Stability of Nozaki-Bekki holes near the nonlinear Schrödinger limit Björn Sandstede

Blake Barker

Margaret Beck

Toan Nguyen

Kevin Zumbrun

Sources in experiments

Spectral stability implies nonlinear stability [Beck, Nguyen, S., Zumbrun]

Nozaki-Bekki holes

• Complex cubic-quintic Ginzburg-Landau equation:

$$iA_t = (1 + ia)A_{xx} + (\omega + i\mu)A - (1 + i\gamma)|A|^2A - (\delta_1 - i\delta_2)|A|^4A$$

- Nozaki-Bekki holes:
 - temporal frequency is ω
 - explicit one-parameter family of sources for fixed parameter values (α, γ, μ) with δ =0, parametrized by wave speed: not generic! [Doelman]
 - standing holes persist for $\delta \neq 0$
- Profiles:

$$A(x) = r(x)e^{i\varphi(x)}$$
 $r(x) \to \pm r_{\infty}$, $\varphi'(x) \to \pm \kappa$ as $x \to \pm \infty$

• Expected spectra:

Dark solitons for nonlinear Schrödinger equation

Nonlinear Schrödinger equation:

$$iA_t = A_{xx} + \omega A - |A|^2 A$$

Dark solitons: explicit one-parameter family of solitons, parametrized by ω

Spectra:

Evans function $E(\lambda)$: multiplicity of $\lambda=0$ is Evans function E(λ): multiplicity of 2 for even eigenfunctions, and 1 for odd eigenfunctions

Plan: attempt perturbation analysis near this limit and trace roots of Evans functions!

$$iA_t = (1 + ia)A_{xx} + (\omega + i\mu)A - (1 + i\gamma)|A|^2A - (\delta_1 - i\delta_2)|A|^4A$$
$$(\alpha, \gamma, \mu, \delta) := O(\varepsilon) \text{ for } o < \varepsilon < \varepsilon$$

[Lega & Fauve], [Kapitula & Rubin]

Example 1: heat equation with potential

• Heat equation with localized potential:

$$u_t = u_{xx} - u + V(x)u$$

• Asymptotic eigenvalue problem:

$$\lambda u = u_{xx} - u$$

Need to construct solutions of the form

$$u(x) \approx e^{\pm \sqrt{\lambda + 1}x}$$
 as $x \to \mp \infty$ for $\lambda > 0$

• $E(\lambda)$ = Wronskian of these solutions:

will be analytic in λ near λ =0

$$\frac{\pm\sqrt{\lambda+1}}{-1} + \lim \lambda$$
Re λ

Example 2: heat equation with potential

- Heat equation with localized potential:
- Asymptotic eigenvalue problem:
- Need to construct solutions of the form
- $E(\lambda)$ = Wronskian of these solutions:
- Define $\lambda = \gamma^2$, then
- $E(\gamma)$ = Wronskian of these solutions:

branch point : spatial eigenvalues collide

$$u_t = u_{xx} + V(x)u$$

$$\lambda u = u_{xx}$$

$$u(x) \approx e^{\pm \sqrt{\lambda}x} \text{ as } x \to \mp \infty \text{ for } \lambda > 0$$

$$\text{will not be analytic in } \lambda \text{ near } \lambda = 0$$

$$u(x) \approx e^{\pm \gamma x} \text{ as } x \to \mp \infty \text{ for } \gamma > 0$$

$$\text{will be analytic in } \gamma \text{ near } \gamma = 0$$

Perturbation from NLS to CGL

- Two branch points $O(\varepsilon^3)$ and $O(\varepsilon)$ away from $\lambda=0$
- Choose coordinate transformation that lifts λ -plane to a Riemann surface covering: blows up absolute spectrum to a circle
- Resulting Evans function E(γ,ε) has 6 roots for ε≈ο
 (4 with even and 2 with odd eigenfunctions)

Perturbation from NLS to CGL

- Two branch points $O(\varepsilon^3)$ and $O(\varepsilon)$ away from $\lambda=0$
- Choose coordinate transformation that lifts λ -plane to a Riemann surface covering: blows up absolute spectrum to a circle
- Resulting Evans function E(γ,ε) has 6 roots for ε≈ο
 (4 with even and 2 with odd eigenfunctions)

Perturbation from NLS to CGL

- Odd Evans function: one root at λ=0 plus one resonance pole/stable eigenvalue
- Even Evans function: two roots at λ =0 plus one unstable root and a resonance pole

Conclusion: Nozaki-Bekki holes are unstable near the NLS limit

Numerical results

Numerical computations confirm analytical results near NLS limit

Summary + Outlook

Summary:

- Proved that Nozaki-Bekki holes are unstable near NLS limit
- Provided strategy for tackling similar problems

Outlook:

• Finalize expansion of double root at $\lambda=0$ for $\delta\neq0$

Previous results:

• Numerical results: [Sakaguchi], [Chate & Manneville], [Stiller et al.], ...

• Soliton perturbation theory: [Lega & Fauve]

• Evans-function analysis: [Kapitula & Rubin]

• Survey article: [Lega]

Thank you!

