MODELS FOR THIN PRESTRAINED STRUCTURES

Annie Raoult, Laboratoire MAP5, Université Paris Descartes, France

Focus

- 1. HIERARCHY OF MODELS FOR THIN ELASTIC STRUCTURES
- 2. MIX POINT 1 WITH A "PRESTRAINED" ASSUMPTION

IN 18

1. HIERARCHY OF MODELS FOR THIN ELASTIC STRUCTURES

Membrane, plate, von Kármán,...

Sort the models in a hierarchy. In terms of?

- either the external world action (load magnitude, boundary conditions),
- or, equivalently, the internal energy of the structure.

Tool? thickness $h \rightarrow 0$, identify limit models.

MODELS FOR THIN PRESTRAINED STRUCTURES

Annie Raoult, Laboratoire MAP5, Université Paris Descartes, France

Focus

- 1. HIERARCHY OF MODELS FOR THIN ELASTIC STRUCTURES
- 2. MIX POINT 1 WITH A "PRESTRAINED" ASSUMPTION

"PRESTRAINED" ASSUMPTION

A body deforms in \mathbb{R}^3 , $\Phi:\Omega\mapsto\mathbb{R}^3$,

Usually:

$$I(\Phi) = \int_{\Omega} W(\nabla \Phi(x)) dx$$
, $W: \mathbb{M}_3^> \mapsto \mathbb{R}^+$ stored energy density, $\mathbb{M}_3^> := \{ F \in \mathbb{M}_3; \det F > 0 \}.$

W(Id) = 0 and W(F) = 0 on SO(3), $T_R(Id) = DW(Id) = 0$, Ω natural state. T_R : First PK stress tensor.

Heterogeneity can be added still with W(x, Id) = 0, $T_R(x, Id) = 0$.

Prestrain (cont'd): We defined

$$I(\Phi) = \int_{\Omega} W(\nabla \Phi(x) A^{-1}(x)) dx, \quad W \ge 0, W(\cdot) = 0 \text{ on SO}(3).$$

In other words,

$$I(\Phi) = \int_{\Omega} Z(x, \nabla \Phi(x)) dx$$
 where the space-dependent stored energy density

$$Z(x,F) := W(FA^{-1}(x)), \det F > 0$$
, satisfies

$$Z(x,F)=0$$
 for $FA^{-1}(x)\in SO(3)$, or equivalently, $F^TF=G(x)$.

Why such energy densities? Allow to model situations where

for any $x \in \Omega$, the material aims at reaching a prescribed metric G(x),

$$(\nabla \Phi(x))^T \nabla \Phi(x) = G(x).$$

IF realized, then the changes of lengths between material points along a deformation Φ follow G.

Prestrain (cont'd): We defined

$$I(\Phi) = \int_{\Omega} W(\nabla \Phi(x) A^{-1}(x)) dx, \quad W \ge 0, W(\cdot) = 0 \text{ on SO}(3).$$

In other words,

$$I(\Phi) = \int_{\Omega} Z(x, \nabla \Phi(x)) dx$$
 where the space-dependent stored energy density $Z(x,F) := W(FA^{-1}(x)), \det F > 0$, satisfies $Z(x,F) = 0$ for $FA^{-1}(x) \in SO(3)$, or equivalently, $F^TF = G(x)$.

First PK stress tensor at
$$x$$
: $T_R(x,F) = D_F Z(x,F) = DW(FA^{-1}(x))A^{-1}(x)$, $T_R(x,F) = 0$ for $F^T F = G(x)$.

Find a stress-free configuration? Means $\Phi:\Omega\mapsto\mathbb{R}^3$ such that

$$(\nabla \Phi(x))^T \nabla \Phi(x) = G(x) \quad \forall x \in \Omega, \text{ or a.e. } \mathbf{Exists}?$$

Why such energy densities? Allow to model situations where

for any $x \in \Omega$, the material aims at reaching a prescribed metric G(x),

$$(\nabla \Phi(x))^T \nabla \Phi(x) = G(x).$$

IF realized, then the changes of lengths between material points along a deformation Φ follow G.

