The Multiscale Perturbation Method for Elliptic Equations

A. Alsadig¹, H. Mankad¹, F. Pereira¹, F. S. Sousa²

¹ The University of Texas at Dallas, USA (UTD) ² University of São Paulo, Brazil (USP)

March 12, 2019

Motivation

The Multiscale Mixed Method The Multiscale Perturbation Method Numerical Results Conclusion

Time dependent problems

Two Phase flow problem

Consider a two-phase oil-water flow problem:

$$-\lambda(\mathbf{s}_{w})\kappa\nabla p = \mathbf{u}$$
$$\nabla \cdot \mathbf{u} = q$$
$$\phi \frac{\partial \mathbf{s}_{w}}{\partial t} + \nabla \cdot \left(\frac{\lambda_{w}(\mathbf{s}_{w})}{\lambda(\mathbf{s}_{w})}\mathbf{u}\right) = 0$$

u(x, t), p(x, t) - velocity and pressure fields, s_w(x, t) - water saturation, q(x, t) - source term, φ(x), κ(x) - porosity, absolute permeability, λ(s_w) = λ_w(s_w) + λ_o(s_w) - phase mobilities, no capillary pressure or gravity effects. Boundary and initial conditions have to be provided.

Motivation

The Multiscale Mixed Method The Multiscale Perturbation Method Numerical Results Conclusion

Time dependent problems

Operator Splitting

• One of the popular techniques to solve this problem is Operator Splitting $(s_w = s)$:

Figure: The operator splitting technique.

Motivation

The Multiscale Mixed Method The Multiscale Perturbation Method Numerical Results Conclusion

Time dependent problems

Operator Splitting: References

• Two-phase: J. Douglas, Jr., F. Furtado, F. P. (1997), On the numerical simulation of

waterflooding of heterogeneous petroleum reservoirs, Computational Geosciences, v. 1, # 2, pp. 155-190.

- Three-phase: E. Abreu, J. Douglas Jr., F. Furtado and F. P. (2008), Operator Splitting Based on Physics for Flow in Porous Media, International Journal of Computational Science, v. 2, 3, pp. 315-335.
- Compositional: M. Akbarabadi, M. Borges, A. Jan, F. P. and M. Piri (2015), A Bayesian Framework for the Validation of Models for Subsurface Flows: Synthetic Experiments, Computational Geosciences, Volume 19, Issue 6, pp. 1231-1250.

Time dependent problems

Two Phase flow contd.

- Computational efficiency: elliptic time step > saturation time step
- Key point: total velocity $\mathbf{u}^{n-1} \approx \mathbf{u}^n$ because

$$\lambda(s_w^{n-1})\kappa(\mathbf{x}) \approx \lambda(s_w^n)\kappa(\mathbf{x})$$

•
$$\frac{\kappa(\mathbf{x})_{MAX}}{\kappa(\mathbf{x})_{MIN}} \approx 10^{\alpha}, \quad \alpha = 5, 6, 7...$$

• $\frac{\lambda(s_w)_{MAX}}{\lambda(s_w)_{MIN}} \approx 4$

The Elliptic Problem The Elliptic Solver (MuMM)

The velocity-pressure problem

Conclusion: The two-phase flow problem discussed above requires the solution of several problems of the following form

Find the velocity \mathbf{u} and pressure p fields satisfying

where $K(\mathbf{x}) = \lambda(s_w(\mathbf{x}))\kappa(\mathbf{x})$ (a scalar in our discussion), q is the source term, g^p is the Dirichlet boundary data and g^u is the Neumann boundary data.

The Elliptic Problem The Elliptic Solver (MuMM)

The Multiscale Perturbation Method (MPM)

MPM combines:

- The Multiscale Mixed Method (MuMM)
- Classical Perturbation Theory
- HPC: Multi-core devices

The Elliptic Problem The Elliptic Solver (MuMM)

References for the MuMM

- Original DDM: J. Douglas, Jr., P.J. Paes Leme, J.E. Roberts, and Junping Wang (1993), A
 parallel iterative procedure applicable to the approximate solution of second order partial differential
 equations by mixed finite element methods, Numer. Math. 65, 95-108.
- MuMM: A. Francisco, V. Ginting, F. P., J. Rigelo (2014), Design and Implementation of a Multiscale Mixed Method for Porous Media Flows, Mathematics and Computers in Simulation, 99, pp. 125-138.

The Elliptic Problem The Elliptic Solver (MuMM)

MuMM : Formulation

• Three spatial scales enter in the definition of the MuMM: $h \leq \overline{H} \leq H$

Figure: The three spatial scales for the definition of MuMM and MPM.

The Elliptic Problem The Elliptic Solver (MuMM)

The MuMM (cont.)

The solution of a local Robin BVP (with given Dirichlet and Neumann data on ∂Ω) defined in Ω_i with Robin conditions (r^ℓ_{ii}), ℓ = 1, 2, ..., N is, obtained as

$$\left\{\mathbf{u}_{h}^{i}, \boldsymbol{p}_{h}^{i}\right\} = \sum_{\Gamma_{ij} \subset \partial \Omega_{i}} \sum_{\ell=1}^{N} \boldsymbol{r}_{ij}^{\ell} \boldsymbol{\Psi}_{ij}^{\ell} + \Phi_{i}$$
(2)

• The global solution of MuMM is based on a red-black iteration over subdomains.

The Elliptic Problem The Elliptic Solver (MuMM)

The MuMM (cont.)

