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1. HIERARCHY OF MODELS FOR THIN ELASTIC STRUCTURES

Membrane, plate, von Karman,...

Sort the models in a hierarchy. In terms of?

» either the external world action (load magnitude, boundary conditions),

» or, equivalently, the internal energy of the structure.

Tool? thickness h — 0, identify limit models.
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“PRESTRAINED” ASSUMPTION

D D) vdbden,
A body deforms in R3, ¢ : Q — R3, 9 P Q Pole 3

Usually:

() = / W(V®(x))dx, W: M3 —R" stored energy density,
Q

M3 := {F € M;det F > 0}.

W(ld) =0 and W(F) =0 on SO(3), Tg(ld) = DW(Id) =0, {2 natural state.

Tr: First PK stress tensor.
Heterogeneity can be added still with W(x,Id) =0, Tr(x,Id) =0.




Prestrain (cont'd): We defined
I(0) = f W(VO(x)A 1 (x))dx, W >0, W(-)=0onSO(3).
Q

In other words,

[(P) =f Z(x,V®(x))dx where the space-dependent stored energy density
Q2

Z(x,F):= W(FA !(x)),det F > 0, satisfies
Z(x,F) =0 for FA~1(x) € SO(3),0r equivalently, F' F = G(x).




Why such energy densities? Allow to model situations where
for any x € €2, the material aims at reaching a prescribed metric G(x),

(Vo (x))TVd(x) = G(x).

IF realized, then the changes of lengths between material points along a
deformation ¢ follow G.




Prestrain (cont'd): We defined

I(®) = /5; W(VO(x)A 1(x))dx, W >0, W(-)=0onSO(3).

In other words,

I(®P) =[ Z(x,V®(x))dx where the space-dependent stored energy density
0

Z(x,F):= W(FA !(x)),det F > 0, satisfies
Z(x,F) =0 for FA~1(x) € SO(3),0r equivalently, F' F = G(x).

First PK stress tensor at x: Tg(x,F)= DrZ(x,F) = DW(FA~1(x))A~*(x),

Tr(x,F)=0for FTF = G(x).

Find a stress-free configuration? Means ® : Q — R3 such that

(Vo(x))TVd(x) = G(x) VYxeQ, orae. Exists?




Why such energy densities? Allow to model situations where
for any x € £2, the material aims at reaching a prescribed metric G(x),

(Vo (x))TVd(x) = G(x).

IF realized, then the changes of lengths between material points along a
deformation ¢ follow G.

Let A= G/2..., the formalism is no longer mysterious.

See: Lewicka & Pakzad (2011), Bhattacharya, Lewicka & Schaffner (2016),
Efrati, Sharon, Klein, Kupferman and coauthors (2007, ...).

In mind: growth-induced changes of target lengths, differential shrinking or
swelling of materials (responsive gels).




Klein, Efrati, Sharon experiment, Science (2007)
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The initially planar sheet aims at deform

Shrinking by a different ratio n(r) at
each radius r both in the radial and
the azimuthal directions.

Target metric of this initially planar
structure:

s [niﬂ(r) rzng(r)]

ing in a surface in R® whose curvature

is encoded in g(r) (Gauss Egregium theorem). A little more complicated
because the sheet has a thickness. See, R. Kohn's talk.
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The structure deforms in
space not because of loads,
or boundary conditions, but
because it has to accom-
modate lengths (and thick-
ness).




Kim, Hanna, Byun, Santangelo, Hayward experiment, Science (2012)

Photopatterning of polymer films
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Remark: In both examples, the structures are thin. Of importance also for
living tissues (leaves, skin).
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Why such energy densities? Allow to model situations where
for any x € £2, the material aims at reaching a prescribed metric G(x),

(Vo (x))TVd(x) = G(x).

IF realized, then the changes of lengths between material points along a
deformation ¢ follow G.

Let A= G/2..., the formalism is no longer mysterious.