Let $A = G^{1/2}$..., the formalism is no longer mysterious.

See: Lewicka & Pakzad (2011), Bhattacharya, Lewicka & Schaffner (2016), Efrati, Sharon, Klein, Kupferman and coauthors (2007, ...).

In mind: growth-induced changes of target lengths, differential shrinking or swelling of materials (responsive gels).

Klein, Efrati, Sharon experiment, Science (2007)

Shrinking by a different ratio $\eta(r)$ at each radius r both in the radial and the azimuthal directions.

Target metric of this initially planar structure:

$$g(r) = \begin{bmatrix} \eta^2(r) & 0 \\ 0 & r^2 \eta^2(r) \end{bmatrix}$$

The initially planar sheet aims at deforming in a surface in \mathbb{R}^3 whose curvature is encoded in g(r) (Gauss Egregium theorem). A little more complicated because the sheet has a thickness. See, R. Kohn's talk.

The structure deforms in space not because of loads, or boundary conditions, but because it has to accommodate lengths (and thickness).

Kim, Hanna, Byun, Santangelo, Hayward experiment, Science (2012)

Photopatterning of polymer films

Remark: In both examples, the structures are thin. Of importance also for living tissues (leaves, skin).

Klein, Efrati, Sharon experiment, Science (2007)

Shrinking by a different ratio $\eta(r)$ at each radius r both in the radial and the azimuthal directions.

Target metric of this initially planar structure:

$$g(r) = \begin{bmatrix} \eta^2(r) & 0 \\ 0 & r^2 \eta^2(r) \end{bmatrix}$$

The initially planar sheet aims at deforming in a surface in \mathbb{R}^3 whose curvature is encoded in g(r) (Gauss Egregium theorem). A little more complicated because the sheet has a thickness. See, R. Kohn's talk.

"Activation" of the metric

The structure deforms in space not because of loads, or boundary conditions, but because it has to accommodate lengths (and thickness).

Why such energy densities? Allow to model situations where

for any $x \in \Omega$, the material aims at reaching a prescribed metric G(x),

$$(\nabla \Phi(x))^T \nabla \Phi(x) = G(x).$$

IF realized, then the changes of lengths between material points along a deformation Φ follow G.

Let $A = G^{1/2}$..., the formalism is no longer mysterious.

See: Lewicka & Pakzad (2011), Bhattacharya, Lewicka & Schaffner (2016), Efrati, Sharon, Klein, Kupferman and coauthors (2007, ...).

In mind: growth-induced changes of target lengths, differential shrinking or swelling of materials (responsive gels).

Klein, Efrati, Sharon experiment, Science (2007)

Shrinking by a different ratio $\eta(r)$ at each radius r both in the radial and the azimuthal directions.

Target metric of this initially planar structure:

$$g(r) = \begin{bmatrix} \eta^2(r) & 0 \\ 0 & r^2 \eta^2(r) \end{bmatrix}$$

The initially planar sheet aims at deforming in a surface in \mathbb{R}^3 whose curvature is encoded in g(r) (Gauss Egregium theorem). A little more complicated because the sheet has a thickness. See, R. Kohn's talk.

"Activation" of the metric

The structure deforms in space not because of loads, or boundary conditions, but because it has to accommodate lengths (and thickness).

Kim, Hanna, Byun, Santangelo, Hayward experiment, Science (2012)

Photopatterning of polymer films

Remark: In both examples, the structures are thin. Of importance also for living tissues (leaves, skin).

NATURAL QUESTION: Rigorous derivation of models for prestrained thin structures from prestrained 3d models

Back to 3d: basic problem on a 3d-domain Ω . Let $G(x) \in \mathbb{S}_3^{>}$ be given (smooth). Can we find

$$\Phi: \Omega \subset \mathbb{R}^3 \mapsto \mathbb{R}^3$$
, $(\nabla \Phi(x))^T \nabla \Phi(x) = G(x)$, $\det \nabla \Phi(x) > 0$?