• The divergence-free Multiscale Basis Functions (MSBF) $\Psi_{ij}^{\ell} = \{\psi_{ij}^{\ell}, \phi_{ij}^{\ell}\}$ are defined as the solution of the following Robin boundary value problem (BVP)

$$\Psi_{ij}^{\ell}: \begin{cases} \psi_{ij}^{\ell} = -K\nabla\phi_{ij}^{\ell} & \text{in } \Omega_{i} \\ \nabla \cdot \psi_{ij}^{\ell} = 0 & \text{in } \Omega_{i} \\ \phi_{ij}^{\ell} = 0 & \mathbf{x} \in \partial\Omega_{p} \\ \psi_{ij}^{\ell} \cdot \mathbf{n}^{i} = 0 & \mathbf{x} \in \partial\Omega_{\mathbf{u}} \\ -\beta\psi_{ij}^{\ell} \cdot \mathbf{n}^{i} + \phi_{ij}^{\ell} = \mathbf{g}_{ij}^{\ell} & \mathbf{x} \in \Gamma_{ij} \\ \text{such that } \mathbf{g}_{ij}^{\ell} = 1 \text{ in } \Gamma_{ij}^{\ell} \text{ and } 0 \text{ in } \partial\Omega_{i} \backslash \Gamma_{ij}^{\ell} \end{cases}$$

The Elliptic Problem The Elliptic Solver (MuMM)

The MuMM (cont.)

 Non-trivial Dirichlet/Neumann boundary conditions and source terms are incorporated in the local BVP solutions through an auxiliary basis function (that takes trivial Robin conditions) Φ_i = {χ_i, φ_i} defined as

$$\Phi_{i}:\begin{cases} \chi_{i} = -K\nabla\varphi_{i} & \text{in }\Omega_{i} \\ \nabla \cdot \chi_{i} = q & \text{in }\Omega_{i} \\ \varphi_{i} = g^{p} & \mathbf{x} \in \partial\Omega_{p} \\ \chi_{i} \cdot \mathbf{n}^{i} = g^{\mathbf{u}} & \mathbf{x} \in \partial\Omega_{\mathbf{u}} \\ -\beta\chi_{i} \cdot \mathbf{n}^{i} + \varphi_{i} = 0 & \mathbf{x} \in \Gamma_{ij} \end{cases}$$

Formulation

The Multiscale Perturbation Method (MPM)

Consider the global problem (1) along with two fields, $K(\mathbf{x}) = K_0(\mathbf{x})$ and $K(\mathbf{x}) = K_t(\mathbf{x})$

- $K_0(\mathbf{x})$ corresponds to $t_0 = 0$
- $K_t(\mathbf{x})$ corresponds to $t_1 > 0$

To identify a small parameter that reflects the change in $K(\mathbf{x})$ from t_0 to t_1 , write

$$K_t(\mathbf{x}) = K_0(\mathbf{x}) + \epsilon K_p(\mathbf{x}), \quad \mathbf{x} \in \Omega$$
(3)

where $\epsilon = ||K_t(\mathbf{x}) - K_0(\mathbf{x})||$ and $K_p(\mathbf{x}) = \frac{K_t(\mathbf{x}) - K_0(\mathbf{x})}{||K_t(\mathbf{x}) - K_0(\mathbf{x})|};$

Here ϵ is a dimensionless parameter with its value < 1.

Formulation

The MPM scheme (cont.)

The target global BVP can be written as

$$P_t: \begin{cases} \mathbf{u} = -(\mathbf{K}_0 + \epsilon \mathbf{K}_p) \nabla p & \text{in } \Omega \\ \nabla \cdot \mathbf{u} = q & \text{in } \Omega \\ p = g^p & \mathbf{x} \in \partial \Omega_p \\ \mathbf{u} \cdot \mathbf{n} = g^{\mathbf{u}} & \mathbf{x} \in \partial \Omega_{\mathbf{u}} \end{cases}$$

• Let \mathbf{u}_{ref} , p_{ref} be a guess to the solution of the target problem, such that,

$$\mathbf{u} = \mathbf{u}_{ref} + \delta \mathbf{u}$$
$$\mathbf{p} = \mathbf{p}_{ref} + \delta \mathbf{p}$$

Formulation

The MPM scheme contd.

• Considering the expansion,

$$\delta \mathbf{u} = \delta \mathbf{u} + \epsilon \delta \mathbf{u} + \epsilon^2 \delta \mathbf{u} + \dots + \epsilon^r \delta \mathbf{u}$$
$$\delta p = \delta p_0 + \epsilon \delta p_1 + \epsilon^2 \delta p_2 + \dots + \epsilon^r \delta p_r$$

we derive a hierarchy of second order elliptic equations that refer to K_0 and not K_t .

- These BVPs can be efficiently solved using the MuMM in multi-core computers.
- The multiscale basis functions computed at time t = 0 can be reused for all BVPs, once they are defined in terms of K₀(x).

The Model Problem

Het Mankad MPM, SIAM-GS19

The Model Problem (cont.)

The target permeability field showing the area that has been perturbed from t = 0 to $t = t_1$. The region with larger variability mimics an invading water front.

Vector field: $\epsilon = 0.05$

Vector field: $\epsilon = 0.05$

Comparing the fine scale solution with the first order ϵ

Vector field: $\epsilon = 0.05$

Relative Error for flux vs several orders of ϵ

Vector field: $\epsilon = 0.05$

Relative Error for flux vs several orders of ϵ

Conclusion/Future Work

- MPM has been introduced and tested on simple problems.
- The solution of a two phase flow problem obtained using techniques like Operator splitting and IMPES (IMplicit Pressure, Explicit Saturation)¹ can be obtained much more efficiently without recomputing the basis functions at every time step.

¹P. Jenny and S.H. Lee and H.A. Tchelepi (2006), Adaptive fully implicit multi-scale finite-volume method for multi-phase flow and transport in heterogeneous porous media, Journal of Computational Physics, V. 217, pp 627-641

Thank You.