

Structured Modeling and Decomposition Methods in Pyomo

Bethany Nicholson

Carl Laird John D. Siirola

Center for Computing Research Sandia National Laboratories Albuquerque, NM

SIAM CSE February 25 – March 1, 2019

Exceptional

service

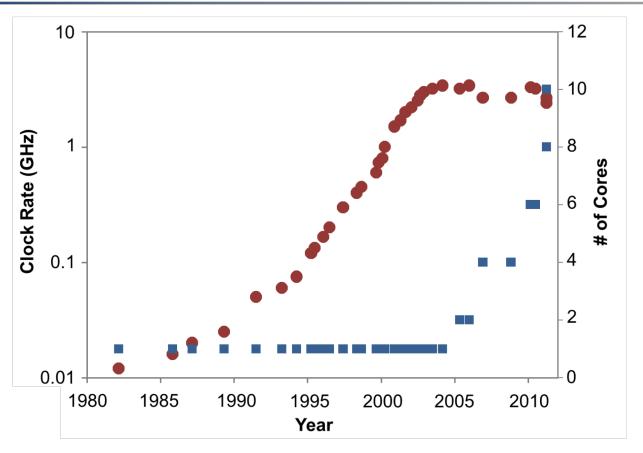
in the

national

interest

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525.

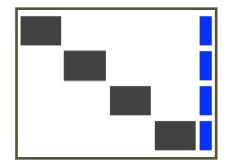
Landscape of Computing Hardware



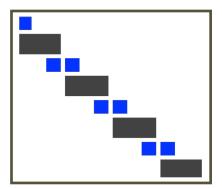
- Improvements in computing clock rates have slowed
- Increased focus on parallel computing architectures

Exploiting Problem Structure

- Optimization Under Uncertainty
 - two-stage stochastic programming formulation
 - block structure because of coupled scenarios
 - common structure of many applications (parameter estimation, spatial decomposition)



- Dynamic Optimization
 - Simultaneous approach (discretization using OCFE)
 - block structure because of finite element discretization
 - pass-on variables couple neighboring blocks



[Laird, 2018]

Overview of Decomposition Algorithms

- Decomposition approaches allow for parallel/distributed computing
 - External decomposition
 - Progressive Hedging (PH)
 - Alternating direction method of multipliers (ADMM)
 - Benders decomposition, dual decomposition
 - Internal decomposition
 - Schur-complement decomposition
 - Block cyclic reduction
 - Reduced-space decomposition

External Decomposition	Internal Decomposition		
Break full NLP into subproblems and coordinate solutions	Build full NLP and decompose at linear algebra level of host algorithm		
Highly flexible and easier to implement	Harder to implement		
Typically linear convergence	Convergence rates of host algorithm		
Convergence not well understood for general nonconvex NLPs	Convergence properties host algorithm		

The Unspoken Implementation Challenge

 Despite having well-established decomposition methods for exploiting common problem structures, there are very few general implementations of these approaches interfaced with popular algebraic modeling languages

Why?

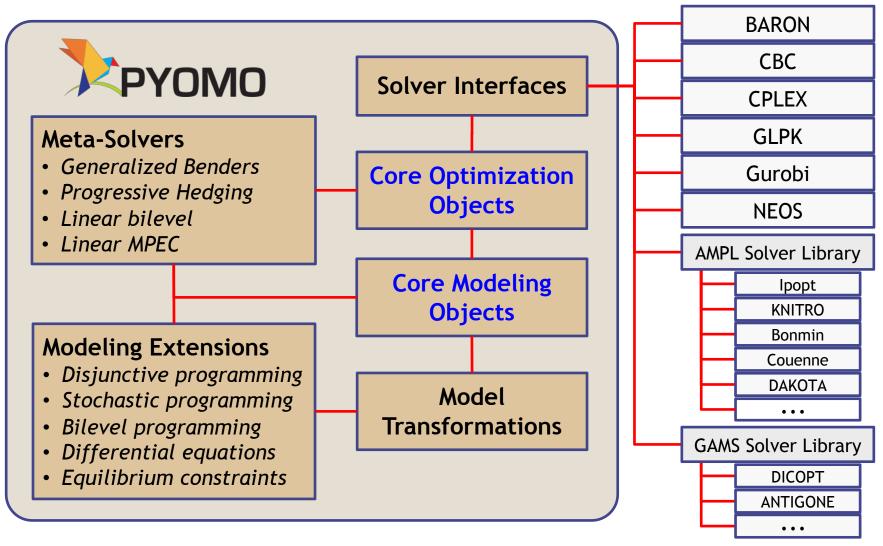
 Few algebraic modeling languages are capable of capturing the high-level model structure that can be exploited by these algorithms