- if G(x) = Id, then $\Phi(x) = Qx$ with $Q \in SO(3)$ (Liouville),
- arbitrary G: yes iff $\mathcal{R} = 0$, G said flat, where

$$\mathcal{R}_{qijk} = \partial_j \Gamma_{ikq} - \partial_k \Gamma_{ijq} + \Gamma^p_{ij} \Gamma_{kqp} - \Gamma^p_{ik} \Gamma_{jqp}$$
, "six" entries,

$$2\Gamma_{ijq} = \partial_j g_{iq} + \partial_i g_{jq} - \partial_q g_{ij}, \ \Gamma^p_{ij} = g^{pq} \Gamma_{ijq}, \ (g^{pq}) = G^{-1}.$$

$$I^{h}(\Phi) = \int_{\Omega} W(\nabla_{h}\Phi(x)A^{-1}(\bar{x})) dx, \quad \nabla_{h}\Phi = (\partial_{1}\Phi, \partial_{2}\Phi, \frac{1}{h}\partial_{3}\Phi).$$

Order 0 model: Generalized membrane model

Expected that " Φ^h converges to some Φ with some lim. behavior for $\frac{1}{h}\partial_3\Phi^{h}$ ". Natural to define

$$W_0(\bar{x},\bar{F}) := \min\{W\left([\bar{F}|b]A^{-1}(\bar{x})\right); b \in \mathbb{R}^3\} \text{ for } \bar{F} \in \mathbb{M}_{3,2}.$$

Then,

$$I^h \xrightarrow{\Gamma - L^p(\Omega)} I_0$$
 "effectively" defined on $W^{1,p}(\omega; \mathbb{R}^3)$, $\forall \Phi = \varphi \in W^{1,p}(\omega; \mathbb{R}^3), I_0(\varphi) = \int_{\omega} QW_0(\bar{x}, \bar{\nabla}\varphi(\bar{x})) d\bar{x}.$

Question: min $I_0 = 0$? First, when does $W_0(\bar{x}, \bar{F}) = 0$?

When does $W_0(\bar{x}, \bar{F}) = 0$? Recall $W(FA^{-1}(\bar{x})) = 0 \Leftrightarrow F \in SO(3)A(\bar{x})$.

$$W_0(\bar{x},\bar{F}) := \min_b W([\bar{F}|b]A^{-1}(\bar{x})) = 0$$

when

$$\exists b \in \mathbb{R}^3, \ [\bar{F}|b]A^{-1}(\bar{x}) \in SO(3), i.e., \ [\bar{F}|b]^T[\bar{F}|b] = G(\bar{x}),$$

i.e.,
$$\begin{bmatrix} \bar{F}^T \bar{F} & \bar{F}^T b \\ b^T \bar{F} & |b|^2 \end{bmatrix} = G(\bar{x}), i.e., \bar{F}^T \bar{F} = G_{2\times 2}(\bar{x}).$$

Indeed, complete \bar{F} with b s.t.

$$b \cdot f_1 = g_{13}(\bar{x}), b \cdot f_2 = g_{23}(\bar{x}), |b|^2 = g_{33}(\bar{x}), \det[\bar{F}|b] > 0.$$

Second, consequence on QW_0 ?

Pipkin's results and extensions: write $W_0(F) = \tilde{W}_0(F^T F)$,

$$QW_0(\bar{x},\bar{F}) \leq \inf\{\tilde{W_0}(\bar{x},\bar{F}^T\bar{F}+S); S \in \mathbb{S}_2^+\}.$$

Consequence: $QW_0(\bar{x}, \bar{F}) = 0$ for any \bar{F} s.t. $\bar{F}^T \bar{F} \leq G_{2\times 2}(\bar{x})$,

Third, consequence on the mappings?

$$I_0(\varphi) = 0 \text{ for } \varphi \in W^{1,p}(\omega,\mathbb{R}^3), \ (\bar{\nabla}\varphi)^T \bar{\nabla}\varphi \leq G_{2\times 2},$$

that are the short maps.

