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Time dependent problems

Two Phase flow problem

Consider a two-phase oil-water flow problem:

−λ(sw )κ∇p = u

∇ · u = q

φ
∂sw
∂t

+∇ ·
(
λw (sw )

λ(sw )
u

)
= 0

u(x, t), p(x, t) − velocity and pressure fields, sw (x, t) −
water saturation, q(x, t) − source term, φ(x), κ(x) −
porosity, absolute permeability, λ(sw ) = λw (sw ) + λo(sw )
− phase mobilities, no capillary pressure or gravity effects.
Boundary and initial conditions have to be provided.
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Time dependent problems

Operator Splitting

One of the popular techniques to solve this problem is
Operator Splitting (sw = s):

(pn−1, un−1, sn−1) (pn, un, sn−1)

(pn, un, sn−1) (pn, un, sn)

elliptic

hyperbolic

δt

δth

1

Figure: The operator splitting technique.
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Time dependent problems

Operator Splitting: References

Two-phase: J. Douglas, Jr., F. Furtado, F. P. (1997), On the numerical simulation of

waterflooding of heterogeneous petroleum reservoirs, Computational Geosciences, v. 1, # 2, pp. 155-190.

Three-phase: E. Abreu, J. Douglas Jr., F. Furtado and F. P. (2008), Operator Splitting Based

on Physics for Flow in Porous Media, International Journal of Computational Science, v. 2, 3, pp.

315-335.

Compositional: M. Akbarabadi, M. Borges, A. Jan, F. P. and M. Piri (2015), A Bayesian

Framework for the Validation of Models for Subsurface Flows: Synthetic Experiments, Computational

Geosciences, Volume 19, Issue 6, pp. 1231-1250.
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Two Phase flow contd.

Computational efficiency: elliptic time step > saturation
time step

Key point: total velocity un−1 ≈ un because

λ(sn−1
w )κ(x) ≈ λ(snw )κ(x)

κ(x)MAX

κ(x)MIN
≈ 10α, α = 5, 6, 7...

λ(sw )MAX

λ(sw )MIN
≈ 4
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The Elliptic Problem
The Elliptic Solver (MuMM)

The velocity-pressure problem

Conclusion: The two-phase flow problem discussed above
requires the solution of several problems of the following form

Find the velocity u and pressure p fields satisfying

u = −K∇p in Ω
∇ · u = q in Ω

p = gp x ∈ ∂Ωp

u · n = gu x ∈ ∂Ωu

(1)

where K (x) = λ(sw (x))κ(x) (a scalar in our discussion), q is
the source term, gp is the Dirichlet boundary data and gu is
the Neumann boundary data.
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The Elliptic Problem
The Elliptic Solver (MuMM)

The Multiscale Perturbation Method (MPM)

MPM combines:

The Multiscale Mixed Method (MuMM)

Classical Perturbation Theory

HPC: Multi-core devices
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The Elliptic Solver (MuMM)

References for the MuMM

Original DDM: J. Douglas, Jr., P.J. Paes Leme, J.E. Roberts, and Junping Wang (1993), A

parallel iterative procedure applicable to the approximate solution of second order partial differential

equations by mixed finite element methods, Numer. Math. 65, 95-108.

MuMM: A. Francisco, V. Ginting, F. P., J. Rigelo (2014), Design and Implementation of a

Multiscale Mixed Method for Porous Media Flows, Mathematics and Computers in Simulation, 99, pp.

125-138.
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The Elliptic Problem
The Elliptic Solver (MuMM)

MuMM : Formulation

Three spatial scales enter in the definition of the MuMM:
h ≤ H ≤ H

Figure: The three spatial scales for the definition of MuMM and
MPM.
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The MuMM (cont.)

The solution of a local Robin BVP (with given Dirichlet
and Neumann data on ∂Ω) defined in Ωi with Robin
conditions (r `ij), ` = 1, 2, ...,N is, obtained as

{
ui
h, p

i
h

}
=
∑

Γij⊂∂Ωi

N∑
`=1

r `ijΨ
`
ij + Φi (2)

The global solution of MuMM is based on a red-black
iteration over subdomains.
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The MuMM (cont.)

