
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell

International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA-0003525.

Structured Modeling and

Decomposition Methods

in Pyomo

Bethany Nicholson

Carl Laird

John D. Siirola

Center for Computing Research

Sandia National Laboratories

Albuquerque, NM

SIAM CSE February 25 – March 1, 2019

§ Improvements in computing clock rates have slowed
§ Increased focus on parallel computing architectures

Landscape of Computing Hardware

2

[Steven Edwards, Columbia University]

§ Optimization Under Uncertainty
§ two-stage stochastic programming formulation
§ block structure because of coupled scenarios
§ common structure of many applications

(parameter estimation, spatial decomposition)

§ Dynamic Optimization
§ Simultaneous approach (discretization using OCFE)
§ block structure because of finite element discretization
§ pass-on variables couple neighboring blocks

Exploiting Problem Structure

3

[Laird, 2018]

§ Decomposition approaches allow for parallel/distributed computing
§ External decomposition

§ Progressive Hedging (PH)
§ Alternating direction method of multipliers (ADMM)
§ Benders decomposition, dual decomposition

§ Internal decomposition
§ Schur-complement decomposition
§ Block cyclic reduction
§ Reduced-space decomposition

Overview of Decomposition Algorithms

4

External Decomposition Internal Decomposition

Break full NLP into subproblems and
coordinate solutions

Build full NLP and decompose at linear
algebra level of host algorithm

Highly flexible and easier to implement Harder to implement

Typically linear convergence Convergence rates of host algorithm

Convergence not well understood for general
nonconvex NLPs

Convergence properties host algorithm

[Rodriguez, AIChE 2018]

§ Despite having well-established decomposition
methods for exploiting common problem structures,
there are very few general implementations of these
approaches interfaced with popular algebraic
modeling languages

§ Why?
§ Few algebraic modeling languages are capable of

capturing the high-level model structure that can
be exploited by these algorithms

The Unspoken Implementation Challenge

5

§ Pyomo: Python Optimization Modeling Objects
§ Formulate optimization models within Python

§ Utilize high-level programming language to write scripts and
manipulate model objects
§ Leverage third-party Python libraries

e.g. SciPy, NumPy, MatPlotLib, Pandas

Software platform

6

from pyomo.environ import *

m = ConcreteModel()

m.x1 = Var()
m.x2 = Var(bounds=(-1,1))
m.x3 = Var(bounds=(1,2))

m.obj = Objective(sense = minimize,
expr = m.x1**2 + (m.x2*m.x3)**4 + m.x1*m.x3
+ m.x2 + m.x2*sin(m.x1+m.x3))

Pyomo at a Glance

7

Solver Interfaces

GLPK

BARON

CBC

CPLEX

Gurobi

NEOS

Ipopt

KNITRO

Bonmin

Core Modeling
Objects

Couenne

Meta-Solvers
• Generalized Benders
• Progressive Hedging
• Linear bilevel
• Linear MPEC

Modeling Extensions
• Disjunctive programming
• Stochastic programming
• Bilevel programming
• Differential equations
• Equilibrium constraints

Core Optimization
Objects

Model
Transformations

DAKOTA

DICOPT

ANTIGONE

⋅⋅⋅

⋅⋅⋅

AMPL Solver Library

GAMS Solver Library

Pyomo at a Glance

8

Solver Interfaces

GLPK

BARON

CBC

CPLEX

Gurobi

NEOS

Ipopt

KNITRO

Bonmin

Core Modeling
Objects

Couenne

Meta-Solvers
• Generalized Benders
• Progressive Hedging
• Linear bilevel
• Linear MPEC

Modeling Extensions
• Disjunctive programming
• Stochastic programming
• Bilevel programming
• Differential equations
• Equilibrium constraints

Core Optimization
Objects

Model
Transformations

DAKOTA

DICOPT

ANTIGONE

⋅⋅⋅

⋅⋅⋅

AMPL Solver Library

GAMS Solver Library

§ Extend Pyomo syntax to represent:
§ Continuous domains
§ Ordinary or partial differential equations
§ Systems of differential algebraic equations (DAEs)

§ Available discretization schemes:
§ Finite difference methods (Backward/Forward/Central)
§ Collocation (Lagrange polynomials with Radau or Legendre roots)

§ Extensible framework
§ Write general implementations of custom discretization schemes
§ Build frameworks/meta-algorithms including dynamic optimization

§ Interface with numerical simulators
§ Scipy for simulating ODEs
§ CasADi for simulating ODEs and DAEs