Software platform

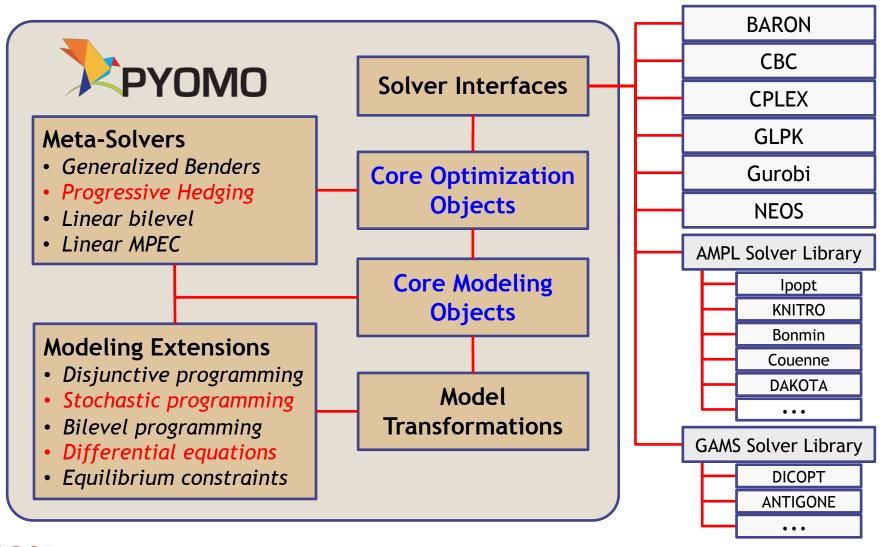
- Pyomo: Python Optimization Modeling Objects
- Formulate optimization models within Python

- Utilize high-level programming language to write scripts and manipulate model objects
- Leverage third-party Python libraries
 e.g. SciPy, NumPy, MatPlotLib, Pandas

Pyomo at a Glance



Pyomo at a Glance



- Extend Pyomo syntax to represent:
 - Continuous domains
 - Ordinary or partial differential equations
 - Systems of differential algebraic equations (DAEs)
- Available discretization schemes:
 - Finite difference methods (Backward/Forward/Central)
 - Collocation (Lagrange polynomials with Radau or Legendre roots)
- Extensible framework
 - Write general implementations of custom discretization schemes
 - Build frameworks/meta-algorithms including dynamic optimization
- Interface with numerical simulators
 - Scipy for simulating ODEs
 - CasADi for simulating ODEs and DAEs