Remark: one of the rare instances when a result on quasiconvex envelopes is obtained algebraically.

Is the obtained zero-order model sound?

- with loads (of adequate magnitude) and boundary conditions, then "yes" (contains some information).
- we decided: no loads, no B.C. All short maps make Io equal to 0.

How many short maps?

arbitrary G_{2×2},

$$\bar{\nabla} \varphi^T \bar{\nabla} \varphi = G_{2 \times 2}$$
 is possible! (isometric immersion)

Nash-Kuiper circa 1954, with C^1 -regularity, not C^2 ,

and the "really short" maps.

Page 23 sur 34

Comments:

- ▶ totally different from the $3d \mapsto 3d$ framework,
- Conti, Delellis & Szekelyhidi (2010) proved $C^{1,\alpha}$ -regularity $\alpha < \frac{1}{7}$, Delellis, Inauen & Szekelyhidi (2015), $\alpha < \frac{1}{5}$,
- Nirenberg (1953): smooth iso. immersion for $G_{2\times 2}$ with $\mathscr{K}>0$, Poznyak & Shikin (1995): $\mathscr{K}<0$.
- Conti & Maggi, Pakzad, Hornung & Velčić, Olbermann, comments in R. Kohn's talk ...

Footnote: Isometric immersion of the flat torus into \mathbb{R}^3 , $\mathscr{K}=0$, Hevea project.

Order 2 model: Generalized bending model

From now on, $W(\cdot) \ge C \operatorname{dist}^2(\cdot, SO(3))$.

The energy magnitude is smaller than h^0 . Can it be of order 2 "as usual"?

For $\frac{\inf I^h}{h^2}$ to converge to a finite value (and conversely), there must exist a $H^2(\omega)$ -regular isometric immersion of $G_{2\times 2}$.

Where does it come from?

From
$$I^h(\Phi^h) \leq Ch^2$$
, we have $\|\operatorname{dist}(\nabla_h \Phi^h A^{-1}, \operatorname{SO}(3))\|_{L^2(\Omega)} \leq Ch$.

By a generalized version (LP, BLS) of the quantitative rigidity estimate,

$$\|\nabla_h \Phi^h - Q^h\|_{L^2(\Omega)} \le Ch$$
, $\|\bar{\nabla} Q^h\|_{L^2(\omega)} \le C$, where $Q^h \in H^1(\omega; \mathbb{M}^3)$ (not rigid).

From stage 0,

$$\nabla_h \Phi^h \rightharpoonup [\bar{\nabla} \varphi | b] \text{ in } L^2.$$

Then, Q^h converges weakly in $H^1(\omega)$ to some Q. This obliges $\bar{\nabla} \varphi$ to gain one degree of regularity.

Which object to work on?

- usual bending: 2nd fundamental form $(\bar{\nabla}\varphi)^T\bar{\nabla}n$, 2 × 2, symmetric,
- here: $(\bar{\nabla}\varphi)^T\bar{\nabla}b$, 2×2, b given at level 0 in terms of a $G_{2\times 2}$ -isometry φ by

$$[\bar{\nabla}\varphi|b]^T[\bar{\nabla}\varphi|b]=G, \quad \det[\bar{\nabla}\varphi|b]>0.$$

Expect D^2W to enter the picture, $D^2W(Id)(H,H) = D^2W(Id)(sym H, sym H)$.

