learning the initial condition of the heat
equation.

Input space: u ∈ L2(M).
Forward map: F : u 7→ e∆u.
Observations:

yi =

 
B(xi ,δ)∩M

u(x)dx + ηi , i = 1, . . . , p.

ηi ∼ N(0, σ2).

Negative log-likelihood:

φ(u; y) =
1
σ2 ‖y −O ◦ F(u)‖2

Prior: π = N(0, (−∆M)−s).
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What do we do if the domain M is unknown?
Only access to:

y1, . . . , yp.
Mn = {x1, . . . , xp, . . . , xn} ⊆ M. (say i.i.d. samples from γ).
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What do we do if the domain M is unknown?
Only access to:

y1, . . . , yp.
Mn = {x1, . . . , xp, . . . , xn} ⊆ M. (say i.i.d. samples from γ).

Need surrogates for F ,O, π.
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Graph Bayesian Inverse problems

First: Construct a geometric graph on Mn

xi ∼ xj if |xi − xj | < ε.
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Then, produce graph Laplacian ∆n.
Forward map: Fn : un ∈ L2(γn) 7→ L2(γn)

Fnun = e−∆nun.

Observation map: On : vn ∈ L2(γn) 7→ Rp

[Onvn]i =

 
B(xi ,δ)∩Mn

vn(x)dγn(x), i = 1, . . . , p.

Prior: πn = N(0,∆−s
n )
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Graph posterior:

µy
n(un) ∝ exp(−φn(un; y))dπn(un), un ∈ L2(γn).

Ground-truth posterior:

µy (u) ∝ exp(−φ(u; y))dπ(u), u ∈ L2(γ).
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How and when do we recover µy

from µy
n?
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How and when do we recover µy from µy
n?

Note: µy
n is supported on L2(γn) whereas µy is supported on

L2(γ).
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How?
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TL2 space

L2(γ)L2(γn)

un
u

γn

γ

P(M)
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TL2 = {(θ, v) : θ ∈ P(M), v ∈ L2(θ)}.

with distance between (θ1, v1) and (θ2, v2):

inf
π∈Γ(θ1,θ2)

ˆ
M×M

d2
M(x , y)dπ(x , y) +

ˆ
M×M

|v1(x)− v2(y)|2dπ(x , y).
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TL2 space in previous works:

Continuum limit of total variation on point clouds. ARMA.
NGT and Slepčev.
A variational approach to the consistency of spectral
clustering. ACHA. NGT and Slepčev.
A new analytic approach to consistency and overfitting in
regularized empirical risk minimization EJAM. NGT and R.
Murray.
A transportation Lp distance for signal analysis. Preprint.
Slepčev, Thorpe, et al.
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L2(γn) ↪→ TL2 induces P(L2(γn)) ↪→ P(TL2).

L2(γ) ↪→ TL2 induces P(L2(γ)) ↪→ P(TL2).
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When?
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Theorem (NGT & D. Sanz-Alonso)
Suppose that

log(n)1/m

n1/m � ε� 1
n1/s ,

where s > 2m. Then,
µy

n
P(TL2)−→ µy .

Moreover,
Fn]µ

y
n
P(TL2)−→ F]µy .
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log(n)1/m

n1/m � ε� 1
n1/s ,

Lower bound: ∞-OT distance between γn and γ.
Upper bound: Needed to control high frequencies graph
Laplacian.
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Variational characterization of posteriors.

Graph:

Jn(νn) := DKL(νn||πn)+

ˆ
L2(γn)

φn(un; y)dνn(un), νn ∈ P(L2(γn)).

µy
n = argminνn Jn(νn).

Ground-Truth:

J(ν) := DKL(ν||π) +

ˆ
L2(γ)

φ(u; y)dν(u), ν ∈ P(L2(γ)).

µy = argminν J(ν).

Note: The variational characterization of posteriors allows us to
use variational techniques.
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Conclusions

We set forth formulation of Bayesian inverse problems in
unknown domains.
Contribute to the study of robust UQ in machine learning
tasks such as Semi-supervised learning.
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Thank you for your attention!
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