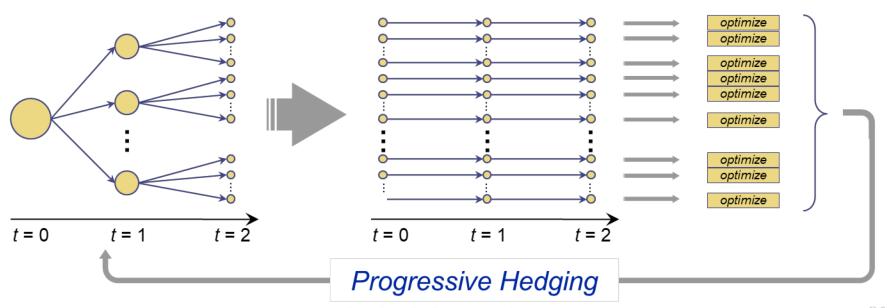
Simple Example


```
from pyomo.environ import *
                                               \frac{dz}{dt} = z^2 - 2z + 1z(0) = -3
from pyomo.dae import *
model = m = ConcreteModel()
m.t = ContinuousSet(bounds=(0, 1))
m.z = Var(m.t)
m.dzdt = DerivativeVar(m.z, wrt=m.t)
def _zdot(m, t):
    return m.dzdt[t] == m.z[t]**2 - 2*m.z[t] + 1
m.zdot = Constraint(m.t, rule= zdot)
def init con(m):
    \overline{\text{return}} \text{ m.z}[0] == -3
m.init_con = Constraint(rule=_init_con)
# Discretize model using backward finite difference
discretizer = TransformationFactory('dae.finite difference')
discretizer.apply_to(m,nfe=10,scheme='BACKWARD')
```


- Framework for representing stochastic programming models, only requiring:
 - deterministic base model
 - scenario tree defining the problem stages and uncertain parameters
- PySP provides two primary solution strategies
 - build and solve the deterministic equivalent (extensive form)
 - Progressive Hedging
 - (plus beta implementations of others, including 2-stage Benders and an interface to DDSIP)
- Parallel infrastructure for generating and solving subproblems on parallel (distributed) computing platforms

Progressive Hedging

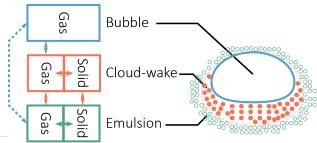
- Scenario-based decomposition algorithm
- Iteratively converge coupling constraints (non-anticipativity constraints) by penalizing deviation from consensus

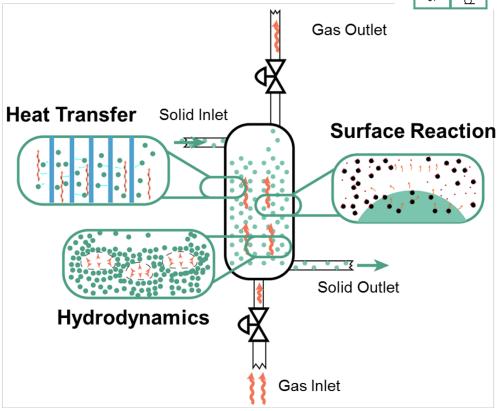


2:

Bubbling Fluidized Bed (BFB) Model

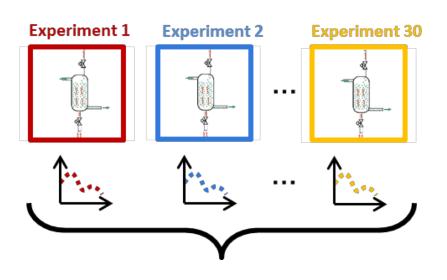
- Gas-solid, 3 region model [3]
- Steady state model with 1-D spatial variation





[Lee and Miller, Ind. Eng. Chem. Res., 2013]

BFB Parameter Estimation

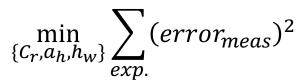


Heat Exchanger Model Parameters

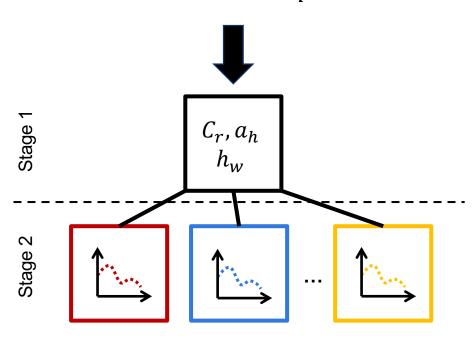
 C_r Average correction factor for tube model