For H^{\sharp} , 2 × 2 matrix, define

$$W_2(\bar{x}, H^{\sharp}) = \min\{D^2W(Id)(A^{-1}(\bar{x}) H A^{-1}(\bar{x}))^{(2)}, H \in \mathbb{M}_3, H_{2\times 2} = H^{\sharp}\}.$$

Again, W_2 acts on sym (H^{\sharp}) .

$$\frac{I^h}{h^2} \xrightarrow{\Gamma - H^1(\Omega)} I_2, I_2(\Phi) = \begin{cases} \frac{1}{4!} \int_{\omega} W_2(\bar{x}, (\nabla \varphi^T \nabla b)(\bar{x})) d\bar{x}, & \Phi = \varphi \in H^2(\omega; \mathbb{R}^3), \text{iso}, \\ +\infty & \text{otherwise}. \end{cases}$$

野tabe min is の further, in formation 動 guid b se sought for.

min
$$I_2=0\Leftrightarrow \exists \boldsymbol{\varphi}_{\cdot} \subseteq I \not h^2 (\alpha_i \mathbb{R}^2_{\cdot} \boldsymbol{\phi}_{\cdot}; \overline{\mathbb{R}}^3)_{\cdot}^T \overline{\boldsymbol{\nabla}} \boldsymbol{\phi} \, \overline{\mathbb{R}} \overline{\boldsymbol{\varphi}}_{\cdot} = \overline{\mathcal{V}} \boldsymbol{\phi}_{2\times}^T \overline{\mathbb{V}} \boldsymbol{\varphi} \text{ and } \overline{\mathcal{V}} \boldsymbol{\varphi}_{\cdot} \overline{\mathbb{V}} \boldsymbol{\nabla} b \text{ skew}.$$

First finding. Then inf. I' is indeed smaller; $\inf I' \leq Ch^4$ form, in addition to its Hint: $\inf B \operatorname{doselsimply}(E) = \inf B(E) \operatorname{doselsimply}(E) = \inf B(E) = \inf B(E)$. Letting $\operatorname{doselsimply}(E) = \operatorname{doselsimply}(E) = \operatorname{doselsimply}$

$$\nabla h^{\mu h} A^{-}(\mathcal{A}_{\mathcal{F}}^{\mathfrak{F}})_{G}^{-1}(G_{\mathcal{A}}^{\mathfrak{F}})(G_{\mathcal{A}}^{\mathfrak{F}})_{G}^{\mathfrak{F}} h_{\mathcal{A}} g_{\mathcal{A}}^{\mathfrak{F}} + (G_{\mathcal{A}}^{\mathfrak{F}})_{\mathcal{F}}^{-1} h_{\mathcal{F}} h_{\mathcal{F}}^{\mathfrak{F}})_{G}^{\mathfrak{F}}.$$

ightharpoonup computable $ho_{ar{b}} = computable =$

which does not mean that $\mathscr{R}=0$, there may be some locking in the 3d-body first block is skew, then choose d: $G^{*}d = (-B \cdot S_{1}B, -B \cdot S_{2}B, 0)$.

Page 29 sur 34

Limit model. We already know that $\Phi^h \stackrel{H^1}{\to} \varphi$, $\frac{1}{h} \partial_3 \Phi^h \stackrel{L^2}{\to} b$. Now,

$$\begin{split} u^h(\bar{x}) &:= \frac{1}{h} \int_{-\frac{1}{2}}^{\frac{1}{2}} \left(\Phi^h - \left(\varphi + h x_3 b \right) \right) \mathrm{d}x_3 \overset{H^1}{\to} u^1, \ \mathrm{sym} \left(\bar{\nabla} \varphi^T \bar{\nabla} u^1 \right) = 0, \\ \frac{1}{h} \, \mathrm{sym} \left(\bar{\nabla} \varphi^T \bar{\nabla} u^h \right) \to e^2 \in L^2(\omega; \mathbb{S}_2), \end{split}$$

$$I_{4}(u^{1}, e^{2}) = \int_{\omega} |e^{2} + \frac{1}{2} (\bar{\nabla}u^{1})^{T} \bar{\nabla}u^{1} + \frac{1}{4!} \bar{\nabla}b^{T} \bar{\nabla}b|^{2}$$

$$+ \int_{\omega} |\bar{\nabla}\varphi^{T} \bar{\nabla}\rho^{1} + (\bar{\nabla}u^{1})^{T} \bar{\nabla}b|^{2}$$

$$+ \int_{\omega} |\operatorname{sym}(\bar{\nabla}\varphi^{T} \bar{\nabla}d) + \bar{\nabla}b^{T} \bar{\nabla}b|^{2}$$

where $p^1(u^1)$.