9

Simple Example

10

from pyomo.environ import *
from pyomo.dae import *

model = m = ConcreteModel()
m.t = ContinuousSet(bounds=(0, 1))

m.z = Var(m.t)
m.dzdt = DerivativeVar(m.z, wrt=m.t)

def _zdot(m, t):
return m.dzdt[t] == m.z[t]**2 - 2*m.z[t] + 1

m.zdot = Constraint(m.t, rule=_zdot)

def _init_con(m):
return m.z[0] == -3

m.init_con = Constraint(rule=_init_con)

Discretize model using backward finite difference

discretizer = TransformationFactory('dae.finite_difference')

discretizer.apply_to(m,nfe=10,scheme=‘BACKWARD')

!"
!# = "% − 2" + 1
" 0 = −3

11

§ Framework for representing stochastic programming models,
only requiring:
§ deterministic base model
§ scenario tree defining the problem stages and uncertain parameters

§ PySP provides two primary solution strategies
§ build and solve the deterministic equivalent (extensive form)
§ Progressive Hedging
§ (plus beta implementations of others, including 2-stage Benders and

an interface to DDSIP)
§ Parallel infrastructure for generating and solving subproblems

on parallel (distributed) computing platforms

§ Scenario-based decomposition algorithm
§ Iteratively converge coupling constraints (non-anticipativity

constraints) by penalizing deviation from consensus

Progressive Hedging

12

§ Gas-solid, 3 region model [3]

§ Steady state model with 1-D spatial variation

Bubbling Fluidized Bed (BFB) Model

13

[Lee and Miller, Ind. Eng. Chem. Res., 2013]

min{%&,(),*+}
-
./0.

233435.(6 7

8. 9. :;: <4=2> 2?@A9B4C8

DE, A*
ℎGSt

ag
e

1
St

ag
e

2

Heat Exchanger Model Parameters
DE Average correction factor for tube model
A* Empirical factor for tube model
ℎG Heat transfer coefficient of tube walls

…

BFB Parameter Estimation

14

Stochastic structure implementation in PySP

15

def pysp_scenario_tree_model_callback():
from pyomo.pysp.scenariotree.tree_structure_model \

import CreateConcreteTwoStageScenarioTreeModel

st_model = CreateConcreteTwoStageScenarioTreeModel(scenarios)

first_stage = st_model.Stages.first()
second_stage = st_model.Stages.last()
First Stage
st_model.StageCost[first_stage] = 'FirstStageCost'
st_model.StageVariables[first_stage].add(‘cr')
st_model.StageVariables[first_stage].add(‘ah’)
st_model.StageVariables[first_stage].add(‘hw')
Second Stage
st_model.StageCost[second_stage] = 'SecondStageCost'

return st_model

def pysp_instance_creation_callback(scenario_name, node_names):
experiment = int(scenario_name.replace('Scenario',''))
explist = [1,2,3] # Different data sets

experiment = explist[experiment-1]
instance = generate_model_paramest(experiment)

return instance

BFB Parameter Estimation

Cr ah hw Solve Time (s)

Actual 1.0 0.8 1500.0 -

Extensive Form 1.016 0.51 1450.35 604.45

Progressive Hedging (15 processors) 0.9824 0.7850 1501.74 610.98

Progressive Hedging (30 processors) 0.9824 0.7850 1501.74 459.10

mpirun -np 1 pyomo_ns : -np 1 dispatch_srvr : -np 30 phsolverserver : \
-np 1 runph --solver-manager=phpyro --shutdown-pyro \
-m bfb_param.py --solver=ipopt --default-rho=0.25

§ Solve using progressive hedging in parallel

Extensive form problem size ~400,000 variables and constraints
PH subproblem size ~13,000 variables and constraints

runph --solver ipopt --output-solver-log -m bfb_param.py --default-rho=.25

runef --solve --solver ipopt --output-solver-log -m bfb_param.py

§ Create and solve extensive form

§ Solve using progressive hedging

16

Pyomo at a Glance

17

Solver Interfaces

GLPK

BARON

CBC

CPLEX

Gurobi

NEOS

Ipopt

KNITRO

Bonmin

Core Modeling
Objects

Couenne

Meta-Solvers
• Generalized Benders
• Progressive Hedging
• Linear bilevel
• Linear MPEC

Modeling Extensions
• Disjunctive programming
• Stochastic programming
• Bilevel programming
• Differential equations
• Equilibrium constraints