The divergence-free Multiscale Basis Functions (MSBF)
Ψ`

ij = {ψ`ij , φ`ij} are defined as the solution of the
following Robin boundary value problem (BVP)

Ψ`
ij :



ψ`ij = −K∇φ`ij in Ωi

∇ · ψ`ij = 0 in Ωi

φ`ij = 0 x ∈ ∂Ωp

ψ`ij · ni = 0 x ∈ ∂Ωu

−βψ`ij · ni + φ`ij = g `ij x ∈ Γij

such that g `ij = 1 in Γ`ij and 0 in ∂Ωi\Γ`ij
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The Elliptic Problem
The Elliptic Solver (MuMM)

The MuMM (cont.)

Non-trivial Dirichlet/Neumann boundary conditions and
source terms are incorporated in the local BVP solutions
through an auxiliary basis function (that takes trivial
Robin conditions) Φi = {χi , ϕi} defined as

Φi :



χi = −K∇ϕi in Ωi

∇ · χi = q in Ωi

ϕi = gp x ∈ ∂Ωp

χi · ni = gu x ∈ ∂Ωu

−βχi · ni + ϕi = 0 x ∈ Γij
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Formulation

The Multiscale Perturbation Method (MPM)

Consider the global problem (1) along with two fields,
K (x) = K0(x) and K (x) = Kt(x)

K0(x) corresponds to t0 = 0

Kt(x) corresponds to t1 > 0

To identify a small parameter that reflects the change in K (x)
from t0 to t1, write

Kt(x) = K0(x) + εKp(x), x ∈ Ω (3)

where ε = ||Kt(x)− K0(x)|| and Kp(x) = Kt(x)−K0(x)
||Kt(x)−K0(x|| ;

Here ε is a dimensionless parameter with its value < 1.
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The MPM scheme (cont.)

The target global BVP can be written as

Pt :


u = −(K0 + εKp)∇p in Ω

∇ · u = q in Ω

p = gp x ∈ ∂Ωp

u · n = gu x ∈ ∂Ωu

Let uref , pref be a guess to the solution of the target
problem, such that,

u = uref + δu

p = pref + δp
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The MPM scheme contd.

Considering the expansion,

δu = δu + εδu + ε2δu + · · ·+ εrδu

δp = δp0 + εδp1 + ε2δp2 + · · ·+ εrδpr

we derive a hierarchy of second order elliptic equations
that refer to K0 and not Kt .

These BVPs can be efficiently solved using the MuMM in
multi-core computers.

The multiscale basis functions computed at time t = 0
can be reused for all BVPs, once they are defined in terms
of K0(x).
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The Model Problem

The absolute permeability field. κmax

κmin
≈ 103
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The Model Problem (cont.)

The target permeability field showing the area that has been
perturbed from t = 0 to t = t1. The region with larger

variability mimics an invading water front.
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Vector field:ε = 0.05

Comparing the fine scale solution with the first order ε
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Vector field:ε = 0.05

Comparing the fine scale solution with the first order ε

Het Mankad MPM, SIAM-GS19



Motivation
The Multiscale Mixed Method

The Multiscale Perturbation Method
Numerical Results

Conclusion

Vector field:ε = 0.05
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Vector field:ε = 0.05
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Conclusion/Future Work

MPM has been introduced and tested on simple problems.

The solution of a two phase flow problem obtained using
techniques like Operator splitting and IMPES (IMplicit
Pressure, Explicit Saturation) 1 can be obtained much
more efficiently without recomputing the basis functions
at every time step.

1
P. Jenny and S.H. Lee and H.A. Tchelepi (2006), Adaptive fully implicit multi-scale finite-volume method

for multi-phase flow and transport in heterogeneous porous media, Journal of Computational Physics, V. 217, pp
627-641
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Thank You.
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