See: Lewicka & Pakzad (2011), Bhattacharya, Lewicka & Schaffner (2016),
Efrati, Sharon, Klein, Kupferman and coauthors (2007, ...).

In mind: growth-induced changes of target lengths, differential shrinking or
swelling of materials (responsive gels).
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“Activalon” of the mskric

The initially planar sheet aims at deforming in a surface in R® whose curvature

is encoded in g(r) (Gauss Egregium theorem). A little more complicated

because the sheet has a thickness. See, R. Kohn's talk.
C

The structure deforms in
space not because of loads,
or boundary conditions, but
because it has to accom-
modate lengths (and thick-
ness).




Kim, Hanna, Byun, Santangelo, Hayward experiment, Science (2012)

Photopatterning of polymer films
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Remark: In both examples, the structures are thin. Of importance also for
living tissues (leaves, skin).




NATURAL QUESTION: Rigorous derivation of models for prestrained thin
structures from prestrained 3d models

Back to 3d: basic problem on a 3d-domain Q. Let G(x) € S5 be given
(smooth). Can we find

d:QCR3—R3, (VO(x))! VO(x) = G(x), det Vd(x) > 07

o if G(x)=Id, then ®(x) = Qx with Q € SO(3) (Liouville),
e arbitrary G: yes iff Z =0, G said flat, where

OF oy — . - i R = Pr. G- a

2T jjg = 9)8iq + 9i8jq — 9a8ij» T, = 8" ijq, (8°7) = G~




() = /Q W(V,0(x)AL(%))dx, V4 = (310,00, %83‘1’).

Order 0 model: Generalized membrane model

Expected that "®/ converges to some ® with some lim. behavior for %33¢h"_
Natural to define

Wo(, F) := min{ W ([!3|b]A‘1(E)) b e R3}for F € M3 5.

Then,

ih IZEED, 1 veffectively” defined on WP (a; R3),

Vb =@ € WHP(@;R?), Ip(@) = /m QW (%, Vo(x))dx.

Question: min lp = 07 First, when does Wy(x, F) =07




When does Wy(X, F) =07 Recall W(FA~1(%)) =0« F € SO(3)A(X).

Wo(X, F) := mgn W([F|b]A~1 (X)) =0

3b € R3, [F|b]A™1 (%) € SO(3),i.e., [F|b]"[F|b] = G(X),

bTF |bl?
Indeed, complete F with b s.t.
b-fi = g13(X), b- 2 = g23(%), | b[* = g33(%),det[F|b] > 0.
Second, consequence on QWy?
Pipkin's results and extensions: write Wo(F) = Wo(F T F),

. [F*TF‘ FTh
[.E.

J = G(x), i.e., FTF= Gax2(X).

QWo(%,F) < inf{Wo(x,FTF+S): S €S}

Consequence: QWy(X,F)=0 for any F s.t. FTF < Gy»(X),




Third, consequence on the mappings?

o(¢) =0 for p € WP(,R?), (Vo) Vo < Ga2,
that are the short maps.

Remark: one of the rare instances when a result on quasiconvex envelopes is
obtained algebraically.

Is the obtained zero-order model sound?

» with loads (of adequate magnitude) and boundary conditions, then “yes"
(contains some information).

» we decided: no loads, no B.C. All short maps make Iy equal to 0.

How many short maps?

» arbitrary Goyo,

Vo Vo = Gpyo is possible! (isometric immersion)

Nash-Kuiper circa 1954, with Cl-regularity, not C2,

» and the “really short” maps.




Comments:
totally different from the 3d > 3d framework,

Conti, Delellis & Szekelyhidi (2010) proved C1%-regularity a < -}
Delellis, Inauen & Szekelyhidi (2015), & < &,

Nirenberg (1953): smooth iso. immersion for Goyo with £ > 0, Poznyak
& Shikin (1995): ¢ < 0.

Conti & Maggi, Pakzad, Hornung & Vel&i¢, Olbermann, comments in
R. Kohn's talk ...