Core Optimization
Objects

Model
Transformations

DAKOTA

DICOPT

ANTIGONE

⋅⋅⋅

⋅⋅⋅

AMPL Solver Library

GAMS Solver Library

Pyomo at a Glance

18

Solver Interfaces

GLPK

BARON

CBC

CPLEX

Gurobi

NEOS

Ipopt

KNITRO

Bonmin

Core Modeling
Objects

Couenne

Meta-Solvers
• Generalized Benders
• Progressive Hedging
• Linear bilevel
• Linear MPEC

Modeling Extensions
• Disjunctive programming
• Stochastic programming
• Bilevel programming
• Differential equations
• Equilibrium constraints

Core Optimization
Objects

Model
Transformations DAKOTA

DICOPT

ANTIGONE

⋅⋅⋅

⋅⋅⋅

AMPL Solver Library

GAMS Solver Library

PyNumero

§ High-level Python framework for rapid development of
nonlinear and parallel decomposition algorithms without
large sacrifices in computational performance

§ Dramatically reduce time required to prototype new
algorithms while minimizing the performance penalty

§ Develop a framework for the low-level numerical treatment
of Pyomo models that can be used to:
§ Calculate efficient numerical derivatives
§ Implement algorithms that are natively aware of Pyomo model

structure

Purpose of PyNumero

19

[Rodriguez, AIChE 2018]

§ Python C/C++ extension for nonlinear programming
§ Provides first and second derivatives via ASL
§ Interfaces with Numpy/Scipy for all array-operations
§ Supports python calls to HSL linear solver (MA27)
§ Computationally expensive operations performed in C/C++
§ Distributed with Pyomo and conda-forge

PyNumero

from pyomo.contrib.pynumero.interfaces import PyomoNLP
import pyomo.environ as aml

m = aml.ConcreteModel()

m.x = aml.Var([1, 2, 3], bounds=(0.0, None))
m.phys = aml.Constraint(expr=m.x[3]**2 + m.x[1] == 25)

m.rsrc = aml.Constraint(expr=m.x[2]**2 + m.x[1] <= 18.0)

m.obj = aml.Objective(expr=m.x[1]**4-m.x[3]*m.x[2]**3)

def my_algorithm(model):

nlp = PyomoNLP(model)

x = nlp.create_vector_x()

c = nlp.evaluate_c(x)

Jc = nlp.jacobian_c(x)

…

20

PyNumero Performance

21

§ Equality Constrained Problem with 100K variables

Basic SQP
~10% slower
than IPOPT

Alternating Direction Method of Multipliers
from pyomo.contrib.pynumero.interfaces.nlp_transformations
import AdmmNLP
…
for k in range(max_iter):

Step 3. Update partition variables
for bid, nlp in enumerate(nlps):

xs[bid] = basic_sqp(nlp, tee=False)

Step 6. Compute coupling variables
z = [None] * len(nlps)
for bid, nlp in enumerate(nlps):

zi[bid] = xs[bid][nlp.zid_to_xid]
z = np.mean(z, axis=0)

Step 8/10. Compute residuals
r = [None] * len(nlps)
for bid, nlp in enumerate(nlps):

ri[bid] = xs[bid][nlp.zid_to_xid] – z
s = z - old_z_estimates

Update estimates
for bid, nlp in enumerate(nlps):

nlp.z_estimates = z
nlp.w_estimates = nlp.w_estimates + nlp.rho * r[bid]
nlp.init_x = xs[bid]
nlp.init_y = ys[bid]

old_z_estimates = z

Step 14. Compute infeasibility norms
r_norm = np.linalg.norm(np.concatenate(r))
s_norm = np.linalg.norm(s)

if r_norm < rtol and s_norm < stol:
break

[J. S. Rodriguez, B. Nicholson, C. D. Laird, V. M. Zavala, “Benchmarking ADMM in nonconvex NLPs”, Computers & Chemical Engineering, 2018.]

22

§ Explicitly capturing high-level structure leads to significantly
easier, faster, and more flexible implementations

§ Pyomo provides high-level modeling constructs for capturing
exploitable structure (www.pyomo.org)

§ PyNumero is a promising tool for prototyping general
implementations of decomposition algorithms

On-going work:
§ Implementations of several internal decomposition methods

using PyNumero (Schur-complement, cyclic reduction, etc.)
§ Interface to the Rapid Optimization Library (ROL) to access

several parallel-in-time algorithms under development

Summary

23

http://www.pyomo.org/