 a_h Empirical factor for tube model

 h_w Heat transfer coefficient of tube walls



s.t. BFB model equations



Stochastic structure implementation in PySP


```
def pysp scenario tree model callback():
    from pyomo.pysp.scenariotree.tree structure model \
        import CreateConcreteTwoStageScenarioTreeModel
    st model = CreateConcreteTwoStageScenarioTreeModel(scenarios)
    first stage = st model.Stages.first()
    second stage = st model.Stages.last()
    # First Stage
    st model.StageCost[first stage] = 'FirstStageCost'
    st model.StageVariables[first stage].add('cr')
    st_model.StageVariables[first_stage].add('ah')
    st model.StageVariables[first stage].add('hw')
    # Second Stage
    st model.StageCost[second stage] = 'SecondStageCost'
    return st model
def pysp instance creation callback(scenario name, node names):
    experiment = int(scenario name.replace('Scenario',''))
    explist = [1,2,3] # Different data sets
    experiment = explist[experiment-1]
    instance = generate model paramest(experiment)
    return instance
```


BFB Parameter Estimation

Create and solve extensive form

```
runef --solve --solver ipopt --output-solver-log -m bfb_param.py
```

Solve using progressive hedging

```
runph --solver ipopt --output-solver-log -m bfb_param.py --default-rho=.25
```

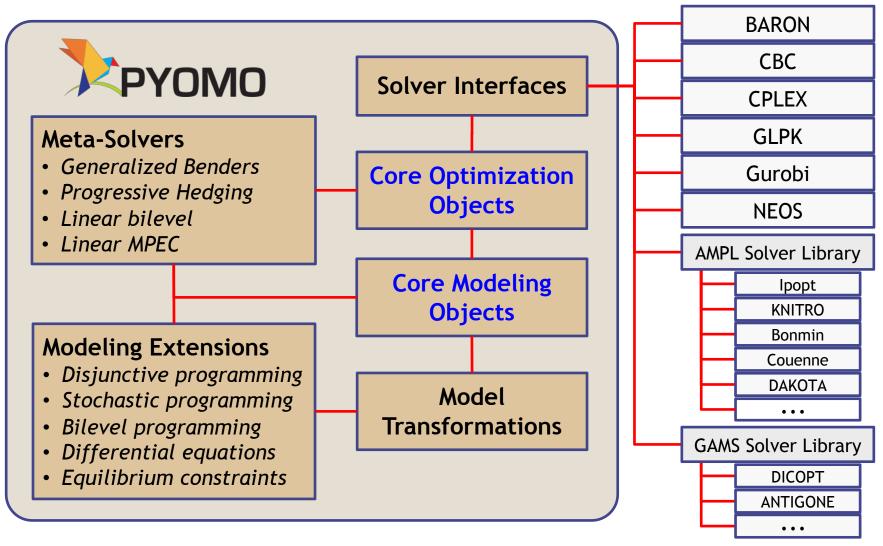
Solve using progressive hedging in parallel

```
mpirun -np 1 pyomo_ns : -np 1 dispatch_srvr : -np 30 phsolverserver : \
    -np 1 runph --solver-manager=phpyro --shutdown-pyro \
    -m bfb_param.py --solver=ipopt --default-rho=0.25
```