Footnote: Isometric immersion of the flat torus into R3, .# =0, Hevea project.
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Order 2 model: Generalized bending model

From now on, W(-) > Cdist*(-,SO(3)).
The energy magnitude is smaller than h°. Can it be of order 2 “as usual’?

inf 17

h2
there must exist a H?(®)-regular isometric immersion of Gy.».

For to converge to a finite value (and conversely),

Where does it come from?

From ["(®") < Ch*, we have | dist(V,®"A*, SO(3))|12(q) < Ch.
By a generalized version (LP, BLS) of the quantitative rigidity estimate,
V4@ — Q" 12(q) < Ch, [IVQ"] 12(0) < C, where Q" € H*(; M3) (not rigid).

From stage 0, _
V,d" — [Vol|b] in L2

Then, Q" converges weakly in H1(®) to some Q. This obliges V¢ to gain one
degree of regularity.




Which object to work on?
» usual bending: 2nd fundamental form (V)7 Vn, 2 x 2, symmetric,
> here: (V@)"Vh, 2x2, b given at level 0 in terms of a Gy p-isometry ¢ by

[Volb]"[Vo|b] = G, det[Ve|b] > 0.

Expect D?W to enter the picture, D?W(Id)(H, H) = D?*W(Id)(sym H,sym H).
For H*, 2 x 2 matrix, define
Ws (%, HY) = min{ D?W(Id)(A~Y(R) HA™1(%))®), H € M3, Hayp = H*}.

Again, W, acts on sym(H*).

h2 +oo otherwise.

h 4 s (VoTVh)(2) d5. & — 2( p R3) ;
[ l‘H{ﬂ)}&’fz(qa):{mmeg(x,( oTVb)(%)) d%, ® = @ € H?(w;R3), iso,
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Limit model. We already know that ®" — ¢, $d3®" = b. Now,

. S
/|eE b= (Vul)TVul 4+ = VBT Vb|?
s 2 4!

/ VT Vpl 4+ (Vul) Vb2
w

/ |sym(Vo'Vd) 4 VbT Vb|?
®

where pl(ul).

Link with usual case:

aaUé “’r‘aﬁ U;]i =: '




Order 4 model: Generalized von Karman enegy

Start from mink =0, i.e. #1910 = #1213 = #1903 = 0,

ie. 1o € H?>(@;R3), VOV = Gyxo and Vo T Vb skew.
First finding. Then inf /7 is indeed smaller: inf 1" < Ch*.
Hint: Choose simply ®"(%,x3) = @(%)+ hx3b(%) + "3 d(%) with d as follows.
Letting Q@ = [Vo|b], QA1 € SO(3), B = [Vb|d],

Vid"A7 (%,x3) = (QA™Y)(Id +hx3A" 1 QT BA Y + h2x3 T),
W(V,d"A™ 1) = W(ld+hxsA 1QTBA L + 2X3 T).
9oT7h VoTd
b'Vb  b-d

First block is skew, then choose d: Q7d = (—b-d1b, —b-&gb,U)T.

Make QT B = (

) skew (to kill the h? term in [ DoW(Id)).
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Can be interpreted as

la(ut, ) / Ichange in metric departing from @|°
Jo
/ Ichange in curvature departing from @|?
Jo

/ Isym(Vo ' Vd)+VbTVb|?.
o (@)

Remark: the third term is constant and can be written as

#1313 #1323

. = |remaining entries| .
#1323 32’2323‘ | ]

sym(Vo ' Vd+Vb'Vb) = [

Therefore, the third term is 0 iff Z = 0, i.e, the 3d metric is flat. All minima
including those of the 3d-problem are 0.

The story ends. But,...




Order 4 model: Generalized von Karman enegy
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Order 4 model: Generalized von Karman enegy

Start from mink =0, i.e. #1910 = #1213 = #1903 =0,
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Limit model. We already know that ®” Lf @, +I30" B b Now,
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