Link with usual case:

$$\begin{array}{rcl} \partial_{\alpha} u_{\beta}^{1} + \partial_{\beta} u_{\alpha}^{1} & = & 0 \\ e^{2} + \frac{1}{2} (\bar{\nabla} u^{1})^{T} \bar{\nabla} u^{1} & = & \frac{1}{2} (\partial_{\alpha} u_{\beta}^{2} + \partial_{\beta} u_{\alpha}^{2} + \partial_{\alpha} u_{3}^{1} \partial_{\beta} u_{3}^{1}) \\ \bar{\nabla} \phi^{T} \bar{\nabla} \rho^{1} & = & -\partial_{\alpha\beta} u_{3}^{1}. \end{array}$$

Order 4 model: Generalized von Kármán enegy

Start from
$$\min I_2=0$$
, i.e. $\mathscr{R}_{1212}=\mathscr{R}_{1213}=\mathscr{R}_{1223}=0$, i.e. $\exists ! \varphi \in H^2(\omega;\mathbb{R}^3), \ \bar{\nabla} \varphi^T \bar{\nabla} \varphi = G_{2\times 2} \ \text{and} \ \bar{\nabla} \varphi^T \bar{\nabla} b \ \text{skew}.$

First finding. Then $\inf I^h$ is indeed smaller: $\inf I^h \leq Ch^4$.

Hint: Choose simply $\Phi^h(\bar{x}, x_3) = \varphi(\bar{x}) + hx_3b(\bar{x}) + \frac{h^2x_3^2}{2}d(\bar{x})$ with d as follows.

Letting
$$Q = [\bar{\nabla} \phi | b], \ QA^{-1} \in SO(3), \ B = [\bar{\nabla} b | d],$$

$$\nabla_h \Phi^h A^{-1}(\bar{x}, x_3) = (QA^{-1})(\operatorname{Id} + hx_3 A^{-1} Q^T B A^{-1} + h^2 x_3^2 T),$$

$$W(\nabla_h \Phi^h A^{-1}) = W(\operatorname{Id} + hx_3 A^{-1} Q^T B A^{-1} + h^2 x_3^2 T).$$

Make
$$Q^T B = \begin{pmatrix} \bar{\nabla} \varphi^T \bar{\nabla} b & \bar{\nabla} \varphi^T d \\ b^T \bar{\nabla} b & b \cdot d \end{pmatrix}$$
 skew (to kill the h^2 term in $\int D_2 W(\mathrm{Id})$).

First block is skew, then choose $d: Q^T d = (-b \cdot \partial_1 b, -b \cdot \partial_2 b, 0)^T$.

Order 4 model: Generalized von Kármán enegy

Start from
$$\min I_2=0$$
, i.e. $\mathscr{R}_{1212}=\mathscr{R}_{1213}=\mathscr{R}_{1223}=0$, i.e. $\exists ! \varphi \in H^2(\omega;\mathbb{R}^3), \ \bar{\nabla} \varphi^T \bar{\nabla} \varphi = G_{2\times 2} \ \text{and} \ \bar{\nabla} \varphi^T \bar{\nabla} b \ \text{skew}.$

First finding. Then $\inf I^h$ is indeed smaller: $\inf I^h \leq Ch^4$.

Hint: Choose simply $\Phi^h(\bar{x}, x_3) = \varphi(\bar{x}) + hx_3b(\bar{x}) + \frac{h^2x_3^2}{2}d(\bar{x})$ with d as follows.