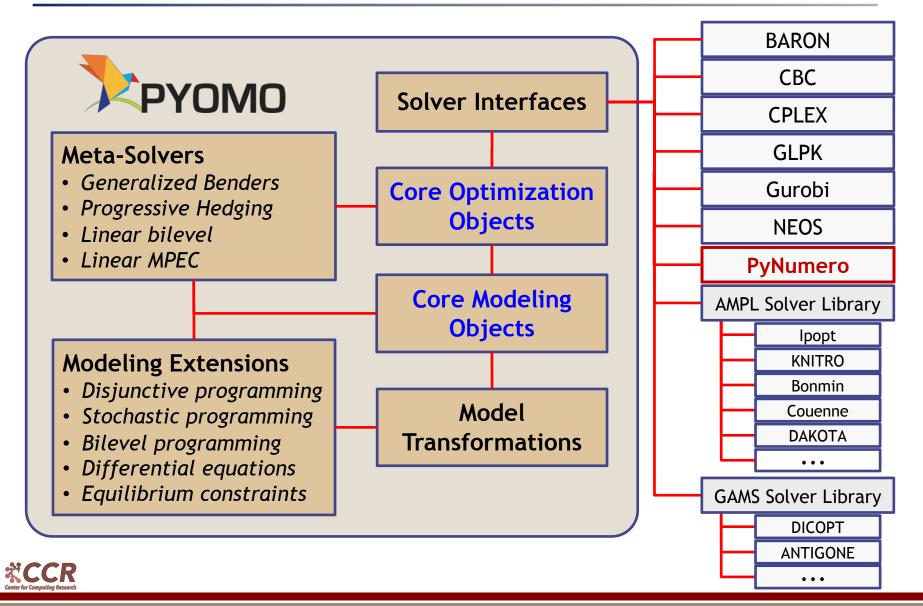
	C _r	a _h	h _w	Solve Time (s)
Actual	1.0	0.8	1500.0	-
Extensive Form	1.016	0.51	1450.35	604.45
Progressive Hedging (15 processors)	0.9824	0.7850	1501.74	610.98
Progressive Hedging (30 processors)	0.9824	0.7850	1501.74	459.10

Extensive form problem size ~400,000 variables and constraints PH subproblem size ~13,000 variables and constraints

Pyomo at a Glance



Pyomo at a Glance



Purpose of PyNumero

- High-level Python framework for rapid development of nonlinear and parallel decomposition algorithms without large sacrifices in computational performance
- Dramatically reduce time required to prototype new algorithms while minimizing the performance penalty
- Develop a framework for the low-level numerical treatment of Pyomo models that can be used to:
 - Calculate efficient numerical derivatives
 - Implement algorithms that are natively aware of Pyomo model structure

PyNumero

- Python C/C++ extension for nonlinear programming
 - Provides first and second derivatives via ASL
 - Interfaces with Numpy/Scipy for all array-operations
 - Supports python calls to HSL linear solver (MA27)
 - Computationally expensive operations performed in C/C++
 - Distributed with Pyomo and conda-forge

```
from pyomo.contrib.pynumero.interfaces import PyomoNLP
import pyomo.environ as aml

m = aml.ConcreteModel()
m.x = aml.Var([1, 2, 3], bounds=(0.0, None))
m.phys = aml.Constraint(expr=m.x[3]**2 + m.x[1] == 25)
m.rsrc = aml.Constraint(expr=m.x[2]**2 + m.x[1] <= 18.0)
m.obj = aml.Objective(expr=m.x[1]**4-m.x[3]*m.x[2]**3)

def my_algorithm(model):
    nlp = PyomoNLP(model)
    x = nlp.create_vector_x()
    c = nlp.evaluate_c(x)
    Jc = nlp.jacobian_c(x)
    ...</pre>
```


PyNumero Performance

Equality Constrained Problem with 100K variables

$$\begin{aligned} & \text{minimize} & \int_{t_0}^{t_f} \alpha(y_{A,1} - y_{\text{ref}})^2 + \beta(u - u_{\text{ref}})^2 dt \\ & \text{subject to} & \frac{dx_{A,0}}{dt} = \frac{1}{A_{\text{cond}}} V(y_{A,1} - x_{A,0}) \\ & \frac{dx_{A,i}}{dt} = \frac{1}{A_{\text{tray}}} \left[L_1(y_{A,i-1} - x_{A,i}) - V(y_{A,i} - y_{A,i+1}) \right] & \forall \ i \in \{1, ..., FT-1\} \\ & \frac{dx_{A,FT}}{dt} = \frac{1}{A_{\text{tray}}} \left[Fx_{A,\text{feed}} + L_1x_{A,FT-1} - L_2x_{A,FT} - V(y_{A,FT} - y_{A,FT+1}) \right] \\ & \frac{dx_{A,i}}{dt} = \frac{1}{A_{\text{tray}}} \left[L_2(y_{A,i-1} - x_{A,i}) - V(y_{A,i} - y_{A,i+1}) \right] & \forall \ i \in \{FT+1, ..., NT\} \\ & \frac{dx_{A,NT+1}}{dt} = \frac{1}{A_{\text{reboiler}}} \left[L_2x_{A,NT} - (F-D)x_{A,NT+1} - Vy_{A,NT+1} \right] \\ & x_{A,i} = x_{0_{A,i}} & \forall \ i \in \{0, ..., NT+1\} \\ & V = L_1 + D \\ & L2 = L_1 + F \\ & u = \frac{L_1}{D} \\ & \alpha_{A,B} = \frac{y_A(1-x_A)}{x_A(1-y_A)} \end{aligned}$$