Letting
$$Q = [\bar{\nabla} \phi | b], \ QA^{-1} \in SO(3), \ B = [\bar{\nabla} b | d],$$

$$\nabla_h \Phi^h A^{-1}(\bar{x}, x_3) = (QA^{-1})(\operatorname{Id} + hx_3 A^{-1} Q^T B A^{-1} + h^2 x_3^2 T),$$

$$W(\nabla_h \Phi^h A^{-1}) = W(\operatorname{Id} + hx_3 A^{-1} Q^T B A^{-1} + h^2 x_3^2 T).$$

Make
$$Q^TB = \begin{pmatrix} \bar{\nabla} \varphi^T \bar{\nabla} b & \bar{\nabla} \varphi^T d \\ b^T \bar{\nabla} b & b \cdot d \end{pmatrix}$$
 skew (to kill the h^2 term in $\int D_2 W(\mathrm{Id})$).

First block is skew, then choose $d: Q^T d = (-b \cdot \partial_1 b, -b \cdot \partial_2 b, 0)^T$.

Can be interpreted as

$$I_4(u^1, e^2) = \int_{\omega} |\text{change in metric departing from } \varphi|^2 + \int_{\omega} |\text{change in curvature departing from } \varphi|^2 + \int_{\omega} |\text{sym}(\bar{\nabla}\varphi^T\bar{\nabla}d) + \bar{\nabla}b^T\bar{\nabla}b|^2.$$

Remark: the third term is constant and can be written as

$$\operatorname{sym}(\bar{\nabla} \phi^T \bar{\nabla} d + \bar{\nabla} b^T \bar{\nabla} b) = \begin{bmatrix} \mathscr{R}_{1313} & \mathscr{R}_{1323} \\ \mathscr{R}_{1323} & \mathscr{R}_{2323} \end{bmatrix} = \begin{bmatrix} \operatorname{remaining entries} \end{bmatrix}.$$

Therefore, the third term is 0 iff $\mathcal{R} = 0$, i.e, the 3d metric is flat. All minima including those of the 3d-problem are 0.

The story ends. But,...

Order 4 model: Generalized von Kármán enegy

Start from
$$\min I_2=0$$
, i.e. $\mathscr{R}_{1212}=\mathscr{R}_{1213}=\mathscr{R}_{1223}=0$, i.e. $\exists ! \varphi \in H^2(\omega;\mathbb{R}^3), \ \nabla \varphi^T \nabla \varphi = G_{2\times 2} \ \text{and} \ \nabla \varphi^T \nabla b \ \text{skew}.$

First finding. Then $\inf I^h$ is indeed smaller: $\inf I^h \leq Ch^4$.

Hint: Choose simply $\Phi^h(\bar{x}, x_3) = \varphi(\bar{x}) + hx_3b(\bar{x}) + \frac{h^2x_3^2}{2}d(\bar{x})$ with d as follows.

Letting
$$Q = [\bar{\nabla} \varphi | b], \ QA^{-1} \in SO(3), \ B = [\bar{\nabla} b | d],$$

$$\nabla_h \Phi^h A^{-1}(\bar{x}, x_3) = (QA^{-1})(\operatorname{Id} + hx_3 A^{-1} Q^T B A^{-1} + h^2 x_3^2 T),$$

$$W(\nabla_h \Phi^h A^{-1}) = W(\operatorname{Id} + hx_3 A^{-1} Q^T B A^{-1} + h^2 x_3^2 T).$$

Make
$$Q^T B = \begin{pmatrix} \bar{\nabla} \varphi^T \bar{\nabla} b & \bar{\nabla} \varphi^T d \\ b^T \bar{\nabla} b & b \cdot d \end{pmatrix}$$
 skew (to kill the h^2 term in $\int D_2 W(\mathrm{Id})$).

First block is skew, then choose $d: Q^T d = (-b \cdot \partial_1 b, -b \cdot \partial_2 b, 0)^T$.

Order 4 model: Generalized von Kármán enegy

Start from
$$\min I_2=0$$
, i.e. $\mathscr{R}_{1212}=\mathscr{R}_{1213}=\mathscr{R}_{1223}=0$, i.e. $\exists ! \varphi \in H^2(\omega;\mathbb{R}^3), \ \nabla \varphi^T \nabla \varphi = G_{2\times 2} \ \text{and} \ \nabla \varphi^T \nabla b \ \text{skew}.$

First finding. Then $\inf I^h$ is indeed smaller: $\inf I^h \leq Ch^4$.

Hint: Choose simply $\Phi^h(\bar{x}, x_3) = \varphi(\bar{x}) + hx_3b(\bar{x}) + \frac{h^2x_3^2}{2}d(\bar{x})$ with d as follows.

Letting
$$Q = [\bar{\nabla} \varphi | b]$$
, $QA^{-1} \in SO(3)$, $B = [\bar{\nabla} b | d]$,

$$\nabla_h \Phi^h A^{-1}(\bar{x}, x_3) = (QA^{-1})(\operatorname{Id} + hx_3 A^{-1} Q^T B A^{-1} + h^2 x_3^2 T),$$

$$W(\nabla_h \Phi^h A^{-1}) = W(\operatorname{Id} + hx_3 A^{-1} Q^T B A^{-1} + h^2 x_3^2 T).$$

Make
$$Q^T B = \begin{pmatrix} \bar{\nabla} \varphi^T \bar{\nabla} b & \bar{\nabla} \varphi^T d \\ b^T \bar{\nabla} b & b \cdot d \end{pmatrix}$$
 skew (to kill the h^2 term in $\int D_2 W(\mathrm{Id})$).

First block is skew, then choose $d: Q^T d = (-b \cdot \partial_1 b, -b \cdot \partial_2 b, 0)^T$.

Limit model. We already know that $\Phi^h \stackrel{H^1}{\to} \varphi$, $\frac{1}{h} \partial_3 \Phi^h \stackrel{L^2}{\to} b$. Now,

$$\begin{split} u^h(\bar{x}) &:= \frac{1}{h} \int_{-\frac{1}{2}}^{\frac{1}{2}} \left(\Phi^h - \left(\varphi + h x_3 b \right) \right) \mathrm{d}x_3 \overset{H^1}{\to} u^1, \; \mathrm{sym} \left(\bar{\nabla} \varphi^T \bar{\nabla} u^1 \right) = 0, \\ \frac{1}{h} \, \mathrm{sym} \left(\bar{\nabla} \varphi^T \bar{\nabla} u^h \right) \to e^2 \in L^2(\omega; \mathbb{S}_2), \end{split}$$

$$I_{4}(u^{1}, e^{2}) = \int_{\omega} |e^{2} + \frac{1}{2} (\bar{\nabla}u^{1})^{T} \bar{\nabla}u^{1} + \frac{1}{4!} \bar{\nabla}b^{T} \bar{\nabla}b|^{2}$$

$$+ \int_{\omega} |\bar{\nabla}\varphi^{T} \bar{\nabla}\rho^{1} + (\bar{\nabla}u^{1})^{T} \bar{\nabla}b|^{2}$$

$$+ \int_{\omega} |\operatorname{sym}(\bar{\nabla}\varphi^{T} \bar{\nabla}d) + \bar{\nabla}b^{T} \bar{\nabla}b|^{2}$$

where $p^1(u^1)$.

Link with usual case:

$$\begin{array}{rcl} \partial_{\alpha}u_{\beta}^{1}+\partial_{\beta}u_{\alpha}^{1} & = & 0 \\ e^{2}+\frac{1}{2}(\bar{\nabla}u^{1})^{T}\bar{\nabla}u^{1} & = & \frac{1}{2}(\partial_{\alpha}u_{\beta}^{2}+\partial_{\beta}u_{\alpha}^{2}+\partial_{\alpha}u_{3}^{1}\partial_{\beta}u_{3}^{1}) \\ \bar{\nabla}\varphi^{T}\bar{\nabla}\rho^{1} & = & -\partial_{\alpha\beta}u_{3}^{1}. \end{array}$$