Basic SQP ~10% slower than IPOPT

Alternating Direction Method of Multipliers

Algorithm 2: Alternating Direction Method of Multipliers

```
1 Given barrier parameter \rho > 0, tolerances \epsilon_r > 0, \epsilon_s > 0, and estimates y^0, z^0
2 for k = 0, 1, 2, ... do
         update partition variables:
         foreach i \in \mathcal{P} do
                  x_{i}^{k+1} = \arg\min_{x_{i} \in \mathcal{X}_{i}} f_{i}(x_{i}) + \left(A_{i}x_{i} + B_{i}z^{k}\right)^{T} y_{i}^{k} + \frac{\rho}{2} ||A_{i}x_{i} + B_{i}z^{k}||^{2}
         update coupling variables:
6
            z^{k+1} = \operatorname*{arg\,min}_{z} \mathcal{L}_{
ho}(x^{k+1}, z, y^k)
         compute primal residual:
8
            r^{k+1} = Ax^{k+1} + Bz^{k+1}
         compute dual residual:
10
             s^{k+1} = \rho A^T B \cdot (z^{k+1} - z^k)
11
         update dual variables:
12
            y^{k+1} = y^k + \rho \cdot r^{k+1}
13
         if ||r^{k+1}|| < \epsilon_r and ||s^{k+1}|| < \epsilon_s then
14
15
               stop
```

```
from pyomo.contrib.pynumero.interfaces.nlp transformations
import AdmmNLP
for k in range(max iter):
    # Step 3. Update partition variables
    for bid, nlp in enumerate(nlps):
        xs[bid] = basic sqp(nlp, tee=False)
    # Step 6. Compute coupling variables
    z = [None] * len(nlps)
    for bid, nlp in enumerate(nlps):
        zi[bid] = xs[bid][nlp.zid to xid]
    z = np.mean(z, axis=0)
    # Step 8/10. Compute residuals
    r = [None] * len(nlps)
    for bid, nlp in enumerate(nlps):
        ri[bid] = xs[bid][nlp.zid to xid] - z
    s = z - old z estimates
    # Update estimates
    for bid, nlp in enumerate(nlps):
        nlp.z estimates = z
        nlp.w_estimates = nlp.w_estimates + nlp.rho * r[bid]
        nlp.init x = xs[bid]
        nlp.init y = ys[bid]
    old z estimates = z
    # Step 14. Compute infeasibility norms
    r norm = np.linalg.norm(np.concatenate(r))
    s norm = np.linalg.norm(s)
    if r_norm < rtol and s_norm < stol:</pre>
        break
```


Summary

- Explicitly capturing high-level structure leads to significantly easier, faster, and more flexible implementations
- Pyomo provides high-level modeling constructs for capturing exploitable structure (<u>www.pyomo.org</u>)
- PyNumero is a promising tool for prototyping general implementations of decomposition algorithms

On-going work:

- Implementations of several internal decomposition methods using PyNumero (Schur-complement, cyclic reduction, etc.)
- Interface to the Rapid Optimization Library (ROL) to access several parallel-in-time algorithms under development

